// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
interface IFactory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint) external view returns (address pair);
function allPairsLength() external view returns (uint);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function createPair(address tokenA, address tokenB) external returns (address pair);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
interface IPair {
function getReserves()
external
view
returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function token0() external view returns (address);
function token1() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.20;
pragma abicoder v2;
/// @title QuoterV2 Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps.
/// @notice For each pool also tells you the number of initialized ticks crossed and the sqrt price of the pool after the swap.
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
interface IQuoterV2 {
/// @notice Returns the amount out received for a given exact input swap without executing the swap
/// @param path The path of the swap, i.e. each token pair and the pool fee
/// @param amountIn The amount of the first token to swap
/// @return amountOut The amount of the last token that would be received
/// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
/// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactInput(bytes memory path, uint256 amountIn)
external
returns (
uint256 amountOut,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
);
struct QuoteExactInputSingleParams {
address tokenIn;
address tokenOut;
uint256 amountIn;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
/// @notice Returns the amount out received for a given exact input but for a swap of a single pool
/// @param params The params for the quote, encoded as `QuoteExactInputSingleParams`
/// tokenIn The token being swapped in
/// tokenOut The token being swapped out
/// fee The fee of the token pool to consider for the pair
/// amountIn The desired input amount
/// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
/// @return amountOut The amount of `tokenOut` that would be received
/// @return sqrtPriceX96After The sqrt price of the pool after the swap
/// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactInputSingle(QuoteExactInputSingleParams memory params)
external
returns (
uint256 amountOut,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
/// @notice Returns the amount in required for a given exact output swap without executing the swap
/// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order
/// @param amountOut The amount of the last token to receive
/// @return amountIn The amount of first token required to be paid
/// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
/// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactOutput(bytes memory path, uint256 amountOut)
external
returns (
uint256 amountIn,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
);
struct QuoteExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint256 amount;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
/// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
/// @param params The params for the quote, encoded as `QuoteExactOutputSingleParams`
/// tokenIn The token being swapped in
/// tokenOut The token being swapped out
/// fee The fee of the token pool to consider for the pair
/// amountOut The desired output amount
/// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
/// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
/// @return sqrtPriceX96After The sqrt price of the pool after the swap
/// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactOutputSingle(QuoteExactOutputSingleParams memory params)
external
returns (
uint256 amountIn,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
interface ISwapRouterV2 {
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactTokensForETH(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint[] memory amounts);
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
)
external
payable
returns (uint amountToken, uint amountETH, uint liquidity);
function getAmountOut(
uint amountIn,
uint reserveIn,
uint reserveOut
) external pure returns (uint amountOut);
function getAmountsOut(uint256 amountIn, address[] calldata path) external view returns (uint256[] memory amounts);
function factory() external returns (address factory);
}
interface IUniswapV3Quoter {
function quoteExactInputSingle(
address tokenIn,
address tokenOut,
uint24 fee,
uint256 amountIn,
uint160 sqrtPriceLimitX96
) external returns (uint256 amountOut);
function quoteExactOutputSingle(
address tokenIn,
address tokenOut,
uint24 fee,
uint256 amountOut,
uint160 sqrtPriceLimitX96
) external returns (uint256 amountIn);
}
interface IUniswapV3SwapRouter {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
event Swap (address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick);
/// @notice Swaps `amountIn` of one token for as much as possible of another token
/// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
/// @return amountOut The amount of the received token
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
