// SPDX-License-Identifier: MIT
pragma solidity 0.8.8;
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) {
// Return data is optional
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// https://github.com/Uniswap/permit2
/// @title SignatureTransfer
/// @notice Handles ERC20 token transfers through signature based actions
/// @dev Requires user's token approval on the Permit2 contract
interface ISignatureTransfer {
/// @notice The token and amount details for a transfer signed in the permit transfer signature
struct TokenPermissions {
// ERC20 token address
address token;
// the maximum amount that can be spent
uint256 amount;
}
/// @notice The signed permit message for a single token transfer
struct PermitTransferFrom {
TokenPermissions permitted;
// a unique value for every token owner's signature to prevent signature replays
uint256 nonce;
// deadline on the permit signature
uint256 deadline;
}
/// @notice Specifies the recipient address and amount for batched transfers.
/// @dev Recipients and amounts correspond to the index of the signed token permissions array.
/// @dev Reverts if the requested amount is greater than the permitted signed amount.
struct SignatureTransferDetails {
// recipient address
address to;
// spender requested amount
uint256 requestedAmount;
}
/// @notice Used to reconstruct the signed permit message for multiple token transfers
/// @dev Do not need to pass in spender address as it is required that it is msg.sender
/// @dev Note that a user still signs over a spender address
struct PermitBatchTransferFrom {
// the tokens and corresponding amounts permitted for a transfer
TokenPermissions[] permitted;
// a unique value for every token owner's signature to prevent signature replays
uint256 nonce;
// deadline on the permit signature
uint256 deadline;
}
/// @notice Transfers a token using a signed permit message
/// @dev Reverts if the requested amount is greater than the permitted signed amount
/// @param permit The permit data signed over by the owner
/// @param owner The owner of the tokens to transfer
/// @param transferDetails The spender's requested transfer details for the permitted token
/// @param signature The signature to verify
function permitTransferFrom(
PermitTransferFrom memory permit,
SignatureTransferDetails calldata transferDetails,
address owner,
bytes calldata signature
) external;
/// @notice Transfers multiple tokens using a signed permit message
/// @param permit The permit data signed over by the owner
/// @param owner The owner of the tokens to transfer
/// @param transferDetails Specifies the recipient and requested amount for the token transfer
/// @param signature The signature to verify
function permitTransferFrom(
PermitBatchTransferFrom memory permit,
SignatureTransferDetails[] calldata transferDetails,
address owner,
bytes calldata signature
) external;
}
// @dev interface for interacting with an Odos executor
interface IOdosExecutor {
function executePath (
bytes calldata bytecode,
uint256[] memory inputAmount,
address msgSender
) external payable;
}
/// @title Routing contract for Odos SOR
/// @author Semiotic AI
/// @notice Wrapper with security gaurentees around execution of arbitrary operations on user tokens
contract OdosRouterV2 is Ownable {
using SafeERC20 for IERC20;
/// @dev The zero address is uniquely used to represent eth since it is already
/// recognized as an invalid ERC20, and due to its gas efficiency
address constant _ETH = address(0);
/// @dev Address list where addresses can be cached for use when reading from storage is cheaper
// than reading from calldata. addressListStart is the storage slot of the first dynamic array element
uint256 private constant addressListStart =
80084422859880547211683076133703299733277748156566366325829078699459944778998;
address[] public addressList;
// @dev constants for managing referrals and fees
uint256 public constant REFERRAL_WITH_FEE_THRESHOLD = 1 << 31;
uint256 public constant FEE_DENOM = 1e18;
// @dev fee taken on multi-input and multi-output swaps instead of positive slippage
uint256 public swapMultiFee;
/// @dev Contains all information needed to describe the input and output for a swap
struct permit2Info {
