// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.15;
import {TickMath} from "./v3-core-0.8/contracts/libraries/TickMath.sol";
import {FullMath} from "./v3-core-0.8/contracts/libraries/FullMath.sol";
import {IUniswapV3Factory} from "./v3-core-0.8/contracts/interfaces/IUniswapV3Factory.sol";
import {Multicall} from "./v3-periphery-0.8/contracts/base/Multicall.sol";
import {SelfPermit} from "./v3-periphery-0.8/contracts/base/SelfPermit.sol";
import {LiquidityAmounts} from "./v3-periphery-0.8/contracts/libraries/LiquidityAmounts.sol";
import {Owned} from "solmate/src/auth/Owned.sol";
import {CREATE3} from "solmate/src/utils/CREATE3.sol";
import "./base/Structs.sol";
import {BunniToken} from "./BunniToken.sol";
import {IERC20} from "./interfaces/IERC20.sol";
import {IBunniHub} from "./interfaces/IBunniHubA.sol";
import {IBunniToken} from "./interfaces/IBunniToken.sol";
import {SafeTransferLib} from "./lib/SafeTransferLib.sol";
import {LiquidityManagement} from "./uniswap/LiquidityManagement.sol";
/// @title BunniHub
/// @author zefram.eth + 0xAw
/// @notice The main contract LPs interact with. Each BunniKey corresponds to a BunniToken,
/// which is the ERC20 LP token for the Uniswap V3 position specified by the BunniKey.
/// Use deposit()/withdraw() to mint/burn LP tokens, and use compound() to compound the swap fees
/// back into the LP position.
/// Added admin function to withdraw all fees; default logic results in stuck fees depending on circumstances
contract BunniHubA is
IBunniHub,
Owned,
Multicall,
SelfPermit,
LiquidityManagement
{
uint256 internal constant WAD = 1e18;
uint256 internal constant MAX_PROTOCOL_FEE = 1e18;
uint256 internal constant MIN_INITIAL_SHARES = 1e9;
/// -----------------------------------------------------------
/// Storage variables
/// -----------------------------------------------------------
uint256 public override protocolFee;
/// -----------------------------------------------------------
/// Modifiers
/// -----------------------------------------------------------
modifier checkDeadline(uint256 deadline) {
require(block.timestamp <= deadline, "OLD");
_;
}
/// -----------------------------------------------------------
/// Constructor
/// -----------------------------------------------------------
constructor(
IUniswapV3Factory factory_,
address owner_,
uint256 protocolFee_
) Owned(owner_) LiquidityManagement(factory_) {
protocolFee = protocolFee_;
}
/// -----------------------------------------------------------
/// External functions
/// -----------------------------------------------------------
/// @inheritdoc IBunniHub
function deposit(DepositParams calldata params)
external
payable
virtual
override
checkDeadline(params.deadline)
returns (
uint256 shares,
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
)
{
(uint128 existingLiquidity, , , , ) = params.key.pool.positions(
keccak256(
abi.encodePacked(
address(this),
params.key.tickLower,
params.key.tickUpper
)
)
);
(addedLiquidity, amount0, amount1) = _addLiquidity(
LiquidityManagement.AddLiquidityParams({
key: params.key,
recipient: address(this),
payer: msg.sender,
amount0Desired: params.amount0Desired,
amount1Desired: params.amount1Desired,
amount0Min: params.amount0Min,
amount1Min: params.amount1Min
})
);
shares = _mintShares(
params.key,
params.recipient,
addedLiquidity,
existingLiquidity
);
emit Deposit(
msg.sender,
params.recipient,
keccak256(abi.encode(params.key)),
addedLiquidity,
amount0,
amount1,
shares
);
}
/// @inheritdoc IBunniHub
function withdraw(WithdrawParams calldata params)
external
virtual
override
checkDeadline(params.deadline)
returns (
uint128 removedLiquidity,
uint256 amount0,
uint256 amount1
)
{
IBunniToken shareToken = getBunniToken(params.key);
require(address(shareToken) != address(0), "WHAT");
uint256 currentTotalSupply = shareToken.totalSupply();
(uint128 existingLiquidity, , , , ) = params.key.pool.positions(
keccak256(
abi.encodePacked(
address(this),
params.key.tickLower,
params.key.tickUpper
)
)
);
// burn shares
require(params.shares > 0, "0");
shareToken.burn(msg.sender, params.shares);
// at this point of execution we know param.shares <= currentTotalSupply
// since otherwise the burn() call would've reverted
// burn liquidity from pool
// type cast is safe because we know removedLiquidity <= existingLiquidity
removedLiquidity = uint128(
FullMath.mulDiv(
existingLiquidity,
params.shares,
currentTotalSupply
)
);
// burn liquidity
// tokens are now collectable in the pool
(amount0, amount1) = params.key.pool.burn(
params.key.tickLower,
params.key.tickUpper,
removedLiquidity
);
// collect tokens and give to msg.sender
(amount0, amount1) = params.key.pool.collect(
params.recipient,
params.key.tickLower,
params.key.tickUpper,
uint128(amount0),
uint128(amount1)
);
require(
amount0 >= params.amount0Min && amount1 >= params.amount1Min,
"SLIP"
);
emit Withdraw(
msg.sender,
params.recipient,
keccak256(abi.encode(params.key)),
removedLiquidity,
amount0,
amount1,
params.shares
);
}
/// @inheritdoc IBunniHub
function compound(BunniKey calldata key)
external
virtual
override
returns (
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
)
{
uint256 protocolFee_ = protocolFee;
// trigger an update of the position fees owed snapshots if it has any liquidity
key.pool.burn(key.tickLower, key.tickUpper, 0);
(, , , uint128 cachedFeesOwed0, uint128 cachedFeesOwed1) = key
.pool
.positions(
keccak256(
abi.encodePacked(
address(this),
key.tickLower,
key.tickUpper
)
)
);
/// -----------------------------------------------------------
/// amount0, amount1 are multi-purposed, see comments below
/// -----------------------------------------------------------
amount0 = cachedFeesOwed0;
amount1 = cachedFeesOwed1;
/// -----------------------------------------------------------
/// amount0, amount1 now store the updated amounts of fee owed
/// -----------------------------------------------------------
// the fee is likely not balanced (i.e. tokens will be left over after adding liquidity)
// so here we compute which token to fully claim and which token to partially claim
// so that we only claim the amounts we need
{
(uint160 sqrtRatioX96, , , , , , ) = key.pool.slot0();
uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(key.tickLower);
uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(key.tickUpper);
// compute the maximum liquidity addable using the accrued fees
uint128 maxAddLiquidity = LiquidityAmounts.getLiquidityForAmounts(
sqrtRatioX96,
