// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in// construction, since the code is only stored at the end of the// constructor execution.uint256 size;
// solhint-disable-next-line no-inline-assemblyassembly { size :=extcodesize(account) }
return size >0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data, stringmemory errorMessage) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value, stringmemory errorMessage) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytesmemory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data, stringmemory errorMessage) internalviewreturns (bytesmemory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytesmemory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data, stringmemory errorMessage) internalreturns (bytesmemory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytesmemory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function_verifyCallResult(bool success, bytesmemory returndata, stringmemory errorMessage) privatepurereturns(bytesmemory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly// solhint-disable-next-line no-inline-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
Contract Source Code
File 2 of 10: Context.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691returnmsg.data;
}
}
Contract Source Code
File 3 of 10: ERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"IERC20.sol";
import"IERC20Metadata.sol";
import"Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/contractERC20isContext, IERC20, IERC20Metadata{
mapping (address=>uint256) private _balances;
mapping (address=>mapping (address=>uint256)) private _allowances;
uint256private _totalSupply;
stringprivate _name;
stringprivate _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The defaut value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/constructor (stringmemory name_, stringmemory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/functionname() publicviewvirtualoverridereturns (stringmemory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/functionsymbol() publicviewvirtualoverridereturns (stringmemory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/functiondecimals() publicviewvirtualoverridereturns (uint8) {
return18;
}
/**
* @dev See {IERC20-totalSupply}.
*/functiontotalSupply() publicviewvirtualoverridereturns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/functionbalanceOf(address account) publicviewvirtualoverridereturns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/functiontransfer(address recipient, uint256 amount) publicvirtualoverridereturns (bool) {
_transfer(_msgSender(), recipient, amount);
returntrue;
}
/**
* @dev See {IERC20-allowance}.
*/functionallowance(address owner, address spender) publicviewvirtualoverridereturns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionapprove(address spender, uint256 amount) publicvirtualoverridereturns (bool) {
_approve(_msgSender(), spender, amount);
returntrue;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/functiontransferFrom(address sender, address recipient, uint256 amount) publicvirtualoverridereturns (bool) {
_transfer(sender, recipient, amount);
uint256 currentAllowance = _allowances[sender][_msgSender()];
require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance");
_approve(sender, _msgSender(), currentAllowance - amount);
returntrue;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionincreaseAllowance(address spender, uint256 addedValue) publicvirtualreturns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue);
returntrue;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/functiondecreaseAllowance(address spender, uint256 subtractedValue) publicvirtualreturns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
_approve(_msgSender(), spender, currentAllowance - subtractedValue);
returntrue;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/function_transfer(address sender, address recipient, uint256 amount) internalvirtual{
require(sender !=address(0), "ERC20: transfer from the zero address");
require(recipient !=address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