address contractAddress;
uint256 nonce;
uint256 deadline;
bytes signature;
}
/// @dev Contains all information needed to describe the input and output for a swap
struct swapTokenInfo {
address inputToken;
uint256 inputAmount;
address inputReceiver;
address outputToken;
uint256 outputQuote;
uint256 outputMin;
address outputReceiver;
}
/// @dev Contains all information needed to describe an intput token for swapMulti
struct inputTokenInfo {
address tokenAddress;
uint256 amountIn;
address receiver;
}
/// @dev Contains all information needed to describe an output token for swapMulti
struct outputTokenInfo {
address tokenAddress;
uint256 relativeValue;
address receiver;
}
// @dev event for swapping one token for another
event Swap(
address sender,
uint256 inputAmount,
address inputToken,
uint256 amountOut,
address outputToken,
int256 slippage,
uint32 referralCode
);
/// @dev event for swapping multiple input and/or output tokens
event SwapMulti(
address sender,
uint256[] amountsIn,
address[] tokensIn,
uint256[] amountsOut,
address[] tokensOut,
uint32 referralCode
);
/// @dev Holds all information for a given referral
struct referralInfo {
uint64 referralFee;
address beneficiary;
bool registered;
}
/// @dev Register referral fee and information
mapping(uint32 => referralInfo) public referralLookup;
/// @dev Set the null referralCode as "Unregistered" with no additional fee
constructor() {
referralLookup[0].referralFee = 0;
referralLookup[0].beneficiary = address(0);
referralLookup[0].registered = true;
swapMultiFee = 5e14;
}
/// @dev Must exist in order for contract to receive eth
receive() external payable { }
/// @notice Custom decoder to swap with compact calldata for efficient execution on L2s
function swapCompact()
external
payable
returns (uint256)
{
swapTokenInfo memory tokenInfo;
address executor;
uint32 referralCode;
bytes calldata pathDefinition;
{
address msgSender = msg.sender;
assembly {
// Define function to load in token address, either from calldata or from storage
function getAddress(currPos) -> result, newPos {
let inputPos := shr(240, calldataload(currPos))
switch inputPos
// Reserve the null address as a special case that can be specified with 2 null bytes
case 0x0000 {
newPos := add(currPos, 2)
}
// This case means that the address is encoded in the calldata directly following the code
case 0x0001 {
result := and(shr(80, calldataload(currPos)), 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
newPos := add(currPos, 22)
}
// Otherwise we use the case to load in from the cached address list
default {
result := sload(add(addressListStart, sub(inputPos, 2)))
newPos := add(currPos, 2)
}
}
let result := 0
let pos := 4
// Load in the input and output token addresses
result, pos := getAddress(pos)
mstore(tokenInfo, result)
result, pos := getAddress(pos)
mstore(add(tokenInfo, 0x60), result)
// Load in the input amount - a 0 byte means the full balance is to be used
let inputAmountLength := shr(248, calldataload(pos))
pos := add(pos, 1)
if inputAmountLength {
mstore(add(tokenInfo, 0x20), shr(mul(sub(32, inputAmountLength), 8), calldataload(pos)))
pos := add(pos, inputAmountLength)
}
// Load in the quoted output amount
let quoteAmountLength := shr(248, calldataload(pos))
pos := add(pos, 1)
let outputQuote := shr(mul(sub(32, quoteAmountLength), 8), calldataload(pos))
mstore(add(tokenInfo, 0x80), outputQuote)
pos := add(pos, quoteAmountLength)
// Load the slippage tolerance and use to get the minimum output amount
{
let slippageTolerance := shr(232, calldataload(pos))
mstore(add(tokenInfo, 0xA0), div(mul(outputQuote, sub(0xFFFFFF, slippageTolerance)), 0xFFFFFF))
}
pos := add(pos, 3)
// Load in the executor address
executor, pos := getAddress(pos)
// Load in the destination to send the input to - Zero denotes the executor
result, pos := getAddress(pos)
if eq(result, 0) { result := executor }
mstore(add(tokenInfo, 0x40), result)
// Load in the destination to send the output to - Zero denotes msg.sender
result, pos := getAddress(pos)
if eq(result, 0) { result := msgSender }
mstore(add(tokenInfo, 0xC0), result)
// Load in the referralCode
referralCode := shr(224, calldataload(pos))
pos := add(pos, 4)
// Set the offset and size for the pathDefinition portion of the msg.data