sqrtRatioAX96,
sqrtRatioBX96,
amount0,
amount1
);
// compute the token amounts corresponding to the max addable liquidity
(amount0, amount1) = LiquidityAmounts.getAmountsForLiquidity(
sqrtRatioX96,
sqrtRatioAX96,
sqrtRatioBX96,
maxAddLiquidity
);
}
/// -----------------------------------------------------------
/// amount0, amount1 now store the amount of fees to claim
/// -----------------------------------------------------------
// the actual amounts collected are returned
// tokens are transferred to address(this)
(amount0, amount1) = key.pool.collect(
address(this),
key.tickLower,
key.tickUpper,
uint128(amount0),
uint128(amount1)
);
/// -----------------------------------------------------------
/// amount0, amount1 now store the fees claimed
/// -----------------------------------------------------------
if (protocolFee_ > 0) {
// take fee from amount0 and amount1 and transfer to factory
// amount0 uses 128 bits, protocolFee uses 60 bits
// so amount0 * protocolFee can't overflow 256 bits
uint256 fee0 = (amount0 * protocolFee_) / WAD;
uint256 fee1 = (amount1 * protocolFee_) / WAD;
// add fees (minus protocol fees) to Uniswap pool
(addedLiquidity, amount0, amount1) = _addLiquidity(
LiquidityManagement.AddLiquidityParams({
key: key,
recipient: address(this),
payer: address(this),
amount0Desired: amount0 - fee0,
amount1Desired: amount1 - fee1,
amount0Min: 0,
amount1Min: 0
})
);
// the protocol fees are now stored in the factory itself
// and can be withdrawn by the owner via sweepTokens()
// emit event
emit PayProtocolFee(fee0, fee1);
} else {
// add fees to Uniswap pool
(addedLiquidity, amount0, amount1) = _addLiquidity(
LiquidityManagement.AddLiquidityParams({
key: key,
recipient: address(this),
payer: address(this),
amount0Desired: amount0,
amount1Desired: amount1,
amount0Min: 0,
amount1Min: 0
})
);
}
/// -----------------------------------------------------------
/// amount0, amount1 now store the tokens added as liquidity
/// -----------------------------------------------------------
emit Compound(
msg.sender,
keccak256(abi.encode(key)),
addedLiquidity,
amount0,
amount1
);
}
function compoundSkim(BunniKey calldata key)
external
virtual
onlyOwner
returns (
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
)
{
uint256 protocolFee_ = protocolFee;
// trigger an update of the position fees owed snapshots if it has any liquidity
key.pool.burn(key.tickLower, key.tickUpper, 0);
(, , , uint128 cachedFeesOwed0, uint128 cachedFeesOwed1) = key
.pool
.positions(
keccak256(
abi.encodePacked(
address(this),
key.tickLower,
key.tickUpper
)
)
);
amount0 = cachedFeesOwed0;
amount1 = cachedFeesOwed1;
uint amount0Pool;
uint amount1Pool;
{
(uint160 sqrtRatioX96, , , , , , ) = key.pool.slot0();
uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(key.tickLower);
uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(key.tickUpper);
// compute the maximum liquidity addable using the accrued fees
uint128 maxAddLiquidity = LiquidityAmounts.getLiquidityForAmounts(
sqrtRatioX96,
sqrtRatioAX96,
sqrtRatioBX96,
amount0,
amount1
);
// compute the token amounts corresponding to the max addable liquidity
// we use new variables to ensure all fees are claimed from the V3 pool
(amount0Pool, amount1Pool) = LiquidityAmounts.getAmountsForLiquidity(
sqrtRatioX96,
sqrtRatioAX96,
sqrtRatioBX96,
maxAddLiquidity
);
}
// the actual amounts collected are returned
// tokens are transferred to address(this)
(amount0, amount1) = key.pool.collect(
address(this),
key.tickLower,
key.tickUpper,
uint128(amount0),
uint128(amount1)
);
if (protocolFee_ > 0) {
uint256 fee0 = (amount0Pool * protocolFee_) / WAD;
uint256 fee1 = (amount1Pool * protocolFee_) / WAD;
// add fees (minus protocol fees) to Uniswap pool
(addedLiquidity, amount0Pool, amount1Pool) = _addLiquidity(
LiquidityManagement.AddLiquidityParams({
key: key,
recipient: address(this),
payer: address(this),
amount0Desired: amount0Pool - fee0,
amount1Desired: amount1Pool - fee1,
amount0Min: 0,
amount1Min: 0
})
);
// emit event
emit PayProtocolFee(fee0, fee1);
} else {
// add fees to Uniswap pool
(addedLiquidity, amount0Pool, amount1Pool) = _addLiquidity(
LiquidityManagement.AddLiquidityParams({
key: key,
recipient: address(this),
payer: address(this),
amount0Desired: amount0Pool,
amount1Desired: amount1Pool,
amount0Min: 0,
amount1Min: 0
})
);
}
/// -----------------------------------------------------------
/// amount0, amount1 now store the tokens added as liquidity
/// -----------------------------------------------------------
emit CompoundSkim(
msg.sender,
keccak256(abi.encode(key)),
addedLiquidity,
amount0,
amount1,
amount0Pool,
amount1Pool
);
}
/// @inheritdoc IBunniHub
function deployBunniToken(BunniKey calldata key)
public
override
returns (IBunniToken token)
{
bytes32 bunniKeyHash = keccak256(abi.encode(key));
token = IBunniToken(
CREATE3.deploy(
bunniKeyHash,
abi.encodePacked(
type(BunniToken).creationCode,
abi.encode(this, key)
),
0
)
);
emit NewBunni(
token,
bunniKeyHash,
key.pool,
key.tickLower,
key.tickUpper
);
}
/// -----------------------------------------------------------------------
/// View functions
/// -----------------------------------------------------------------------
/// @inheritdoc IBunniHub
function getBunniToken(BunniKey calldata key)
public
view
override
returns (IBunniToken token)
{
token = IBunniToken(CREATE3.getDeployed(keccak256(abi.encode(key))));
uint256 tokenCodeLength;
assembly {
tokenCodeLength := extcodesize(token)
}
if (tokenCodeLength == 0) {
return IBunniToken(address(0));
}
}
/// -----------------------------------------------------------------------
/// Owner functions
/// -----------------------------------------------------------------------
/// @inheritdoc IBunniHub
function sweepTokens(IERC20[] calldata tokenList, address recipient)
external
override
onlyOwner
{
uint256 tokenListLength = tokenList.length;
for (uint256 i; i < tokenListLength; ) {
SafeTransferLib.safeTransfer(
tokenList[i],
recipient,
tokenList[i].balanceOf(address(this))
);
unchecked {
++i;
}
}
}
/// @inheritdoc IBunniHub
function setProtocolFee(uint256 value) external override onlyOwner {
require(value <= MAX_PROTOCOL_FEE, "MAX");
protocolFee = value;
emit SetProtocolFee(value);
}
/// -----------------------------------------------------------
/// Internal functions
/// -----------------------------------------------------------
/// @notice Mints share tokens to the recipient based on the amount of liquidity added.
