// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;
import "openzeppelin-contracts/contracts/access/Ownable2Step.sol";
import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/IDaimoPayBridger.sol";
import "../../vendor/cctp/ITokenMinter.sol";
import "../../vendor/cctp/ICCTPTokenMessenger.sol";
/// @title Bridger implementation for Circle's Cross-Chain Transfer Protocol (CCTP)
/// @author The Daimo team
/// @custom:security-contact security@daimo.com
///
/// @dev Bridges assets from to a destination chain using CCTP. The only supported
/// bridge token is USDC.
contract DaimoPayCCTPBridger is IDaimoPayBridger, Ownable2Step {
using SafeERC20 for IERC20;
struct CCTPBridgeRoute {
uint32 domain;
address bridgeTokenOut;
}
// CCTP TokenMinter for this chain. Used to identify the CCTP token on the
// current chain.
ITokenMinter public tokenMinter;
// CCTP TokenMessenger for this chain. Used to initiate the CCTP bridge.
ICCTPTokenMessenger public cctpMessenger;
// Map destination chainId to CCTP domain and the bridge token address on the
// destination chain.
mapping(uint256 toChainId => CCTPBridgeRoute bridgeRoute)
public bridgeRouteMapping;
event BridgeRouteAdded(
uint256 indexed toChainId,
CCTPBridgeRoute bridgeRoute
);
event BridgeRouteRemoved(
uint256 indexed toChainId,
CCTPBridgeRoute bridgeRoute
);
/// Specify the CCTP chain IDs and domains that this bridger will support.
constructor(
address _owner,
ITokenMinter _tokenMinter,
ICCTPTokenMessenger _cctpMessenger,
uint256[] memory _toChainIds,
CCTPBridgeRoute[] memory _bridgeRoutes
) Ownable(_owner) {
tokenMinter = _tokenMinter;
cctpMessenger = _cctpMessenger;
_setBridgeRoutes({
toChainIds: _toChainIds,
bridgeRoutes: _bridgeRoutes
});
}
// ----- ADMIN FUNCTIONS -----
/// Add a new supported CCTP recipient chain.
function setBridgeRoutes(
uint256[] memory toChainIds,
CCTPBridgeRoute[] memory bridgeRoutes
) public onlyOwner {
_setBridgeRoutes({toChainIds: toChainIds, bridgeRoutes: bridgeRoutes});
}
function _setBridgeRoutes(
uint256[] memory toChainIds,
CCTPBridgeRoute[] memory bridgeRoutes
) private {
uint256 n = toChainIds.length;
require(n == bridgeRoutes.length, "DPCCTPB: wrong bridgeRoutes length");
for (uint256 i = 0; i < n; ++i) {
bridgeRouteMapping[toChainIds[i]] = bridgeRoutes[i];
emit BridgeRouteAdded({
toChainId: toChainIds[i],
bridgeRoute: bridgeRoutes[i]
});
}
}
/// Remove a supported CCTP recipient chain.
function removeBridgeRoutes(uint256[] memory toChainIds) public onlyOwner {
for (uint256 i = 0; i < toChainIds.length; ++i) {
CCTPBridgeRoute memory bridgeRoute = bridgeRouteMapping[
toChainIds[i]
];
delete bridgeRouteMapping[toChainIds[i]];
emit BridgeRouteRemoved({
toChainId: toChainIds[i],
bridgeRoute: bridgeRoute
});
}
}
function addressToBytes32(address addr) internal pure returns (bytes32) {
return bytes32(uint256(uint160(addr)));
}
// ----- BRIDGER FUNCTIONS -----
/// Given a list of bridge token options, find the index of the bridge token
/// that matches the correct bridge token out. Return the length of the array
/// if no match is found.
function _findBridgeTokenOut(
TokenAmount[] memory bridgeTokenOutOptions,
address bridgeTokenOut
) internal pure returns (uint256 index) {
uint256 n = bridgeTokenOutOptions.length;
for (uint256 i = 0; i < n; ++i) {
if (address(bridgeTokenOutOptions[i].token) == bridgeTokenOut) {
return i;
}
}
return n;
}
/// Get the CCTP bridge token address and amount for the current chain.