pathDefinition.length := mul(shr(248, calldataload(pos)), 32)
pathDefinition.offset := add(pos, 1)
}
}
return _swapApproval(
tokenInfo,
pathDefinition,
executor,
referralCode
);
}
/// @notice Externally facing interface for swapping two tokens
/// @param tokenInfo All information about the tokens being swapped
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function swap(
swapTokenInfo memory tokenInfo,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
external
payable
returns (uint256 amountOut)
{
return _swapApproval(
tokenInfo,
pathDefinition,
executor,
referralCode
);
}
/// @notice Internal function for initiating approval transfers
/// @param tokenInfo All information about the tokens being swapped
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function _swapApproval(
swapTokenInfo memory tokenInfo,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
internal
returns (uint256 amountOut)
{
if (tokenInfo.inputToken == _ETH) {
// Support rebasing tokens by allowing the user to trade the entire balance
if (tokenInfo.inputAmount == 0) {
tokenInfo.inputAmount = msg.value;
} else {
require(msg.value == tokenInfo.inputAmount, "Wrong msg.value");
}
}
else {
// Support rebasing tokens by allowing the user to trade the entire balance
if (tokenInfo.inputAmount == 0) {
tokenInfo.inputAmount = IERC20(tokenInfo.inputToken).balanceOf(msg.sender);
}
IERC20(tokenInfo.inputToken).safeTransferFrom(
msg.sender,
tokenInfo.inputReceiver,
tokenInfo.inputAmount
);
}
return _swap(
tokenInfo,
pathDefinition,
executor,
referralCode
);
}
/// @notice Externally facing interface for swapping two tokens
/// @param permit2 All additional info for Permit2 transfers
/// @param tokenInfo All information about the tokens being swapped
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function swapPermit2(
permit2Info memory permit2,
swapTokenInfo memory tokenInfo,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
external
returns (uint256 amountOut)
{
ISignatureTransfer(permit2.contractAddress).permitTransferFrom(
ISignatureTransfer.PermitTransferFrom(
ISignatureTransfer.TokenPermissions(
tokenInfo.inputToken,
tokenInfo.inputAmount
),
permit2.nonce,
permit2.deadline
),
ISignatureTransfer.SignatureTransferDetails(
tokenInfo.inputReceiver,
tokenInfo.inputAmount
),
msg.sender,
permit2.signature
);
return _swap(
tokenInfo,
pathDefinition,
executor,
referralCode
);
}
/// @notice contains the main logic for swapping one token for another
/// Assumes input tokens have already been sent to their destinations and
/// that msg.value is set to expected ETH input value, or 0 for ERC20 input
/// @param tokenInfo All information about the tokens being swapped
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function _swap(
swapTokenInfo memory tokenInfo,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
internal
returns (uint256 amountOut)
{
// Check for valid output specifications
require(tokenInfo.outputMin <= tokenInfo.outputQuote, "Minimum greater than quote");
require(tokenInfo.outputMin > 0, "Slippage limit too low");
require(tokenInfo.inputToken != tokenInfo.outputToken, "Arbitrage not supported");
uint256 balanceBefore = _universalBalance(tokenInfo.outputToken);
// Delegate the execution of the path to the specified Odos Executor
uint256[] memory amountsIn = new uint256[](1);
amountsIn[0] = tokenInfo.inputAmount;
IOdosExecutor(executor).executePath{value: msg.value}(pathDefinition, amountsIn, msg.sender);
amountOut = _universalBalance(tokenInfo.outputToken) - balanceBefore;
if (referralCode > REFERRAL_WITH_FEE_THRESHOLD) {
referralInfo memory thisReferralInfo = referralLookup[referralCode];
_universalTransfer(
tokenInfo.outputToken,
thisReferralInfo.beneficiary,
amountOut * thisReferralInfo.referralFee * 8 / (FEE_DENOM * 10)
);
amountOut = amountOut * (FEE_DENOM - thisReferralInfo.referralFee) / FEE_DENOM;
}
int256 slippage = int256(amountOut) - int256(tokenInfo.outputQuote);
if (slippage > 0) {
amountOut = tokenInfo.outputQuote;
}
require(amountOut >= tokenInfo.outputMin, "Slippage Limit Exceeded");
// Transfer out the final output to the end user
_universalTransfer(tokenInfo.outputToken, tokenInfo.outputReceiver, amountOut);