/// @param key The Bunni position's key
/// @param recipient The recipient of the share tokens
/// @param addedLiquidity The amount of liquidity added
/// @param existingLiquidity The amount of existing liquidity before the add
/// @return shares The amount of share tokens minted to the sender.
function _mintShares(
BunniKey calldata key,
address recipient,
uint128 addedLiquidity,
uint128 existingLiquidity
) internal virtual returns (uint256 shares) {
IBunniToken shareToken = getBunniToken(key);
require(address(shareToken) != address(0), "WHAT");
uint256 existingShareSupply = shareToken.totalSupply();
if (existingShareSupply == 0) {
// no existing shares, bootstrap at rate 1:1
shares = addedLiquidity;
// prevent first staker from stealing funds of subsequent stakers
// see https://code4rena.com/reports/2022-01-sherlock/#h-01-first-user-can-steal-everyone-elses-tokens
require(shares > MIN_INITIAL_SHARES, "SMOL");
} else {
// shares = existingShareSupply * addedLiquidity / existingLiquidity;
shares = FullMath.mulDiv(
existingShareSupply,
addedLiquidity,
existingLiquidity
);
require(shares != 0, "0");
}
// mint shares to sender
shareToken.mint(recipient, shares);
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.15;
import "./base/Structs.sol";
import {ERC20} from "./lib/ERC20.sol";
import {IERC20} from "./interfaces/IERC20.sol";
import {IBunniHub} from "./interfaces/IBunniHub.sol";
import {IBunniToken} from "./interfaces/IBunniToken.sol";
/// @title BunniToken
/// @author zefram.eth
/// @notice ERC20 token that represents a user's LP position
contract BunniToken is IBunniToken, ERC20 {
IUniswapV3Pool public immutable override pool;
int24 public immutable override tickLower;
int24 public immutable override tickUpper;
IBunniHub public immutable override hub;
constructor(IBunniHub hub_, BunniKey memory key_)
ERC20(
string(
abi.encodePacked(
"Bunni ",
IERC20(key_.pool.token0()).symbol(),
"/",
IERC20(key_.pool.token1()).symbol(),
" LP"
)
),
"BUNNI-LP",
18
)
{
pool = key_.pool;
tickLower = key_.tickLower;
tickUpper = key_.tickUpper;
hub = hub_;
}
function mint(address to, uint256 amount) external override {
require(msg.sender == address(hub), "WHO");
_mint(to, amount);
}
function burn(address from, uint256 amount) external override {
require(msg.sender == address(hub), "WHO");
_burn(from, amount);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Library for converting between addresses and bytes32 values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
library Bytes32AddressLib {
function fromLast20Bytes(bytes32 bytesValue) internal pure returns (address) {
return address(uint160(uint256(bytesValue)));
}
function fillLast12Bytes(address addressValue) internal pure returns (bytes32) {
return bytes32(bytes20(addressValue));
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {Bytes32AddressLib} from "./Bytes32AddressLib.sol";
/// @notice Deploy to deterministic addresses without an initcode factor.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/CREATE3.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/create3/blob/master/contracts/Create3.sol)
library CREATE3 {
using Bytes32AddressLib for bytes32;
//--------------------------------------------------------------------------------//
// Opcode | Opcode + Arguments | Description | Stack View //
//--------------------------------------------------------------------------------//
// 0x36 | 0x36 | CALLDATASIZE | size //
// 0x3d | 0x3d | RETURNDATASIZE | 0 size //
// 0x3d | 0x3d | RETURNDATASIZE | 0 0 size //
// 0x37 | 0x37 | CALLDATACOPY | //
// 0x36 | 0x36 | CALLDATASIZE | size //
// 0x3d | 0x3d | RETURNDATASIZE | 0 size //
// 0x34 | 0x34 | CALLVALUE | value 0 size //
// 0xf0 | 0xf0 | CREATE | newContract //
//--------------------------------------------------------------------------------//
// Opcode | Opcode + Arguments | Description | Stack View //
//--------------------------------------------------------------------------------//
// 0x67 | 0x67XXXXXXXXXXXXXXXX | PUSH8 bytecode | bytecode //
// 0x3d | 0x3d | RETURNDATASIZE | 0 bytecode //
// 0x52 | 0x52 | MSTORE | //
// 0x60 | 0x6008 | PUSH1 08 | 8 //
// 0x60 | 0x6018 | PUSH1 18 | 24 8 //
// 0xf3 | 0xf3 | RETURN | //
//--------------------------------------------------------------------------------//
bytes internal constant PROXY_BYTECODE = hex"67_36_3d_3d_37_36_3d_34_f0_3d_52_60_08_60_18_f3";
bytes32 internal constant PROXY_BYTECODE_HASH = keccak256(PROXY_BYTECODE);
function deploy(
bytes32 salt,
bytes memory creationCode,
uint256 value
) internal returns (address deployed) {
bytes memory proxyChildBytecode = PROXY_BYTECODE;
address proxy;
/// @solidity memory-safe-assembly
assembly {
// Deploy a new contract with our pre-made bytecode via CREATE2.
