// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.5.16;
// File: Address.sol
/**
* @dev Collection of functions related to the address type,
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* This test is non-exhaustive, and there may be false-negatives: during the
* execution of a contract's constructor, its address will be reported as
* not containing a contract.
*
* > It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(account)
}
return size > 0;
}
}
// File: IERC20.sol
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see `ERC20Detailed`.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transfer(address recipient, uint256 amount)
external
returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through `transferFrom`. This is
* zero by default.
*
* This value changes when `approve` or `transferFrom` are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* > Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an `Approval` event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a `Transfer` event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to `approve`. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// File: IStakingRewards.sol
// https://docs.synthetix.io/contracts/source/interfaces/istakingrewards
interface IStakingRewards {
// Views
function balanceOf(address account) external view returns (uint256);
function earned(address account) external view returns (uint256);
function getRewardForDuration() external view returns (uint256);
function lastTimeRewardApplicable() external view returns (uint256);
function rewardPerToken() external view returns (uint256);
function rewardsDistribution() external view returns (address);
function rewardsToken() external view returns (address);
function totalSupply() external view returns (uint256);
// Mutative
function exit() external;
function getReward() external;
function stake(uint256 amount) external;
function withdraw(uint256 amount) external;
}
// File: Owned.sol
// https://docs.synthetix.io/contracts/source/contracts/owned
contract Owned {
address public owner;
address public nominatedOwner;
constructor(address _owner) public {
require(_owner != address(0), "Owner address cannot be 0");
owner = _owner;
emit OwnerChanged(address(0), _owner);
}
function nominateNewOwner(address _owner) external onlyOwner {
nominatedOwner = _owner;
emit OwnerNominated(_owner);
}
function acceptOwnership() external {
require(
msg.sender == nominatedOwner,
"You must be nominated before you can accept ownership"
);
emit OwnerChanged(owner, nominatedOwner);
owner = nominatedOwner;
nominatedOwner = address(0);
}
modifier onlyOwner {
_onlyOwner();
_;
}
function _onlyOwner() private view {
require(
msg.sender == owner,
"Only the contract owner may perform this action"
);
}
event OwnerNominated(address newOwner);
event OwnerChanged(address oldOwner, address newOwner);
}
// File: ReentrancyGuard.sol
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the `nonReentrant` modifier
* available, which can be aplied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*/
contract ReentrancyGuard {
/// @dev counter to allow mutex lock with only one SSTORE operation
uint256 private _guardCounter;
constructor() internal {
// The counter starts at one to prevent changing it from zero to a non-zero
// value, which is a more expensive operation.
_guardCounter = 1;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_guardCounter += 1;
uint256 localCounter = _guardCounter;
_;
require(
localCounter == _guardCounter,
"ReentrancyGuard: reentrant call"
);
}
}
// File: SafeMath.sol
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
// File: ERC20Detailed.sol
/**
* @dev Optional functions from the ERC20 standard.
*/
contract ERC20Detailed is IERC20 {
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for `name`, `symbol`, and `decimals`. All three of
* these values are immutable: they can only be set once during
* construction.
*/
constructor(
string memory name,
string memory symbol,
uint8 decimals
) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei.
*
* > Note that this information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* `IERC20.balanceOf` and `IERC20.transfer`.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
}
// File: Pausable.sol
// Inheritance
// https://docs.synthetix.io/contracts/source/contracts/pausable
contract Pausable is Owned {
uint256 public lastPauseTime;
bool public paused;
constructor() internal {
// This contract is abstract, and thus cannot be instantiated directly
require(owner != address(0), "Owner must be set");
// Paused will be false, and lastPauseTime will be 0 upon initialisation
}
/**
* @notice Change the paused state of the contract
* @dev Only the contract owner may call this.