function exactOutputSingle(
address tokenIn,
address tokenOut,
uint24 fee,
uint256 amountOut,
uint256 amountInMaximum,
address recipient,
uint256 deadline
) external payable returns (uint256 amountIn);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// ░██████╗███╗░░██╗░█████╗░██╗██████╗░██████╗░░█████╗░████████╗
// ██╔════╝████╗░██║██╔══██╗██║██╔══██╗██╔══██╗██╔══██╗╚══██╔══╝
// ╚█████╗░██╔██╗██║███████║██║██████╔╝██████╦╝██║░░██║░░░██║░░░
// ░╚═══██╗██║╚████║██╔══██║██║██╔═══╝░██╔══██╗██║░░██║░░░██║░░░
// ██████╔╝██║░╚███║██║░░██║██║██║░░░░░██████╦╝╚█████╔╝░░░██║░░░
// ╚═════╝░╚═╝░░╚══╝╚═╝░░╚═╝╚═╝╚═╝░░░░░╚═════╝░░╚════╝░░░░╚═╝░░░
// Powered by: https://nalikes.com/
pragma solidity 0.8.28;
import {IFactory} from "./interfaces/IFactory.sol";
import {IPair} from "./interfaces/IPair.sol";
import {ISwapRouterV2} from "./interfaces/ISwapRouterV2.sol";
import {IUniswapV3Quoter} from "./interfaces/IUniswapV3Quoter.sol";
import {IUniswapV3SwapRouter} from "./interfaces/IUniswapV3SwapRouter.sol";
import {WETH} from "./interfaces/WETH.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IQuoterV2} from "./interfaces/IQuoterV2.sol";
contract SwapBot is Ownable, ReentrancyGuard {
using SafeERC20 for IERC20;
uint256 public deadline = type(uint256).max;
uint256 public fee = 100;
uint256 public constant PERCENTAGE = 10000;
event Trade(
address indexed user,
address indexed token,
uint256 amount,
uint256 amountOut,
bool supportFeeOnTransfer
);
event AddLiquidityETH(
address token,
uint256 amountToken,
uint256 amountETH,
uint256 liquidity
);
constructor() Ownable() {
}
function internalBuyV2(
address wtoken,
address swap,
address user,
address[] memory path,
uint256 amount,
uint256 amountOut,
bool supportFeeOnTransfer
) internal nonReentrant {
address factoryAddr = ISwapRouterV2(swap).factory();
address pairAddr = IFactory(factoryAddr).getPair(path[0], path[1]);
require(pairAddr != 0x0000000000000000000000000000000000000000, "Pair not found");
(uint112 reserve0, uint112 reserve1, ) = IPair(pairAddr).getReserves();
(uint256 ethAmt, uint256 tokenAmt) = (reserve0, reserve1);
if (IPair(pairAddr).token0() != wtoken) {
(ethAmt, tokenAmt) = (reserve1, reserve0);
}
uint256 output = ISwapRouterV2(swap).getAmountOut(
amount,
ethAmt,
tokenAmt
);
require(
amountOut <= output,
"Trade output is less than minimum expected"
);
uint256 ethAmount = amount * 1 wei;
if (supportFeeOnTransfer) {
// Use the method that supports fee on transfer tokens
ISwapRouterV2(swap).swapExactETHForTokensSupportingFeeOnTransferTokens{value: ethAmount}(
0,
path,
user,
deadline
);
} else {
// Use the original method
ISwapRouterV2(swap).swapExactETHForTokens{value: ethAmount}(
0,
path,
user,
deadline
);
}
emit Trade(user, path[1], amount, output, supportFeeOnTransfer);
}
function buyTokenV2(
address wtoken,
address swap,
address token,
uint256 amount,
uint256 amountOut,
bool supportFeeOnTransfer
) external payable {
require(msg.value >= amount * (1 wei), "Insufficient ether amount");
address[] memory path = new address[](2);
path[0] = wtoken;
path[1] = token;
internalBuyV2(
wtoken,
swap,
payable(msg.sender),
path,
(amount * (PERCENTAGE - fee)) / (PERCENTAGE),
amountOut,
supportFeeOnTransfer
);
}
function internalSellV2(
address wtoken,
address swap,
address payable user,
address[] memory path,
uint256 amount,
uint256 amountOut,
bool supportFeeOnTransfer
) internal nonReentrant {
address factoryAddr = ISwapRouterV2(swap).factory();
address pairAddr = IFactory(factoryAddr).getPair(path[0], path[1]);
(uint112 reserve0, uint112 reserve1, ) = IPair(pairAddr).getReserves();
IERC20(path[0]).approve(swap, amount);
(uint256 ethAmt, uint256 tokenAmt) = (reserve0, reserve1);
if (IPair(pairAddr).token0() != wtoken) {
(ethAmt, tokenAmt) = (reserve1, reserve0);
}
uint256 output = ISwapRouterV2(swap).getAmountOut(
amount,
tokenAmt,
ethAmt
);
require(
amountOut <= output,
"Trade output is less than minimum expected"
);
uint256 initialBalance = address(this).balance;
if (supportFeeOnTransfer) {
// Use the method that supports fee on transfer tokens
ISwapRouterV2(swap).swapExactTokensForETHSupportingFeeOnTransferTokens(
amount,
0,
path,
address(this),
deadline
);
} else {
// Use the original method
ISwapRouterV2(swap).swapExactTokensForETH(
amount,
0,
path,
address(this),
deadline
);
}
uint256 actualOutput = address(this).balance - initialBalance;
uint256 userAmount = (actualOutput * (PERCENTAGE - fee)) / PERCENTAGE;
user.transfer(userAmount);
emit Trade(user, path[0], amount, userAmount, supportFeeOnTransfer);
}
function sellTokenV2(
address wtoken,
address swap,
address token,
uint256 amount,
uint256 amountOut,
bool supportFeeOnTransfer
) external payable {
require(
IERC20(token).balanceOf(msg.sender) >= amount,
"Insufficient token balance"
);
IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
address[] memory path = new address[](2);
path[0] = token;
path[1] = wtoken;
internalSellV2(wtoken, swap, payable(msg.sender), path, amount, amountOut, supportFeeOnTransfer);
}
function getEstimatedAmountOutV3(
address quoterAddr,
address tokenIn,
address tokenOut,
uint256 amountIn,
uint24 poolFee