// We start 32 bytes into the code to avoid copying the byte length.
proxy := create2(0, add(proxyChildBytecode, 32), mload(proxyChildBytecode), salt)
}
require(proxy != address(0), "DEPLOYMENT_FAILED");
deployed = getDeployed(salt);
(bool success, ) = proxy.call{value: value}(creationCode);
require(success && deployed.code.length != 0, "INITIALIZATION_FAILED");
}
function getDeployed(bytes32 salt) internal view returns (address) {
address proxy = keccak256(
abi.encodePacked(
// Prefix:
bytes1(0xFF),
// Creator:
address(this),
// Salt:
salt,
// Bytecode hash:
PROXY_BYTECODE_HASH
)
).fromLast20Bytes();
return
keccak256(
abi.encodePacked(
// 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01)
// 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex)
hex"d6_94",
proxy,
hex"01" // Nonce of the proxy contract (1)
)
).fromLast20Bytes();
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {IERC20} from "../interfaces/IERC20.sol";
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 is IERC20 {
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public override name;
string public override symbol;
uint8 public immutable override decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public override totalSupply;
mapping(address => uint256) public override balanceOf;
mapping(address => mapping(address => uint256)) public override allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public override nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount)
public
virtual
override
returns (bool)
{
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount)
public
virtual
override
returns (bool)
{
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max)
allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(
recoveredAddress != address(0) && recoveredAddress == owner,
"INVALID_SIGNER"
);
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual override returns (bytes32) {
return
block.chainid == INITIAL_CHAIN_ID
? INITIAL_DOMAIN_SEPARATOR
: computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0;
pragma abicoder v2;
import {IUniswapV3Pool} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Pool.sol";
import {IMulticall} from "../v3-periphery-0.8/contracts/interfaces/IMulticall.sol";
import {ISelfPermit} from "../v3-periphery-0.8/contracts/interfaces/ISelfPermit.sol";
import "../base/Structs.sol";
import {IERC20} from "./IERC20.sol";
import {IBunniToken} from "./IBunniToken.sol";
import {ILiquidityManagement} from "./ILiquidityManagement.sol";
/// @title BunniHub
/// @author zefram.eth
/// @notice The main contract LPs interact with. Each BunniKey corresponds to a BunniToken,
/// which is the ERC20 LP token for the Uniswap V3 position specified by the BunniKey.
/// Use deposit()/withdraw() to mint/burn LP tokens, and use compound() to compound the swap fees
/// back into the LP position.
interface IBunniHub is IMulticall, ISelfPermit, ILiquidityManagement {
/// @notice Emitted when liquidity is increased via deposit
/// @param sender The msg.sender address
/// @param recipient The address of the account that received the share tokens
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param liquidity The amount by which liquidity was increased
/// @param amount0 The amount of token0 that was paid for the increase in liquidity
/// @param amount1 The amount of token1 that was paid for the increase in liquidity
/// @param shares The amount of share tokens minted to the recipient
event Deposit(
address indexed sender,
address indexed recipient,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1,
uint256 shares
);
/// @notice Emitted when liquidity is decreased via withdrawal
/// @param sender The msg.sender address
/// @param recipient The address of the account that received the collected tokens
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param liquidity The amount by which liquidity was decreased
/// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
/// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
/// @param shares The amount of share tokens burnt from the sender
event Withdraw(
address indexed sender,
address indexed recipient,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1,
uint256 shares
);
/// @notice Emitted when fees are compounded back into liquidity
/// @param sender The msg.sender address
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param liquidity The amount by which liquidity was increased
/// @param amount0 The amount of token0 added to the liquidity position
/// @param amount1 The amount of token1 added to the liquidity position
event Compound(
address indexed sender,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when a new IBunniToken is created
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param pool The Uniswap V3 pool
/// @param tickLower The lower tick of the Bunni's UniV3 LP position
/// @param tickUpper The upper tick of the Bunni's UniV3 LP position
event NewBunni(
IBunniToken indexed token,
bytes32 indexed bunniKeyHash,
IUniswapV3Pool indexed pool,
int24 tickLower,
int24 tickUpper
);
/// @notice Emitted when protocol fees are paid to the factory
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount1 The amount of token1 protocol fees that is withdrawn
event PayProtocolFee(uint256 amount0, uint256 amount1);
/// @notice Emitted when the protocol fee has been updated
/// @param newProtocolFee The new protocol fee
event SetProtocolFee(uint256 newProtocolFee);
/// @param key The Bunni position's key
/// @param amount0Desired The desired amount of token0 to be spent,
/// @param amount1Desired The desired amount of token1 to be spent,
/// @param amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// @param amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// @param deadline The time by which the transaction must be included to effect the change
/// @param recipient The recipient of the minted share tokens
struct DepositParams {
BunniKey key;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
address recipient;
}
/// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
/// @dev Must be called after the corresponding BunniToken has been deployed via deployBunniToken()
/// @param params The input parameters
/// key The Bunni position's key
/// amount0Desired The desired amount of token0 to be spent,
/// amount1Desired The desired amount of token1 to be spent,
/// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// deadline The time by which the transaction must be included to effect the change
/// @return shares The new share tokens minted to the sender
/// @return addedLiquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 to acheive resulting liquidity
/// @return amount1 The amount of token1 to acheive resulting liquidity
function deposit(DepositParams calldata params)
external
payable
returns (
uint256 shares,
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
);
/// @param key The Bunni position's key
/// @param recipient The user if not withdrawing ETH, address(0) if withdrawing ETH
/// @param shares The amount of ERC20 tokens (this) to burn,
/// @param amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// @param amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// @param deadline The time by which the transaction must be included to effect the change
struct WithdrawParams {
BunniKey key;
address recipient;
uint256 shares;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Decreases the amount of liquidity in the position and sends the tokens to the sender.
/// If withdrawing ETH, need to follow up with unwrapWETH9() and sweepToken()
/// @dev Must be called after the corresponding BunniToken has been deployed via deployBunniToken()
/// @param params The input parameters
/// key The Bunni position's key
/// recipient The user if not withdrawing ETH, address(0) if withdrawing ETH
/// shares The amount of share tokens to burn,
/// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// deadline The time by which the transaction must be included to effect the change
/// @return removedLiquidity The amount of liquidity decrease
/// @return amount0 The amount of token0 withdrawn to the recipient
/// @return amount1 The amount of token1 withdrawn to the recipient
function withdraw(WithdrawParams calldata params)
external
returns (
uint128 removedLiquidity,
uint256 amount0,
uint256 amount1
);
/// @notice Claims the trading fees earned and uses it to add liquidity.
/// @dev Must be called after the corresponding BunniToken has been deployed via deployBunniToken()
/// @param key The Bunni position's key
/// @return addedLiquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 added to the liquidity position
/// @return amount1 The amount of token1 added to the liquidity position
function compound(BunniKey calldata key)
external
returns (
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
);
/// @notice Deploys the BunniToken contract for a Bunni position. This token
/// represents a user's share in the Uniswap V3 LP position.
/// @param key The Bunni position's key
/// @return token The deployed BunniToken
function deployBunniToken(BunniKey calldata key)
external
returns (IBunniToken token);
/// @notice Returns the BunniToken contract for a Bunni position. This token
/// represents a user's share in the Uniswap V3 LP position.
/// If the contract hasn't been created yet, returns 0.
/// @param key The Bunni position's key
/// @return token The BunniToken contract
function getBunniToken(BunniKey calldata key)
external
view
returns (IBunniToken token);
/// @notice Sweeps ERC20 token balances to a recipient. Mainly used for extracting protocol fees.