*/
function setPaused(bool _paused) external onlyOwner {
// Ensure we're actually changing the state before we do anything
if (_paused == paused) {
return;
}
// Set our paused state.
paused = _paused;
// If applicable, set the last pause time.
if (paused) {
lastPauseTime = now;
}
// Let everyone know that our pause state has changed.
emit PauseChanged(paused);
}
event PauseChanged(bool isPaused);
modifier notPaused {
require(
!paused,
"This action cannot be performed while the contract is paused"
);
_;
}
}
// File: RewardsDistributionRecipient.sol
// Inheritance
// https://docs.synthetix.io/contracts/source/contracts/rewardsdistributionrecipient
contract RewardsDistributionRecipient is Owned {
address public rewardsDistribution;
function notifyRewardAmount(uint256 reward) external;
modifier onlyRewardsDistribution() {
require(
msg.sender == rewardsDistribution,
"Caller is not RewardsDistribution contract"
);
_;
}
function setRewardsDistribution(address _rewardsDistribution)
external
onlyOwner
{
rewardsDistribution = _rewardsDistribution;
}
}
// File: SafeERC20.sol
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance =
token.allowance(address(this), spender).add(value);
callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance =
token.allowance(address(this), spender).sub(value);
callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
// File: StakingRewards.sol
// Inheritance
// https://docs.synthetix.io/contracts/source/contracts/stakingrewards
contract StakingRewards is
IStakingRewards,
RewardsDistributionRecipient,
ReentrancyGuard,
Pausable
{
using SafeMath for uint256;
using SafeERC20 for IERC20;
/* ========== STATE VARIABLES ========== */
/// @notice The address of our rewards token.
IERC20 public rewardsToken;
/// @notice The address of our staking token.
IERC20 public stakingToken;
/// @notice The end (timestamp) of our current or most recent reward period.
uint256 public periodFinish = 0;
/// @notice The distribution rate of rewardsToken per second.
uint256 public rewardRate = 0;
/// @notice The duration of our rewards distribution for staking, default is 7 days.
uint256 public rewardsDuration = 7 days;
/// @notice The last time rewards were updated, triggered by updateReward() or notifyRewardAmount().
/// @dev Will be the timestamp of the update or the end of the period, whichever is earlier.
uint256 public lastUpdateTime;
/// @notice The most recent stored amount for rewardPerToken().
/// @dev Updated every time anyone calls the updateReward() modifier.
uint256 public rewardPerTokenStored;
/// @notice The address of our zap contract, allows depositing to vault and staking in one transaction.
address public zapContract;
/// @notice Bool for if this staking contract is shut down and rewards have been swept out.
/// @dev Can only be performed at least 90 days after final reward period ends.
bool public isRetired;
/// @notice The amount of rewards allocated to a user per whole token staked.
/// @dev Note that this is not the same as amount of rewards claimed.
mapping(address => uint256) public userRewardPerTokenPaid;
/// @notice The amount of unclaimed rewards an account is owed.
mapping(address => uint256) public rewards;
// private vars, use view functions to see these
uint256 private _totalSupply;
mapping(address => uint256) private _balances;
/* ========== CONSTRUCTOR ========== */
constructor(
address _owner,
address _rewardsDistribution,
address _rewardsToken,
address _stakingToken,
address _zapContract
) public Owned(_owner) {
rewardsToken = IERC20(_rewardsToken);
stakingToken = IERC20(_stakingToken);
rewardsDistribution = _rewardsDistribution;
zapContract = _zapContract;
}
/* ========== VIEWS ========== */
/// @notice The total tokens staked in this contract.
function totalSupply() external view returns (uint256) {
return _totalSupply;
}
/// @notice The balance a given user has staked.
function balanceOf(address account) external view returns (uint256) {
return _balances[account];
}
/// @notice Either the current timestamp or end of the most recent period.
function lastTimeRewardApplicable() public view returns (uint256) {
return block.timestamp < periodFinish ? block.timestamp : periodFinish;
}
/// @notice Reward paid out per whole token.
function rewardPerToken() public view returns (uint256) {
if (_totalSupply == 0) {
return rewardPerTokenStored;
}
if (isRetired) {
return 0;
}
return
rewardPerTokenStored.add(
lastTimeRewardApplicable()
.sub(lastUpdateTime)
.mul(rewardRate)
.mul(1e18)
.div(_totalSupply)
);
}
/// @notice Amount of reward token pending claim by an account.