/// CCTP does 1 to 1 token bridging, so the amount of tokens to bridge is
/// the same as toAmount.
function _getBridgeData(
uint256 toChainId,
TokenAmount[] memory bridgeTokenOutOptions
)
internal
view
returns (
address inToken,
uint256 inAmount,
address outToken,
uint256 outAmount,
uint32 toDomain
)
{
CCTPBridgeRoute memory bridgeRoute = bridgeRouteMapping[toChainId];
require(
bridgeRoute.bridgeTokenOut != address(0),
"DPCCTPB: bridge route not found"
);
uint256 index = _findBridgeTokenOut(
bridgeTokenOutOptions,
bridgeRoute.bridgeTokenOut
);
// If the index is the length of the array, then the bridge token out
// was not found in the list of options.
require(
index < bridgeTokenOutOptions.length,
"DPCCTPB: bad bridge token"
);
toDomain = bridgeRoute.domain;
outToken = bridgeRoute.bridgeTokenOut;
outAmount = bridgeTokenOutOptions[index].amount;
inToken = tokenMinter.getLocalToken(
bridgeRoute.domain,
addressToBytes32(bridgeRoute.bridgeTokenOut)
);
inAmount = outAmount;
}
function getBridgeTokenIn(
uint256 toChainId,
TokenAmount[] memory bridgeTokenOutOptions
) external view returns (address bridgeTokenIn, uint256 inAmount) {
(address _bridgeTokenIn, uint256 _inAmount, , , ) = _getBridgeData(
toChainId,
bridgeTokenOutOptions
);
bridgeTokenIn = _bridgeTokenIn;
inAmount = _inAmount;
}
/// Initiate a bridge to a destination chain using CCTP.
function sendToChain(
uint256 toChainId,
address toAddress,
TokenAmount[] memory bridgeTokenOutOptions,
bytes calldata /* extraData */
) public {
require(toChainId != block.chainid, "DPCCTPB: same chain");
(
address inToken,
uint256 inAmount,
address outToken,
uint256 outAmount,
uint32 toDomain
) = _getBridgeData(toChainId, bridgeTokenOutOptions);
require(outAmount > 0, "DPCCTPB: zero amount");
// Move input token from caller to this contract and approve CCTP.
IERC20(inToken).safeTransferFrom({
from: msg.sender,
to: address(this),
value: inAmount
});
IERC20(inToken).forceApprove({
spender: address(cctpMessenger),
value: inAmount
});
cctpMessenger.depositForBurn({
amount: inAmount,
destinationDomain: toDomain,
mintRecipient: addressToBytes32(toAddress),
burnToken: address(inToken)
});
emit BridgeInitiated({
fromAddress: msg.sender,
fromToken: inToken,
fromAmount: inAmount,
toChainId: toChainId,
toAddress: toAddress,
toToken: outToken,
toAmount: outAmount
});
}
}
/*
* Copyright (c) 2022, Circle Internet Financial Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity ^0.8.12;
/**
* @title ICCTPTokenMessenger
* @notice Initiates CCTP transfers. Interface derived from TokenMessenger.sol.
*/
interface ICCTPTokenMessenger {
/**
* @notice Deposits and burns tokens from sender to be minted on destination domain.
* Emits a `DepositForBurn` event.
* @dev reverts if:
* - given burnToken is not supported
* - given destinationDomain has no TokenMessenger registered
* - transferFrom() reverts. For example, if sender's burnToken balance or approved allowance
* to this contract is less than `amount`.
* - burn() reverts. For example, if `amount` is 0.
* - MessageTransmitter returns false or reverts.