/// Only callable by the owner.
/// @param tokenList The list of ERC20 tokens to sweep
/// @param recipient The token recipient address
function sweepTokens(IERC20[] calldata tokenList, address recipient)
external;
/// @notice Updates the protocol fee value. Scaled by 1e18. Only callable by the owner.
/// @param value The new protocol fee value
function setProtocolFee(uint256 value) external;
/// @notice Returns the protocol fee value. Decimal value <1, scaled by 1e18.
function protocolFee() external returns (uint256);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0;
pragma abicoder v2;
import {IUniswapV3Pool} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Pool.sol";
import {IMulticall} from "../v3-periphery-0.8/contracts/interfaces/IMulticall.sol";
import {ISelfPermit} from "../v3-periphery-0.8/contracts/interfaces/ISelfPermit.sol";
import "../base/Structs.sol";
import {IERC20} from "./IERC20.sol";
import {IBunniToken} from "./IBunniToken.sol";
import {ILiquidityManagement} from "./ILiquidityManagement.sol";
/// @title BunniHub
/// @author zefram.eth
/// @notice The main contract LPs interact with. Each BunniKey corresponds to a BunniToken,
/// which is the ERC20 LP token for the Uniswap V3 position specified by the BunniKey.
/// Use deposit()/withdraw() to mint/burn LP tokens, and use compound() to compound the swap fees
/// back into the LP position.
interface IBunniHub is IMulticall, ISelfPermit, ILiquidityManagement {
/// @notice Emitted when liquidity is increased via deposit
/// @param sender The msg.sender address
/// @param recipient The address of the account that received the share tokens
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param liquidity The amount by which liquidity was increased
/// @param amount0 The amount of token0 that was paid for the increase in liquidity
/// @param amount1 The amount of token1 that was paid for the increase in liquidity
/// @param shares The amount of share tokens minted to the recipient
event Deposit(
address indexed sender,
address indexed recipient,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1,
uint256 shares
);
/// @notice Emitted when liquidity is decreased via withdrawal
/// @param sender The msg.sender address
/// @param recipient The address of the account that received the collected tokens
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param liquidity The amount by which liquidity was decreased
/// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
/// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
/// @param shares The amount of share tokens burnt from the sender
event Withdraw(
address indexed sender,
address indexed recipient,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1,
uint256 shares
);
/// @notice Emitted when fees are compounded back into liquidity
/// @param sender The msg.sender address
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param liquidity The amount by which liquidity was increased
/// @param amount0 The amount of token0 added to the liquidity position
/// @param amount1 The amount of token1 added to the liquidity position
event Compound(
address indexed sender,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
event CompoundSkim(
address indexed sender,
bytes32 indexed bunniKeyHash,
uint128 liquidity,
uint256 amount0,
uint256 amount1,
uint256 amount0Pool,
uint256 amount1Pool
);
/// @notice Emitted when a new IBunniToken is created
/// @param bunniKeyHash The hash of the Bunni position's key
/// @param pool The Uniswap V3 pool
/// @param tickLower The lower tick of the Bunni's UniV3 LP position
/// @param tickUpper The upper tick of the Bunni's UniV3 LP position
event NewBunni(
IBunniToken indexed token,
bytes32 indexed bunniKeyHash,
IUniswapV3Pool indexed pool,
int24 tickLower,
int24 tickUpper
);
/// @notice Emitted when protocol fees are paid to the factory
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount1 The amount of token1 protocol fees that is withdrawn
event PayProtocolFee(uint256 amount0, uint256 amount1);
/// @notice Emitted when the protocol fee has been updated
/// @param newProtocolFee The new protocol fee
event SetProtocolFee(uint256 newProtocolFee);
/// @param key The Bunni position's key
/// @param amount0Desired The desired amount of token0 to be spent,
/// @param amount1Desired The desired amount of token1 to be spent,
/// @param amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// @param amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// @param deadline The time by which the transaction must be included to effect the change
/// @param recipient The recipient of the minted share tokens
struct DepositParams {
BunniKey key;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
address recipient;
}
/// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
/// @dev Must be called after the corresponding BunniToken has been deployed via deployBunniToken()
/// @param params The input parameters
/// key The Bunni position's key
/// amount0Desired The desired amount of token0 to be spent,
/// amount1Desired The desired amount of token1 to be spent,
/// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// deadline The time by which the transaction must be included to effect the change
/// @return shares The new share tokens minted to the sender
/// @return addedLiquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 to acheive resulting liquidity
/// @return amount1 The amount of token1 to acheive resulting liquidity
function deposit(DepositParams calldata params)
external
payable
returns (
uint256 shares,
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
);
/// @param key The Bunni position's key
/// @param recipient The user if not withdrawing ETH, address(0) if withdrawing ETH
/// @param shares The amount of ERC20 tokens (this) to burn,
/// @param amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// @param amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// @param deadline The time by which the transaction must be included to effect the change
struct WithdrawParams {
BunniKey key;
address recipient;
uint256 shares;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Decreases the amount of liquidity in the position and sends the tokens to the sender.
/// If withdrawing ETH, need to follow up with unwrapWETH9() and sweepToken()
/// @dev Must be called after the corresponding BunniToken has been deployed via deployBunniToken()
/// @param params The input parameters
/// key The Bunni position's key
/// recipient The user if not withdrawing ETH, address(0) if withdrawing ETH
/// shares The amount of share tokens to burn,
/// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// deadline The time by which the transaction must be included to effect the change
/// @return removedLiquidity The amount of liquidity decrease
/// @return amount0 The amount of token0 withdrawn to the recipient
/// @return amount1 The amount of token1 withdrawn to the recipient
function withdraw(WithdrawParams calldata params)
external
returns (
uint128 removedLiquidity,
uint256 amount0,
uint256 amount1
);
/// @notice Claims the trading fees earned and uses it to add liquidity.
/// @dev Must be called after the corresponding BunniToken has been deployed via deployBunniToken()
/// @param key The Bunni position's key
/// @return addedLiquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 added to the liquidity position
/// @return amount1 The amount of token1 added to the liquidity position
function compound(BunniKey calldata key)
external
returns (
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
);
function compoundSkim(BunniKey calldata key)
external
returns (
uint128 addedLiquidity,
uint256 amount0,
uint256 amount1
);
/// @notice Deploys the BunniToken contract for a Bunni position. This token
/// represents a user's share in the Uniswap V3 LP position.
/// @param key The Bunni position's key
/// @return token The deployed BunniToken
function deployBunniToken(BunniKey calldata key)
external
returns (IBunniToken token);
/// @notice Returns the BunniToken contract for a Bunni position. This token
/// represents a user's share in the Uniswap V3 LP position.