function earned(address account) public view returns (uint256) {
if (isRetired) {
return 0;
}
return
_balances[account]
.mul(rewardPerToken().sub(userRewardPerTokenPaid[account]))
.div(1e18)
.add(rewards[account]);
}
/// @notice Reward tokens emitted over the entire rewardsDuration.
function getRewardForDuration() external view returns (uint256) {
return rewardRate.mul(rewardsDuration);
}
/* ========== MUTATIVE FUNCTIONS ========== */
/// @notice Deposit vault tokens to the staking pool.
/// @dev Can't stake zero.
/// @param amount Amount of vault tokens to deposit.
function stake(uint256 amount)
external
nonReentrant
notPaused
updateReward(msg.sender)
{
require(amount > 0, "Cannot stake 0");
require(!isRetired, "Staking pool is retired");
_totalSupply = _totalSupply.add(amount);
_balances[msg.sender] = _balances[msg.sender].add(amount);
stakingToken.safeTransferFrom(msg.sender, address(this), amount);
emit Staked(msg.sender, amount);
}
/// @notice Deposit vault tokens for specified recipient.
/// @dev Can't stake zero, can only be used by zap contract.
/// @param recipient Address of user these vault tokens are being staked for.
/// @param amount Amount of vault token to deposit.
function stakeFor(address recipient, uint256 amount)
external
nonReentrant
notPaused
updateReward(recipient)
{
require(msg.sender == zapContract, "Only zap contract");
require(amount > 0, "Cannot stake 0");
require(!isRetired, "Staking pool is retired");
_totalSupply = _totalSupply.add(amount);
_balances[recipient] = _balances[recipient].add(amount);
stakingToken.safeTransferFrom(msg.sender, address(this), amount);
emit StakedFor(recipient, amount);
}
/// @notice Withdraw vault tokens from the staking pool.
/// @dev Can't withdraw zero. If trying to claim, call getReward() instead.
/// @param amount Amount of vault tokens to withdraw.
function withdraw(uint256 amount)
public
nonReentrant
updateReward(msg.sender)
{
require(amount > 0, "Cannot withdraw 0");
_totalSupply = _totalSupply.sub(amount);
_balances[msg.sender] = _balances[msg.sender].sub(amount);
stakingToken.safeTransfer(msg.sender, amount);
emit Withdrawn(msg.sender, amount);
}
/// @notice Claim any earned reward tokens.
/// @dev Can claim rewards even if no tokens still staked.
function getReward() public nonReentrant updateReward(msg.sender) {
uint256 reward = rewards[msg.sender];
if (reward > 0) {
rewards[msg.sender] = 0;
rewardsToken.safeTransfer(msg.sender, reward);
emit RewardPaid(msg.sender, reward);
}
}
/// @notice Unstake all of the sender's tokens and claim any outstanding rewards.
function exit() external {
withdraw(_balances[msg.sender]);
getReward();
}
/* ========== RESTRICTED FUNCTIONS ========== */
/// @notice Notify staking contract that it has more reward to account for.
/// @dev Reward tokens must be sent to contract before notifying. May only be called
/// by rewards distribution role.
/// @param reward Amount of reward tokens to add.
function notifyRewardAmount(uint256 reward)
external
onlyRewardsDistribution
updateReward(address(0))
{
if (block.timestamp >= periodFinish) {
rewardRate = reward.div(rewardsDuration);
} else {
uint256 remaining = periodFinish.sub(block.timestamp);
uint256 leftover = remaining.mul(rewardRate);
rewardRate = reward.add(leftover).div(rewardsDuration);
}
// Ensure the provided reward amount is not more than the balance in the contract.
// This keeps the reward rate in the right range, preventing overflows due to
// very high values of rewardRate in the earned and rewardsPerToken functions;
// Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
uint256 balance = rewardsToken.balanceOf(address(this));
require(
rewardRate <= balance.div(rewardsDuration),
"Provided reward too high"
);
lastUpdateTime = block.timestamp;
periodFinish = block.timestamp.add(rewardsDuration);
emit RewardAdded(reward);
}
/// @notice Sweep out tokens accidentally sent here.