* @param amount amount of tokens to burn
* @param destinationDomain destination domain
* @param mintRecipient address of mint recipient on destination domain
* @param burnToken address of contract to burn deposited tokens, on local domain
* @return _nonce unique nonce reserved by message
*/
function depositForBurn(
uint256 amount,
uint32 destinationDomain,
bytes32 mintRecipient,
address burnToken
) external returns (uint64 _nonce);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;
import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "../pay/TokenUtils.sol";
/// @notice Bridges assets automatically. Specifically, it lets any market maker
/// initiate a bridge transaction to another chain.
interface IDaimoPayBridger {
/// @notice Emitted when a bridge transaction is initiated
event BridgeInitiated(
address fromAddress,
address fromToken,
uint256 fromAmount,
uint256 toChainId,
address toAddress,
address toToken,
uint256 toAmount
);
/// @dev Get the bridge route for the given output token options on
/// destination chain.
function getBridgeTokenIn(
uint256 toChainId,
TokenAmount[] memory bridgeTokenOutOptions
) external view returns (address bridgeTokenIn, uint256 inAmount);
/// @dev Initiate a bridge. Guarantees that one of the bridge token options
/// (bridgeTokenOut, outAmount) shows up in (toAddress) on (toChainId).
/// Otherwise, reverts.
function sendToChain(
uint256 toChainId,
address toAddress,
TokenAmount[] memory bridgeTokenOutOptions,
bytes calldata extraData
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
/*
* Copyright (c) 2022, Circle Internet Financial Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
pragma solidity ^0.8.12;
/**
* @title ITokenMinter
* @notice interface for minter of tokens that are mintable, burnable, and interchangeable
* across domains.
*/
interface ITokenMinter {
/**
* @notice Mints `amount` of local tokens corresponding to the
* given (`sourceDomain`, `burnToken`) pair, to `to` address.
* @dev reverts if the (`sourceDomain`, `burnToken`) pair does not
* map to a nonzero local token address. This mapping can be queried using
* getLocalToken().
* @param sourceDomain Source domain where `burnToken` was burned.
* @param burnToken Burned token address as bytes32.
* @param to Address to receive minted tokens, corresponding to `burnToken`,
* on this domain.
* @param amount Amount of tokens to mint. Must be less than or equal
* to the minterAllowance of this TokenMinter for given `_mintToken`.
* @return mintToken token minted.
*/
function mint(
uint32 sourceDomain,
bytes32 burnToken,
address to,
uint256 amount
) external returns (address mintToken);
/**
* @notice Burn tokens owned by this ITokenMinter.
* @param burnToken burnable token.
* @param amount amount of tokens to burn. Must be less than or equal to this ITokenMinter's
* account balance of the given `_burnToken`.
*/
function burn(address burnToken, uint256 amount) external;
/**
* @notice Get the local token associated with the given remote domain and token.
* @param remoteDomain Remote domain
* @param remoteToken Remote token
* @return local token address
*/
function getLocalToken(
uint32 remoteDomain,
bytes32 remoteToken
) external view returns (address);
/**
* @notice Set the token controller of this ITokenMinter. Token controller
* is responsible for mapping local tokens to remote tokens, and managing
* token-specific limits
* @param newTokenController new token controller address
*/
function setTokenController(address newTokenController) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;
import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
/// @dev Asset amount, e.g. $100 USDC or 0.1 ETH
struct TokenAmount {
/// @dev Zero address = native asset, e.g. ETH
IERC20 token;
uint256 amount;
}
/// @dev Represents a destination address + optional arbitrary contract call
struct Call {
/// @dev Destination receiving address or contract
address to;
/// @dev Native token amount for call, or 0
uint256 value;
/// @dev Calldata for call, or empty = no contract call
bytes data;
}
/** Utility functions that work for both ERC20 and native tokens. */
library TokenUtils {
using SafeERC20 for IERC20;
/** Returns ERC20 or ETH balance. */
function getBalanceOf(
IERC20 token,
address addr
) internal view returns (uint256) {
if (address(token) == address(0)) {
return addr.balance;
} else {
return token.balanceOf(addr);
}
}
/** Approves a token transfer. */
function approve(IERC20 token, address spender, uint256 amount) internal {
if (address(token) != address(0)) {
token.approve({spender: spender, value: amount});
} // Do nothing for native token.