/// If the contract hasn't been created yet, returns 0.
/// @param key The Bunni position's key
/// @return token The BunniToken contract
function getBunniToken(BunniKey calldata key)
external
view
returns (IBunniToken token);
/// @notice Sweeps ERC20 token balances to a recipient. Mainly used for extracting protocol fees.
/// Only callable by the owner.
/// @param tokenList The list of ERC20 tokens to sweep
/// @param recipient The token recipient address
function sweepTokens(IERC20[] calldata tokenList, address recipient)
external;
/// @notice Updates the protocol fee value. Scaled by 1e18. Only callable by the owner.
/// @param value The new protocol fee value
function setProtocolFee(uint256 value) external;
/// @notice Returns the protocol fee value. Decimal value <1, scaled by 1e18.
function protocolFee() external returns (uint256);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0;
import {IUniswapV3Pool} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Pool.sol";
import {IERC20} from "./IERC20.sol";
import {IBunniHub} from "./IBunniHub.sol";
/// @title BunniToken
/// @author zefram.eth
/// @notice ERC20 token that represents a user's LP position
interface IBunniToken is IERC20 {
function pool() external view returns (IUniswapV3Pool);
function tickLower() external view returns (int24);
function tickUpper() external view returns (int24);
function hub() external view returns (IBunniHub);
function mint(address to, uint256 amount) external;
function burn(address from, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Interface for permit
/// @notice Interface used by DAI/CHAI for permit
interface IERC20PermitAllowed {
/// @notice Approve the spender to spend some tokens via the holder signature
/// @dev This is the permit interface used by DAI and CHAI
/// @param holder The address of the token holder, the token owner
/// @param spender The address of the token spender
/// @param nonce The holder's nonce, increases at each call to permit
/// @param expiry The timestamp at which the permit is no longer valid
/// @param allowed Boolean that sets approval amount, true for type(uint256).max and false for 0
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function permit(
address holder,
address spender,
uint256 nonce,
uint256 expiry,
bool allowed,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import {IUniswapV3Factory} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Factory.sol";
import {IUniswapV3MintCallback} from "../v3-core-0.8/contracts/interfaces/callback/IUniswapV3MintCallback.sol";
/// @title Liquidity management functions
/// @notice Internal functions for safely managing liquidity in Uniswap V3
interface ILiquidityManagement is IUniswapV3MintCallback {
function factory() external view returns (IUniswapV3Factory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title Multicall interface
/// @notice Enables calling multiple methods in a single call to the contract
interface IMulticall {
/// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
/// @dev The `msg.value` should not be trusted for any method callable from multicall.
/// @param data The encoded function data for each of the calls to make to this contract
/// @return results The results from each of the calls passed in via data
function multicall(bytes[] calldata data) external payable returns (bytes[] memory results);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
/// @title Self Permit
/// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
interface ISelfPermit {
/// @notice Permits this contract to spend a given token from `msg.sender`
/// @dev The `owner` is always msg.sender and the `spender` is always address(this).
/// @param token The address of the token spent
/// @param value The amount that can be spent of token
/// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermit(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
/// @notice Permits this contract to spend a given token from `msg.sender`
/// @dev The `owner` is always msg.sender and the `spender` is always address(this).
/// Can be used instead of #selfPermit to prevent calls from failing due to a frontrun of a call to #selfPermit
/// @param token The address of the token spent
/// @param value The amount that can be spent of token
/// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermitIfNecessary(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
/// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
/// @dev The `owner` is always msg.sender and the `spender` is always address(this)
/// @param token The address of the token spent
/// @param nonce The current nonce of the owner
/// @param expiry The timestamp at which the permit is no longer valid
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermitAllowed(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
/// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
/// @dev The `owner` is always msg.sender and the `spender` is always address(this)
/// Can be used instead of #selfPermitAllowed to prevent calls from failing due to a frontrun of a call to #selfPermitAllowed.
/// @param token The address of the token spent
/// @param nonce The current nonce of the owner
/// @param expiry The timestamp at which the permit is no longer valid
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermitAllowedIfNecessary(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for the Uniswap V3 Factory
/// @notice The Uniswap V3 Factory facilitates creation of Uniswap V3 pools and control over the protocol fees
interface IUniswapV3Factory {
/// @notice Emitted when the owner of the factory is changed
/// @param oldOwner The owner before the owner was changed
/// @param newOwner The owner after the owner was changed
event OwnerChanged(address indexed oldOwner, address indexed newOwner);
/// @notice Emitted when a pool is created
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks
/// @param pool The address of the created pool
event PoolCreated(
address indexed token0,
address indexed token1,
uint24 indexed fee,
int24 tickSpacing,
address pool
);
/// @notice Emitted when a new fee amount is enabled for pool creation via the factory
/// @param fee The enabled fee, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
/// @notice Returns the current owner of the factory
/// @dev Can be changed by the current owner via setOwner
/// @return The address of the factory owner
function owner() external view returns (address);
/// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
/// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
/// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
/// @return The tick spacing
function feeAmountTickSpacing(uint24 fee) external view returns (int24);
/// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
/// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The pool address
function getPool(
address tokenA,
address tokenB,
uint24 fee
) external view returns (address pool);
/// @notice Creates a pool for the given two tokens and fee
/// @param tokenA One of the two tokens in the desired pool
/// @param tokenB The other of the two tokens in the desired pool
/// @param fee The desired fee for the pool
/// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
/// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
/// are invalid.
/// @return pool The address of the newly created pool
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external returns (address pool);
/// @notice Updates the owner of the factory
/// @dev Must be called by the current owner
/// @param _owner The new owner of the factory
function setOwner(address _owner) external;
/// @notice Enables a fee amount with the given tickSpacing
/// @dev Fee amounts may never be removed once enabled
/// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
/// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#mint
/// @notice Any contract that calls IUniswapV3PoolActions#mint must implement this interface
interface IUniswapV3MintCallback {
/// @notice Called to `msg.sender` after minting liquidity to a position from IUniswapV3Pool#mint.
/// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
/// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#mint call
function uniswapV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions,
IUniswapV3PoolOwnerActions,
IUniswapV3PoolErrors,
IUniswapV3PoolEvents
{
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
error LOK();
error TLU();
error TLM();
error TUM();
error AI();
error M0();
error M1();
error AS();
error IIA();
error L();
error F0();
error F1();
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// @return observationIndex The index of the last oracle observation that was written,
/// @return observationCardinality The current maximum number of observations stored in the pool,
/// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// @return feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
/// @return The liquidity at the current price of the pool
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper
/// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
/// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
/// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return liquidity The amount of liquidity in the position,
/// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// @return initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import '../../../v3-core-0.8/contracts/libraries/FullMath.sol';
import '../../../v3-core-0.8/contracts/libraries/FixedPoint96.sol';
/// @title Liquidity amount functions
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
/// @notice Downcasts uint256 to uint128
/// @param x The uint258 to be downcasted
/// @return y The passed value, downcasted to uint128
function toUint128(uint256 x) private pure returns (uint128 y) {
require((y = uint128(x)) == x);
}
/// @notice Computes the amount of liquidity received for a given amount of token0 and price range
/// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount0 The amount0 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount0(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 intermediate = FullMath.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96);
unchecked {
return toUint128(FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96));
}
}
/// @notice Computes the amount of liquidity received for a given amount of token1 and price range
/// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount1 The amount1 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount1(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
unchecked {
return toUint128(FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96));
}
}
/// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
/// pool prices and the prices at the tick boundaries
/// @param sqrtRatioX96 A sqrt price representing the current pool prices
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount0 The amount of token0 being sent in
/// @param amount1 The amount of token1 being sent in
/// @return liquidity The maximum amount of liquidity received
function getLiquidityForAmounts(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0);
uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1);
liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
} else {
liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1);
}
}
/// @notice Computes the amount of token0 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount0 The amount of token0
function getAmount0ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0) {
unchecked {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
FullMath.mulDiv(
uint256(liquidity) << FixedPoint96.RESOLUTION,
sqrtRatioBX96 - sqrtRatioAX96,
sqrtRatioBX96
) / sqrtRatioAX96;
}
}
/// @notice Computes the amount of token1 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount1 The amount of token1
function getAmount1ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
unchecked {
return FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
}
}
/// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
/// pool prices and the prices at the tick boundaries
/// @param sqrtRatioX96 A sqrt price representing the current pool prices
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function getAmountsForLiquidity(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0, uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity);
amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity);
} else {
amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.15;
import {TickMath} from "../v3-core-0.8/contracts/libraries/TickMath.sol";
import {IUniswapV3Pool} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Pool.sol";
import {IUniswapV3Factory} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Factory.sol";
import {IUniswapV3MintCallback} from "../v3-core-0.8/contracts/interfaces/callback/IUniswapV3MintCallback.sol";
import {LiquidityAmounts} from "../v3-periphery-0.8/contracts/libraries/LiquidityAmounts.sol";
import "../base/Structs.sol";
import {IERC20} from "../interfaces/IERC20.sol";
import {SafeTransferLib} from "../lib/SafeTransferLib.sol";
import {ILiquidityManagement} from "../interfaces/ILiquidityManagement.sol";
/// @title Liquidity management functions
/// @notice Internal functions for safely managing liquidity in Uniswap V3
abstract contract LiquidityManagement is ILiquidityManagement {
using SafeTransferLib for IERC20;
/// @param token0 The token0 of the Uniswap pool
/// @param token1 The token1 of the Uniswap pool
/// @param fee The fee tier of the Uniswap pool
/// @param payer The address to pay for the required tokens
struct MintCallbackData {
address token0;
address token1;
uint24 fee;
address payer;
}
IUniswapV3Factory public immutable override factory;
constructor(IUniswapV3Factory factory_) {
factory = factory_;
}
/// @inheritdoc IUniswapV3MintCallback
function uniswapV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external override {
MintCallbackData memory decodedData = abi.decode(
data,
(MintCallbackData)
);
// verify caller
address computedPool = factory.getPool(
decodedData.token0,
decodedData.token1,
decodedData.fee
);
require(msg.sender == computedPool, "WHO");
if (amount0Owed > 0)
pay(decodedData.token0, decodedData.payer, msg.sender, amount0Owed);
if (amount1Owed > 0)
pay(decodedData.token1, decodedData.payer, msg.sender, amount1Owed);
}
/// @param key The Bunni position's key
/// @param recipient The recipient of the liquidity position
/// @param payer The address that will pay the tokens
/// @param amount0Desired The token0 amount to use
/// @param amount1Desired The token1 amount to use
/// @param amount0Min The minimum token0 amount to use
/// @param amount1Min The minimum token1 amount to use
struct AddLiquidityParams {
BunniKey key;
address recipient;
address payer;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
}
/// @notice Add liquidity to an initialized pool
function _addLiquidity(AddLiquidityParams memory params)
internal
returns (
uint128 liquidity,
uint256 amount0,
uint256 amount1
)
{
if (params.amount0Desired == 0 && params.amount1Desired == 0) {
return (0, 0, 0);
}
// compute the liquidity amount
{
(uint160 sqrtPriceX96, , , , , , ) = params.key.pool.slot0();
uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(
params.key.tickLower
);
uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(
params.key.tickUpper
);
liquidity = LiquidityAmounts.getLiquidityForAmounts(
sqrtPriceX96,
sqrtRatioAX96,
sqrtRatioBX96,
params.amount0Desired,
params.amount1Desired
);
}
(amount0, amount1) = params.key.pool.mint(
params.recipient,
params.key.tickLower,
params.key.tickUpper,
liquidity,
abi.encode(
MintCallbackData({
token0: params.key.pool.token0(),
token1: params.key.pool.token1(),
fee: params.key.pool.fee(),
payer: params.payer
})
)
);
require(
amount0 >= params.amount0Min && amount1 >= params.amount1Min,
"SLIP"
);
}
/// @param token The token to pay
/// @param payer The entity that must pay
/// @param recipient The entity that will receive payment
/// @param value The amount to pay
function pay(
address token,
address payer,
address recipient,
uint256 value
) internal {
if (payer == address(this)) {
// pay with tokens already in the contract (for the exact input multihop case)
IERC20(token).safeTransfer(recipient, value);
} else {
// pull payment
IERC20(token).safeTransferFrom(payer, recipient, value);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.8.15;
pragma abicoder v2;
import '../interfaces/IMulticall.sol';
/// @title Multicall
/// @notice Enables calling multiple methods in a single call to the contract
abstract contract Multicall is IMulticall {
/// @inheritdoc IMulticall
function multicall(bytes[] calldata data) public payable override returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
(bool success, bytes memory result) = address(this).delegatecall(data[i]);
if (!success) {
// Next 5 lines from https://ethereum.stackexchange.com/a/83577
if (result.length < 68) revert();
assembly {
result := add(result, 0x04)
}
revert(abi.decode(result, (string)));
}
results[i] = result;
}
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Simple single owner authorization mixin.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
abstract contract Owned {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event OwnershipTransferred(address indexed user, address indexed newOwner);
/*//////////////////////////////////////////////////////////////
OWNERSHIP STORAGE
//////////////////////////////////////////////////////////////*/
address public owner;
modifier onlyOwner() virtual {
require(msg.sender == owner, "UNAUTHORIZED");
_;
}
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(address _owner) {
owner = _owner;
emit OwnershipTransferred(address(0), _owner);
}
/*//////////////////////////////////////////////////////////////
OWNERSHIP LOGIC
//////////////////////////////////////////////////////////////*/
function transferOwnership(address newOwner) public virtual onlyOwner {
owner = newOwner;
emit OwnershipTransferred(msg.sender, newOwner);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {IERC20} from "../interfaces/IERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(
freeMemoryPointer,
0x23b872dd00000000000000000000000000000000000000000000000000000000
)
mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(
and(eq(mload(0), 1), gt(returndatasize(), 31)),
iszero(returndatasize())
),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
IERC20 token,
address to,
uint256 amount
) internal {
bool success;
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(
freeMemoryPointer,
0xa9059cbb00000000000000000000000000000000000000000000000000000000
)
mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(
and(eq(mload(0), 1), gt(returndatasize(), 31)),
iszero(returndatasize())
),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
IERC20 token,
address to,
uint256 amount
) internal {
bool success;
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(
freeMemoryPointer,
0x095ea7b300000000000000000000000000000000000000000000000000000000
)
mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(
and(eq(mload(0), 1), gt(returndatasize(), 31)),
iszero(returndatasize())
),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol';
import '../interfaces/ISelfPermit.sol';
import '../interfaces/external/IERC20PermitAllowed.sol';
/// @title Self Permit
/// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
/// @dev These functions are expected to be embedded in multicalls to allow EOAs to approve a contract and call a function
/// that requires an approval in a single transaction.