uint256 senderBalance = _balances[sender];
require(senderBalance >= amount, "ERC20: transfer amount exceeds balance");
_balances[sender] = senderBalance - amount;
_balances[recipient] += amount;
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/function_mint(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/function_burn(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
_balances[account] = accountBalance - amount;
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/function_approve(address owner, address spender, uint256 amount) internalvirtual{
require(owner !=address(0), "ERC20: approve from the zero address");
require(spender !=address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_beforeTokenTransfer(addressfrom, address to, uint256 amount) internalvirtual{ }
}
Contract Source Code
File 4 of 10: GenericVault.sol
// SPDX-License-Identifier: MITpragmasolidity 0.8.9;import"Ownable.sol";
import"SafeERC20.sol";
import"ERC20.sol";
import"IStrategy.sol";
contractGenericUnionVaultisERC20, Ownable{
usingSafeERC20forIERC20;
uint256public withdrawalPenalty =100;
uint256publicconstant MAX_WITHDRAWAL_PENALTY =150;
uint256public platformFee =500;
uint256publicconstant MAX_PLATFORM_FEE =2000;
uint256public callIncentive =500;
uint256publicconstant MAX_CALL_INCENTIVE =500;
uint256publicconstant FEE_DENOMINATOR =10000;
addresspublicimmutable underlying;
addresspublic strategy;
addresspublic platform;
eventHarvest(addressindexed _caller, uint256 _value);
eventDeposit(addressindexed _from, addressindexed _to, uint256 _value);
eventWithdraw(addressindexed _from, addressindexed _to, uint256 _value);
eventWithdrawalPenaltyUpdated(uint256 _penalty);
eventCallerIncentiveUpdated(uint256 _incentive);
eventPlatformFeeUpdated(uint256 _fee);
eventPlatformUpdated(addressindexed _platform);
eventStrategySet(addressindexed _strategy);
constructor(address _token)
ERC20(string(abi.encodePacked("Unionized ", ERC20(_token).name())),
string(abi.encodePacked("u", ERC20(_token).symbol()))
)
{
underlying = _token;
}
/// @notice Updates the withdrawal penalty/// @param _penalty - the amount of the new penalty (in BIPS)functionsetWithdrawalPenalty(uint256 _penalty) externalonlyOwner{
require(_penalty <= MAX_WITHDRAWAL_PENALTY);
withdrawalPenalty = _penalty;
emit WithdrawalPenaltyUpdated(_penalty);
}
/// @notice Updates the caller incentive for harvests/// @param _incentive - the amount of the new incentive (in BIPS)functionsetCallIncentive(uint256 _incentive) externalonlyOwner{
require(_incentive <= MAX_CALL_INCENTIVE);
callIncentive = _incentive;
emit CallerIncentiveUpdated(_incentive);
}
/// @notice Updates the part of yield redirected to the platform/// @param _fee - the amount of the new platform fee (in BIPS)functionsetPlatformFee(uint256 _fee) externalonlyOwner{
require(_fee <= MAX_PLATFORM_FEE);
platformFee = _fee;
emit PlatformFeeUpdated(_fee);
}
/// @notice Updates the address to which platform fees are paid out/// @param _platform - the new platform wallet addressfunctionsetPlatform(address _platform)
externalonlyOwnernotToZeroAddress(_platform)
{
platform = _platform;
emit PlatformUpdated(_platform);
}
/// @notice Set the address of the strategy contract/// @dev Can only be set once/// @param _strategy - address of the strategy contractfunctionsetStrategy(address _strategy)
externalonlyOwnernotToZeroAddress(_strategy)
{
require(strategy ==address(0), "Strategy already set");
strategy = _strategy;
emit StrategySet(_strategy);
}
/// @notice Query the amount currently staked/// @return total - the total amount of tokens stakedfunctiontotalUnderlying() publicviewreturns (uint256 total) {
return IStrategy(strategy).totalUnderlying();
}
/// @notice Returns the amount of underlying a user can claim/// @param user - address whose claimable amount to query/// @return amount - claimable amount/// @dev Does not account for penalties and feesfunctionbalanceOfUnderlying(address user)
externalviewreturns (uint256 amount)
{
require(totalSupply() >0, "No users");
return ((balanceOf(user) * totalUnderlying()) / totalSupply());
}