emit Swap(
msg.sender,
tokenInfo.inputAmount,
tokenInfo.inputToken,
amountOut,
tokenInfo.outputToken,
slippage,
referralCode
);
}
/// @notice Custom decoder to swapMulti with compact calldata for efficient execution on L2s
function swapMultiCompact()
external
payable
returns (uint256[] memory amountsOut)
{
address executor;
uint256 valueOutMin;
inputTokenInfo[] memory inputs;
outputTokenInfo[] memory outputs;
uint256 pos = 6;
{
address msgSender = msg.sender;
uint256 numInputs;
uint256 numOutputs;
assembly {
numInputs := shr(248, calldataload(4))
numOutputs := shr(248, calldataload(5))
}
inputs = new inputTokenInfo[](numInputs);
outputs = new outputTokenInfo[](numOutputs);
assembly {
// Define function to load in token address, either from calldata or from storage
function getAddress(currPos) -> result, newPos {
let inputPos := shr(240, calldataload(currPos))
switch inputPos
// Reserve the null address as a special case that can be specified with 2 null bytes
case 0x0000 {
newPos := add(currPos, 2)
}
// This case means that the address is encoded in the calldata directly following the code
case 0x0001 {
result := and(shr(80, calldataload(currPos)), 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
newPos := add(currPos, 22)
}
// Otherwise we use the case to load in from the cached address list
default {
result := sload(add(addressListStart, sub(inputPos, 2)))
newPos := add(currPos, 2)
}
}
executor, pos := getAddress(pos)
// Load in the quoted output amount
let outputMinAmountLength := shr(248, calldataload(pos))
pos := add(pos, 1)
valueOutMin := shr(mul(sub(32, outputMinAmountLength), 8), calldataload(pos))
pos := add(pos, outputMinAmountLength)
let result := 0
let memPos := 0
for { let element := 0 } lt(element, numInputs) { element := add(element, 1) }
{
memPos := mload(add(inputs, add(mul(element, 0x20), 0x20)))
// Load in the token address
result, pos := getAddress(pos)
mstore(memPos, result)
// Load in the input amount - a 0 byte means the full balance is to be used
let inputAmountLength := shr(248, calldataload(pos))
pos := add(pos, 1)
if inputAmountLength {
mstore(add(memPos, 0x20), shr(mul(sub(32, inputAmountLength), 8), calldataload(pos)))
pos := add(pos, inputAmountLength)
}
result, pos := getAddress(pos)
if eq(result, 0) { result := executor }
mstore(add(memPos, 0x40), result)
}
for { let element := 0 } lt(element, numOutputs) { element := add(element, 1) }
{
memPos := mload(add(outputs, add(mul(element, 0x20), 0x20)))
// Load in the token address
result, pos := getAddress(pos)
mstore(memPos, result)
// Load in the quoted output amount
let outputAmountLength := shr(248, calldataload(pos))
pos := add(pos, 1)
mstore(add(memPos, 0x20), shr(mul(sub(32, outputAmountLength), 8), calldataload(pos)))
pos := add(pos, outputAmountLength)
result, pos := getAddress(pos)
if eq(result, 0) { result := msgSender }
mstore(add(memPos, 0x40), result)
}
}
}
uint32 referralCode;
bytes calldata pathDefinition;
assembly {
// Load in the referralCode
referralCode := shr(224, calldataload(pos))
pos := add(pos, 4)
// Set the offset and size for the pathDefinition portion of the msg.data
pathDefinition.length := mul(shr(248, calldataload(pos)), 32)
pathDefinition.offset := add(pos, 1)
}
return _swapMultiApproval(
inputs,
outputs,
valueOutMin,
pathDefinition,
executor,
referralCode
);
}
/// @notice Externally facing interface for swapping between two sets of tokens
/// @param inputs list of input token structs for the path being executed
/// @param outputs list of output token structs for the path being executed
/// @param valueOutMin minimum amount of value out the user will accept
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function swapMulti(
inputTokenInfo[] memory inputs,
outputTokenInfo[] memory outputs,
uint256 valueOutMin,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
external
payable
returns (uint256[] memory amountsOut)
{
return _swapMultiApproval(
inputs,
outputs,
valueOutMin,
pathDefinition,
executor,
referralCode
);
}
/// @notice Internal logic for swapping between two sets of tokens with approvals
/// @param inputs list of input token structs for the path being executed
/// @param outputs list of output token structs for the path being executed