abstract contract SelfPermit is ISelfPermit {
/// @inheritdoc ISelfPermit
function selfPermit(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public payable override {
IERC20Permit(token).permit(msg.sender, address(this), value, deadline, v, r, s);
}
/// @inheritdoc ISelfPermit
function selfPermitIfNecessary(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable override {
if (IERC20(token).allowance(msg.sender, address(this)) < value) selfPermit(token, value, deadline, v, r, s);
}
/// @inheritdoc ISelfPermit
function selfPermitAllowed(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) public payable override {
IERC20PermitAllowed(token).permit(msg.sender, address(this), nonce, expiry, true, v, r, s);
}
/// @inheritdoc ISelfPermit
function selfPermitAllowedIfNecessary(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external payable override {
if (IERC20(token).allowance(msg.sender, address(this)) < type(uint256).max)
selfPermitAllowed(token, nonce, expiry, v, r, s);
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.6.0;
pragma abicoder v2;
import {IUniswapV3Pool} from "../v3-core-0.8/contracts/interfaces/IUniswapV3Pool.sol";
/// @param pool The Uniswap V3 pool
/// @param tickLower The lower tick of the Bunni's UniV3 LP position
/// @param tickUpper The upper tick of the Bunni's UniV3 LP position
struct BunniKey {
IUniswapV3Pool pool;
int24 tickLower;
int24 tickUpper;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
error T();
error R();
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
unchecked {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
if (absTick > uint256(int256(MAX_TICK))) revert T();
uint256 ratio = absTick & 0x1 != 0
? 0xfffcb933bd6fad37aa2d162d1a594001
: 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
unchecked {
// second inequality must be < because the price can never reach the price at the max tick
if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
// EIP-2612 is Final as of 2022-11-01. This file is deprecated.
import "./IERC20Permit.sol";
{
"compilationTarget": {
"contracts/v3/bunni/BunniHubA.sol": "BunniHubA"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IUniswapV3Factory","name":"factory_","type":"address"},{"internalType":"address","name":"owner_","type":"address"},{"internalType":"uint256","name":"protocolFee_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"T","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"bytes32","name":"bunniKeyHash","type":"bytes32"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Compound","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"bytes32","name":"bunniKeyHash","type":"bytes32"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Pool","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Pool","type":"uint256"}],"name":"CompoundSkim","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"bytes32","name":"bunniKeyHash","type":"bytes32"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IBunniToken","name":"token","type":"address"},{"indexed":true,"internalType":"bytes32","name":"bunniKeyHash","type":"bytes32"},{"indexed":true,"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"indexed":false,"internalType":"int24","name":"tickLower","type":"int24"},{"indexed":false,"internalType":"int24","name":"tickUpper","type":"int24"}],"name":"NewBunni","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"PayProtocolFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newProtocolFee","type":"uint256"}],"name":"SetProtocolFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"bytes32","name":"bunniKeyHash","type":"bytes32"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"internalType":"struct BunniKey","name":"key","type":"tuple"}],"name":"compound","outputs":[{"internalType":"uint128","name":"addedLiquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"internalType":"struct BunniKey","name":"key","type":"tuple"}],"name":"compoundSkim","outputs":[{"internalType":"uint128","name":"addedLiquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"internalType":"struct BunniKey","name":"key","type":"tuple"}],"name":"deployBunniToken","outputs":[{"internalType":"contract IBunniToken","name":"token","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"internalType":"struct BunniKey","name":"key","type":"tuple"},{"internalType":"uint256","name":"amount0Desired","type":"uint256"},{"internalType":"uint256","name":"amount1Desired","type":"uint256"},{"internalType":"uint256","name":"amount0Min","type":"uint256"},{"internalType":"uint256","name":"amount1Min","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"internalType":"struct IBunniHub.DepositParams","name":"params","type":"tuple"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint128","name":"addedLiquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract IUniswapV3Factory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"internalType":"struct BunniKey","name":"key","type":"tuple"}],"name":"getBunniToken","outputs":[{"internalType":"contract IBunniToken","name":"token","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"selfPermit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"selfPermitAllowed","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"selfPermitAllowedIfNecessary","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"selfPermitIfNecessary","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"setProtocolFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokenList","type":"address[]"},{"internalType":"address","name":"recipient","type":"address"}],"name":"sweepTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount0Owed","type":"uint256"},{"internalType":"uint256","name":"amount1Owed","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"uniswapV3MintCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"contract IUniswapV3Pool","name":"pool","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"internalType":"struct BunniKey","name":"key","type":"tuple"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"amount0Min","type":"uint256"},{"internalType":"uint256","name":"amount1Min","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"internalType":"struct IBunniHub.WithdrawParams","name":"params","type":"tuple"}],"name":"withdraw","outputs":[{"internalType":"uint128","name":"removedLiquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]