/// @notice Deposit user funds in the autocompounder and mints tokens/// representing user's share of the pool in exchange/// @param _to - the address that will receive the shares/// @param _amount - the amount of underlying to deposit/// @return _shares - the amount of shares issuedfunctiondeposit(address _to, uint256 _amount)
publicnotToZeroAddress(_to)
returns (uint256 _shares)
{
require(_amount >0, "Deposit too small");
uint256 _before = totalUnderlying();
IERC20(underlying).safeTransferFrom(msg.sender, strategy, _amount);
IStrategy(strategy).stake(_amount);
// Issues shares in proportion of deposit to pool amountuint256 shares =0;
if (totalSupply() ==0) {
shares = _amount;
} else {
shares = (_amount * totalSupply()) / _before;
}
_mint(_to, shares);
emit Deposit(msg.sender, _to, _amount);
return shares;
}
/// @notice Deposit all of user's underlying balance/// @param _to - the address that will receive the shares/// @return _shares - the amount of shares issuedfunctiondepositAll(address _to) externalreturns (uint256 _shares) {
return deposit(_to, IERC20(underlying).balanceOf(msg.sender));
}
/// @notice Unstake underlying in proportion to the amount of shares sent/// @param _shares - the number of shares sent/// @return _withdrawable - the withdrawable underlying amountfunction_withdraw(uint256 _shares)
internalreturns (uint256 _withdrawable)
{
require(totalSupply() >0);
// Computes the amount withdrawable based on the number of shares sentuint256 amount = (_shares * totalUnderlying()) / totalSupply();
// Burn the shares before retrieving tokens
_burn(msg.sender, _shares);
// If user is last to withdraw, harvest before exitif (totalSupply() ==0) {
harvest();
IStrategy(strategy).withdraw(totalUnderlying());
_withdrawable = IERC20(underlying).balanceOf(address(this));
}
// Otherwise compute share and unstakeelse {
_withdrawable = amount;
// Substract a small withdrawal fee to prevent users "timing"// the harvests. The fee stays staked and is therefore// redistributed to all remaining participants.uint256 _penalty = (_withdrawable * withdrawalPenalty) /
FEE_DENOMINATOR;
_withdrawable = _withdrawable - _penalty;
IStrategy(strategy).withdraw(_withdrawable);
}
return _withdrawable;
}
/// @notice Unstake underlying token in proportion to the amount of shares sent/// @param _to - address to send underlying to/// @param _shares - the number of shares sent/// @return withdrawn - the amount of underlying returned to the userfunctionwithdraw(address _to, uint256 _shares)
publicnotToZeroAddress(_to)
returns (uint256 withdrawn)
{
// Withdraw requested amount of underlyinguint256 _withdrawable = _withdraw(_shares);
// And sends back underlying to user
IERC20(underlying).safeTransfer(_to, _withdrawable);
emit Withdraw(msg.sender, _to, _withdrawable);
return _withdrawable;
}
/// @notice Withdraw all of a users' position as underlying/// @param _to - address to send underlying to/// @return withdrawn - the amount of underlying returned to the userfunctionwithdrawAll(address _to)
externalnotToZeroAddress(_to)
returns (uint256 withdrawn)
{
return withdraw(_to, balanceOf(msg.sender));
}
/// @notice Claim rewards and swaps them to FXS for restaking/// @dev Can be called by anyone against an incentive in FXS/// @dev Harvest logic in the strategy contractfunctionharvest() publicvirtual{
uint256 _harvested = IStrategy(strategy).harvest(msg.sender);
emit Harvest(msg.sender, _harvested);
}
modifiernotToZeroAddress(address _to) {
require(_to !=address(0), "Invalid address!");
_;
}
}
Contract Source Code
File 5 of 10: IERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address recipient, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(address sender, address recipient, uint256 amount) externalreturns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
}
Contract Source Code
File 6 of 10: IERC20Metadata.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/interfaceIERC20MetadataisIERC20{
/**
* @dev Returns the name of the token.
*/functionname() externalviewreturns (stringmemory);
/**
* @dev Returns the symbol of the token.
*/functionsymbol() externalviewreturns (stringmemory);
/**
* @dev Returns the decimals places of the token.