/// @param valueOutMin minimum amount of value out the user will accept
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function _swapMultiApproval(
inputTokenInfo[] memory inputs,
outputTokenInfo[] memory outputs,
uint256 valueOutMin,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
internal
returns (uint256[] memory amountsOut)
{
// If input amount is still 0 then that means the maximum possible input is to be used
uint256 expected_msg_value = 0;
for (uint256 i = 0; i < inputs.length; i++) {
if (inputs[i].tokenAddress == _ETH) {
if (inputs[i].amountIn == 0) {
inputs[i].amountIn = msg.value;
}
expected_msg_value = inputs[i].amountIn;
}
else {
if (inputs[i].amountIn == 0) {
inputs[i].amountIn = IERC20(inputs[i].tokenAddress).balanceOf(msg.sender);
}
IERC20(inputs[i].tokenAddress).safeTransferFrom(
msg.sender,
inputs[i].receiver,
inputs[i].amountIn
);
}
}
require(msg.value == expected_msg_value, "Wrong msg.value");
return _swapMulti(
inputs,
outputs,
valueOutMin,
pathDefinition,
executor,
referralCode
);
}
/// @notice Externally facing interface for swapping between two sets of tokens with Permit2
/// @param permit2 All additional info for Permit2 transfers
/// @param inputs list of input token structs for the path being executed
/// @param outputs list of output token structs for the path being executed
/// @param valueOutMin minimum amount of value out the user will accept
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function swapMultiPermit2(
permit2Info memory permit2,
inputTokenInfo[] memory inputs,
outputTokenInfo[] memory outputs,
uint256 valueOutMin,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
external
payable
returns (uint256[] memory amountsOut)
{
ISignatureTransfer.PermitBatchTransferFrom memory permit;
ISignatureTransfer.SignatureTransferDetails[] memory transferDetails;
{
uint256 permit_length = msg.value > 0 ? inputs.length - 1 : inputs.length;
permit = ISignatureTransfer.PermitBatchTransferFrom(
new ISignatureTransfer.TokenPermissions[](permit_length),
permit2.nonce,
permit2.deadline
);
transferDetails =
new ISignatureTransfer.SignatureTransferDetails[](permit_length);
}
{
uint256 expected_msg_value = 0;
for (uint256 i = 0; i < inputs.length; i++) {
if (inputs[i].tokenAddress == _ETH) {
if (inputs[i].amountIn == 0) {
inputs[i].amountIn = msg.value;
}
expected_msg_value = inputs[i].amountIn;
}
else {
if (inputs[i].amountIn == 0) {
inputs[i].amountIn = IERC20(inputs[i].tokenAddress).balanceOf(msg.sender);
}
uint256 permit_index = expected_msg_value == 0 ? i : i - 1;
permit.permitted[permit_index].token = inputs[i].tokenAddress;
permit.permitted[permit_index].amount = inputs[i].amountIn;
transferDetails[permit_index].to = inputs[i].receiver;
transferDetails[permit_index].requestedAmount = inputs[i].amountIn;
}
}
require(msg.value == expected_msg_value, "Wrong msg.value");
}
ISignatureTransfer(permit2.contractAddress).permitTransferFrom(
permit,
transferDetails,
msg.sender,
permit2.signature
);
return _swapMulti(
inputs,
outputs,
valueOutMin,
pathDefinition,
executor,
referralCode
);
}
/// @notice contains the main logic for swapping between two sets of tokens
/// assumes that inputs have already been sent to the right location and msg.value
/// is set correctly to be 0 for no native input and match native inpuit otherwise
/// @param inputs list of input token structs for the path being executed
/// @param outputs list of output token structs for the path being executed
/// @param valueOutMin minimum amount of value out the user will accept
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
/// @param referralCode referral code to specify the source of the swap
function _swapMulti(
inputTokenInfo[] memory inputs,
outputTokenInfo[] memory outputs,
uint256 valueOutMin,
bytes calldata pathDefinition,
address executor,
uint32 referralCode
)
internal
returns (uint256[] memory amountsOut)
{
// Check for valid output specifications
require(valueOutMin > 0, "Slippage limit too low");
// Extract arrays of input amount values and tokens from the inputs struct list
uint256[] memory amountsIn = new uint256[](inputs.length);
address[] memory tokensIn = new address[](inputs.length);