}
/** Sends an ERC20 or ETH transfer. For ETH, verify call success. */
function transfer(
IERC20 token,
address payable recipient,
uint256 amount
) internal {
if (address(token) != address(0)) {
token.safeTransfer({to: recipient, value: amount});
} else {
// Native token transfer
(bool success, ) = recipient.call{value: amount}("");
require(success, "TokenUtils: ETH transfer failed");
}
}
function transferFrom(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
require(
address(token) != address(0),
"TokenUtils: ETH transferFrom must be caller"
);
token.safeTransferFrom({from: from, to: to, value: amount});
}
}
{
"compilationTarget": {
"src/pay/DaimoPayCCTPBridger.sol": "DaimoPayCCTPBridger"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 999999
},
"remappings": [
":@axelar-network/=lib/axelar-gmp-sdk-solidity/",
":@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
":@uniswap/v3-core/=lib/v3-core/",
":@uniswap/v3-periphery/=lib/v3-periphery/",
":account-abstraction/=lib/account-abstraction/contracts/",
":axelar-gmp-sdk-solidity/=lib/axelar-gmp-sdk-solidity/contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
":p256-verifier/=lib/p256-verifier/src/",
":solmate/=lib/solmate/src/",
":v3-core/=lib/v3-core/contracts/",
":v3-periphery/=lib/v3-periphery/contracts/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"contract ITokenMinter","name":"_tokenMinter","type":"address"},{"internalType":"contract ICCTPTokenMessenger","name":"_cctpMessenger","type":"address"},{"internalType":"uint256[]","name":"_toChainIds","type":"uint256[]"},{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"address","name":"bridgeTokenOut","type":"address"}],"internalType":"struct DaimoPayCCTPBridger.CCTPBridgeRoute[]","name":"_bridgeRoutes","type":"tuple[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"fromAddress","type":"address"},{"indexed":false,"internalType":"address","name":"fromToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toChainId","type":"uint256"},{"indexed":false,"internalType":"address","name":"toAddress","type":"address"},{"indexed":false,"internalType":"address","name":"toToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"toAmount","type":"uint256"}],"name":"BridgeInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"toChainId","type":"uint256"},{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"address","name":"bridgeTokenOut","type":"address"}],"indexed":false,"internalType":"struct DaimoPayCCTPBridger.CCTPBridgeRoute","name":"bridgeRoute","type":"tuple"}],"name":"BridgeRouteAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"toChainId","type":"uint256"},{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"address","name":"bridgeTokenOut","type":"address"}],"indexed":false,"internalType":"struct DaimoPayCCTPBridger.CCTPBridgeRoute","name":"bridgeRoute","type":"tuple"}],"name":"BridgeRouteRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"toChainId","type":"uint256"}],"name":"bridgeRouteMapping","outputs":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"address","name":"bridgeTokenOut","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cctpMessenger","outputs":[{"internalType":"contract ICCTPTokenMessenger","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"toChainId","type":"uint256"},{"components":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct TokenAmount[]","name":"bridgeTokenOutOptions","type":"tuple[]"}],"name":"getBridgeTokenIn","outputs":[{"internalType":"address","name":"bridgeTokenIn","type":"address"},{"internalType":"uint256","name":"inAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"toChainIds","type":"uint256[]"}],"name":"removeBridgeRoutes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"toChainId","type":"uint256"},{"internalType":"address","name":"toAddress","type":"address"},{"components":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct TokenAmount[]","name":"bridgeTokenOutOptions","type":"tuple[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"sendToChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"toChainIds","type":"uint256[]"},{"components":[{"internalType":"uint32","name":"domain","type":"uint32"},{"internalType":"address","name":"bridgeTokenOut","type":"address"}],"internalType":"struct DaimoPayCCTPBridger.CCTPBridgeRoute[]","name":"bridgeRoutes","type":"tuple[]"}],"name":"setBridgeRoutes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tokenMinter","outputs":[{"internalType":"contract ITokenMinter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]