) external returns (uint256 estimatedAmountOutV3) {
estimatedAmountOutV3 = IUniswapV3Quoter(quoterAddr).quoteExactInputSingle(
tokenIn,
tokenOut,
poolFee,
amountIn,
0 // No price limit
) * (PERCENTAGE - fee) / PERCENTAGE;
}
function getEstimatedAmountOutV2(
address uniswapV2,
address tokenIn,
address tokenOut,
uint256 amountIn
) external view returns (uint256 estimatedAmountOutV2) {
address[] memory path = new address[](2);
path[0] = tokenIn;
path[1] = tokenOut;
uint256[] memory amountsOut = ISwapRouterV2(uniswapV2).getAmountsOut(
amountIn,
path
);
estimatedAmountOutV2 = amountsOut[1] * (PERCENTAGE - fee) / PERCENTAGE;
}
// Function to swap ETH for Token (no fee deduction)
function buyTokenV3(
address swapRouter,
address wtoken,
address tokenOut,
uint24 feeTier,
uint256 amountOutMinimum,
address recipient
) external payable returns (uint256 amountOut) {
// Ensure the ETH sent is greater than 0
require(msg.value > 0, "ETH required");
uint256 amountIn = msg.value * (PERCENTAGE - fee) / PERCENTAGE;
IUniswapV3SwapRouter.ExactInputSingleParams memory params =
IUniswapV3SwapRouter.ExactInputSingleParams({
tokenIn : wtoken,
tokenOut : tokenOut,
fee : feeTier,
recipient : recipient,
amountIn : amountIn,
amountOutMinimum : amountOutMinimum,
sqrtPriceLimitX96 : 0
});
// The call to `exactInputSingle` executes the swap.
amountOut = IUniswapV3SwapRouter(swapRouter).exactInputSingle{value: amountIn}(params);
}
// Function to swap Token for ETH (no fee deduction)
function sellTokenV3(
address swapRouter,
address tokenIn,
address wtoken,
uint256 amountIn,
uint24 feeTier,
uint256 amountOutMinimum,
address recipient
) external returns (uint256 amountOut) {
// Transfer the tokens to the contract
IERC20(tokenIn).safeTransferFrom(msg.sender, address(this), amountIn);
IERC20(tokenIn).approve(swapRouter, amountIn);
IUniswapV3SwapRouter.ExactInputSingleParams memory params =
IUniswapV3SwapRouter.ExactInputSingleParams({
tokenIn : tokenIn,
tokenOut : wtoken,
fee : feeTier,
recipient : address(this),
amountIn : amountIn,
amountOutMinimum : amountOutMinimum,
sqrtPriceLimitX96 : 0
});
uint256 initialBalance = WETH(wtoken).balanceOf(address(this));
// Swap Token for ETH
IUniswapV3SwapRouter(swapRouter).exactInputSingle(params);
uint256 newBalance = WETH(wtoken).balanceOf(address(this));
WETH(wtoken).withdraw(newBalance);
amountOut = ((newBalance - initialBalance) * (PERCENTAGE - fee)) / PERCENTAGE;
// Send the ETH to the recipient
payable(recipient).transfer(amountOut);
}
function setFee(uint256 _fee) external onlyOwner {
fee = _fee;
}
function withdraw(
uint256 _amount,
address payable _receiver
) external onlyOwner {
_receiver.transfer(_amount);
}
receive() external payable {}
fallback() external payable {}
}
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface WETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 wad) external;
}
{
"compilationTarget": {
"contracts/SwapBot.sol": "SwapBot"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 100
},
"remappings": [],
"viaIR": true
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountETH","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"AddLiquidityETH","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"},{"indexed":false,"internalType":"bool","name":"supportFeeOnTransfer","type":"bool"}],"name":"Trade","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"wtoken","type":"address"},{"internalType":"address","name":"swap","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"bool","name":"supportFeeOnTransfer","type":"bool"}],"name":"buyTokenV2","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"swapRouter","type":"address"},{"internalType":"address","name":"wtoken","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint24","name":"feeTier","type":"uint24"},{"internalType":"uint256","name":"amountOutMinimum","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"buyTokenV3","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deadline","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"uniswapV2","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getEstimatedAmountOutV2","outputs":[{"internalType":"uint256","name":"estimatedAmountOutV2","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"quoterAddr","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint24","name":"poolFee","type":"uint24"}],"name":"getEstimatedAmountOutV3","outputs":[{"internalType":"uint256","name":"estimatedAmountOutV3","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"wtoken","type":"address"},{"internalType":"address","name":"swap","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"bool","name":"supportFeeOnTransfer","type":"bool"}],"name":"sellTokenV2","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"swapRouter","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"wtoken","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint24","name":"feeTier","type":"uint24"},{"internalType":"uint256","name":"amountOutMinimum","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"sellTokenV3","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address payable","name":"_receiver","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]