/// @dev May only be called by owner.
/// @param tokenAddress Address of token to sweep.
/// @param tokenAmount Amount of tokens to sweep.
function recoverERC20(address tokenAddress, uint256 tokenAmount)
external
onlyOwner
{
require(
tokenAddress != address(stakingToken),
"Cannot withdraw the staking token"
);
// can only recover rewardsToken 90 days after end
if (tokenAddress == address(rewardsToken)) {
require(
block.timestamp > periodFinish + 90 days,
"wait 90 days to sweep leftover rewards"
);
// if we do this, automatically sweep all rewardsToken
tokenAmount = rewardsToken.balanceOf(address(this));
// retire this staking contract, this wipes all rewards but still allows all users to withdraw
isRetired = true;
}
IERC20(tokenAddress).safeTransfer(owner, tokenAmount);
emit Recovered(tokenAddress, tokenAmount);
}
/// @notice Set the duration of our rewards period.
/// @dev May only be called by owner, and must be done after most recent period ends.
/// @param _rewardsDuration New length of period in seconds.
function setRewardsDuration(uint256 _rewardsDuration) external onlyOwner {
require(
block.timestamp > periodFinish,
"Previous rewards period must be complete before changing the duration for the new period"
);
rewardsDuration = _rewardsDuration;
emit RewardsDurationUpdated(rewardsDuration);
}
/// @notice Set our zap contract.
/// @dev May only be called by owner, and can't be set to zero address.
/// @param _zapContract Address of the new zap contract.
function setZapContract(address _zapContract) external onlyOwner {
require(_zapContract != address(0), "no zero address");
zapContract = _zapContract;
emit ZapContractUpdated(_zapContract);
}
/* ========== MODIFIERS ========== */
modifier updateReward(address account) {
rewardPerTokenStored = rewardPerToken();
lastUpdateTime = lastTimeRewardApplicable();
if (account != address(0)) {
rewards[account] = earned(account);
userRewardPerTokenPaid[account] = rewardPerTokenStored;
}
_;
}
/* ========== EVENTS ========== */
event RewardAdded(uint256 reward);
event Staked(address indexed user, uint256 amount);
event StakedFor(address indexed user, uint256 amount);
event Withdrawn(address indexed user, uint256 amount);
event RewardPaid(address indexed user, uint256 reward);
event RewardsDurationUpdated(uint256 newDuration);
event ZapContractUpdated(address _zapContract);
event Recovered(address token, uint256 amount);
}
{
"compilationTarget": {
"contracts/StakingRewards.sol": "StakingRewards"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_rewardsDistribution","type":"address"},{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"address","name":"_stakingToken","type":"address"},{"internalType":"address","name":"_zapContract","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerNominated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isPaused","type":"bool"}],"name":"PauseChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newDuration","type":"uint256"}],"name":"RewardsDurationUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"StakedFor","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_zapContract","type":"address"}],"name":"ZapContractUpdated","type":"event"},{"constant":false,"inputs":[],"name":"acceptOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"exit","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"getReward","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"getRewardForDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"isRetired","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"lastPauseTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"lastTimeRewardApplicable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"nominateNewOwner","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"nominatedOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"reward","type":"uint256"}],"name":"notifyRewardAmount","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"periodFinish","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverERC20","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"rewardPerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"rewardPerTokenStored","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"rewardRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"rewardsDistribution","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"rewardsDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"rewardsToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"bool","name":"_paused","type":"bool"}],"name":"setPaused","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_rewardsDistribution","type":"address"}],"name":"setRewardsDistribution","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"_rewardsDuration","type":"uint256"}],"name":"setRewardsDuration","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"_zapContract","type":"address"}],"name":"setZapContract","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stakeFor","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userRewardPerTokenPaid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"zapContract","outputs":[{"internalType":"address","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"}]