*/functiondecimals() externalviewreturns (uint8);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor () {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
emit OwnershipTransferred(_owner, address(0));
_owner =address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
Contract Source Code
File 9 of 10: SafeERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"IERC20.sol";
import"Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/librarySafeERC20{
usingAddressforaddress;
functionsafeTransfer(IERC20 token, address to, uint256 value) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
functionsafeTransferFrom(IERC20 token, addressfrom, address to, uint256 value) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/functionsafeApprove(IERC20 token, address spender, uint256 value) internal{
// safeApprove should only be called when setting an initial allowance,// or when resetting it to zero. To increase and decrease it, use// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'// solhint-disable-next-line max-line-lengthrequire((value ==0) || (token.allowance(address(this), spender) ==0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
functionsafeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal{
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
functionsafeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal{
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/function_callOptionalReturn(IERC20 token, bytesmemory data) private{
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that// the target address contains contract code and also asserts for success in the low-level call.bytesmemory returndata =address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length>0) { // Return data is optional// solhint-disable-next-line max-line-lengthrequire(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
Contract Source Code
File 10 of 10: stkCvxCrvVault.sol
// SPDX-License-Identifier: MITpragmasolidity 0.8.9;import"GenericVault.sol";
interfacestkCvxCrvStrategy{
functionharvest(address _caller,
uint256 _minAmountOut,
bool _sweep
) externalreturns (uint256 harvested);
functionsetRewardWeight(uint256 _weight) external;
}
contractstkCvxCrvVaultisGenericUnionVault{
boolpublic isHarvestPermissioned =false;
uint256public weight;
mapping(address=>bool) public authorizedHarvesters;
uint256publicconstant WEIGHT_PRECISION =10000;
constructor(address _token) GenericUnionVault(_token) {}
/// @notice Sets whether only whitelisted addresses can harvest/// @param _status Whether or not harvests are permissionedfunctionsetHarvestPermissions(bool _status) externalonlyOwner{
isHarvestPermissioned = _status;
}
/// @notice Adds or remove an address from the harvesters' whitelist/// @param _harvester address of the authorized harvester/// @param _authorized Whether to add or remove harvesterfunctionupdateAuthorizedHarvesters(address _harvester, bool _authorized)
externalonlyOwner{
authorizedHarvesters[_harvester] = _authorized;
}
/// @notice set the strategy's reward weight/// @dev Always only available to owner or authorized harvesters/// @param _weight the desired weight: 0 = full group 0, 10k = full group 1functionsetRewardWeight(uint256 _weight) public{
require(_weight <= WEIGHT_PRECISION, "invalid weight");
require(
authorizedHarvesters[msg.sender] ||msg.sender== owner(),
"authorized only"
);
stkCvxCrvStrategy(strategy).setRewardWeight(_weight);
weight = _weight;
}
/// @notice Updates the strategy's reward weight before harvesting/// @dev Always only available to owner or authorized harvesters/// @param _minAmountOut - min amount of cvxCrv to receive for harvest/// @param _sweep - whether to retrieve potential token rewards in strategy contract/// @param _weight the desired weight: 0 = full group 0, 10k = full group 1functionharvestAndSetRewardWeight(uint256 _minAmountOut,
bool _sweep,
uint256 _weight
) public{
setRewardWeight(_weight);
harvest(_minAmountOut, _sweep);
}
/// @notice Claim rewards and swaps them to cvxCrv for restaking/// @param _minAmountOut - min amount of cvxCrv to receive for harvest/// @param _sweep - whether to retrieve token rewards in strategy contract/// @dev Can be called by whitelisted account or anyone against a cvxCrv incentive/// @dev Harvest logic in the strategy contract/// @dev Harvest can be called even if permissioned when last staker is/// withdrawing from the vault.functionharvest(uint256 _minAmountOut, bool _sweep) public{
require(
!isHarvestPermissioned ||
authorizedHarvesters[msg.sender] ||
totalSupply() ==0,
"permissioned harvest"
);
uint256 _harvested = stkCvxCrvStrategy(strategy).harvest(
msg.sender,
_minAmountOut,
_sweep
);
emit Harvest(msg.sender, _harvested);
}
/// @notice Claim rewards and swaps them to cvxCRV for restaking/// @param _minAmountOut - min amount of cvxCRV to receive for harvest/// @dev swapping for cvxCRV by defaultfunctionharvest(uint256 _minAmountOut) public{
harvest(_minAmountOut, false);
}
/// @notice Claim rewards and swaps them to cvxCRV for restaking/// @dev No slippage protection (harvester will use oracles), swapping for cvxCRVfunctionharvest() publicoverride{
harvest(0);
}
}