// Check input specification validity and transfer input tokens to executor
{
for (uint256 i = 0; i < inputs.length; i++) {
amountsIn[i] = inputs[i].amountIn;
tokensIn[i] = inputs[i].tokenAddress;
for (uint256 j = 0; j < i; j++) {
require(
inputs[i].tokenAddress != inputs[j].tokenAddress,
"Duplicate source tokens"
);
}
for (uint256 j = 0; j < outputs.length; j++) {
require(
inputs[i].tokenAddress != outputs[j].tokenAddress,
"Arbitrage not supported"
);
}
}
}
// Check outputs for duplicates and record balances before swap
uint256[] memory balancesBefore = new uint256[](outputs.length);
for (uint256 i = 0; i < outputs.length; i++) {
for (uint256 j = 0; j < i; j++) {
require(
outputs[i].tokenAddress != outputs[j].tokenAddress,
"Duplicate destination tokens"
);
}
balancesBefore[i] = _universalBalance(outputs[i].tokenAddress);
}
// Delegate the execution of the path to the specified Odos Executor
IOdosExecutor(executor).executePath{value: msg.value}(pathDefinition, amountsIn, msg.sender);
referralInfo memory thisReferralInfo;
if (referralCode > REFERRAL_WITH_FEE_THRESHOLD) {
thisReferralInfo = referralLookup[referralCode];
}
{
uint256 valueOut;
uint256 _swapMultiFee = swapMultiFee;
amountsOut = new uint256[](outputs.length);
for (uint256 i = 0; i < outputs.length; i++) {
// Record the destination token balance before the path is executed
amountsOut[i] = _universalBalance(outputs[i].tokenAddress) - balancesBefore[i];
// Remove the swapMulti Fee (taken instead of positive slippage)
amountsOut[i] = amountsOut[i] * (FEE_DENOM - _swapMultiFee) / FEE_DENOM;
if (referralCode > REFERRAL_WITH_FEE_THRESHOLD) {
_universalTransfer(
outputs[i].tokenAddress,
thisReferralInfo.beneficiary,
amountsOut[i] * thisReferralInfo.referralFee * 8 / (FEE_DENOM * 10)
);
amountsOut[i] = amountsOut[i] * (FEE_DENOM - thisReferralInfo.referralFee) / FEE_DENOM;
}
_universalTransfer(
outputs[i].tokenAddress,
outputs[i].receiver,
amountsOut[i]
);
// Add the amount out sent to the user to the total value of output
valueOut += amountsOut[i] * outputs[i].relativeValue;
}
require(valueOut >= valueOutMin, "Slippage Limit Exceeded");
}
address[] memory tokensOut = new address[](outputs.length);
for (uint256 i = 0; i < outputs.length; i++) {
tokensOut[i] = outputs[i].tokenAddress;
}
emit SwapMulti(
msg.sender,
amountsIn,
tokensIn,
amountsOut,
tokensOut,
referralCode
);
}
/// @notice Register a new referrer, optionally with an additional swap fee
/// @param _referralCode the referral code to use for the new referral
/// @param _referralFee the additional fee to add to each swap using this code
/// @param _beneficiary the address to send the referral's share of fees to
function registerReferralCode(
uint32 _referralCode,
uint64 _referralFee,
address _beneficiary
)
external
{
// Do not allow for any overwriting of referral codes
require(!referralLookup[_referralCode].registered, "Code in use");
// Maximum additional fee a referral can set is 2%
require(_referralFee <= FEE_DENOM / 50, "Fee too high");
// Reserve the lower half of referral codes to be informative only
if (_referralCode <= REFERRAL_WITH_FEE_THRESHOLD) {
require(_referralFee == 0, "Invalid fee for code");
} else {
require(_referralFee > 0, "Invalid fee for code");
// Make sure the beneficiary is not the null address if there is a fee
require(_beneficiary != address(0), "Null beneficiary");
}
referralLookup[_referralCode].referralFee = _referralFee;
referralLookup[_referralCode].beneficiary = _beneficiary;
referralLookup[_referralCode].registered = true;
}
/// @notice Set the fee used for swapMulti
/// @param _swapMultiFee the new fee for swapMulti
function setSwapMultiFee(
uint256 _swapMultiFee
)
external
onlyOwner
{
// Maximum swapMultiFee that can be set is 0.5%
require(_swapMultiFee <= FEE_DENOM / 200, "Fee too high");
swapMultiFee = _swapMultiFee;
}
/// @notice Push new addresses to the cached address list for when storage is cheaper than calldata
/// @param addresses list of addresses to be added to the cached address list
function writeAddressList(
address[] calldata addresses
)
external
onlyOwner
{
for (uint256 i = 0; i < addresses.length; i++) {
addressList.push(addresses[i]);
}
}
/// @notice Allows the owner to transfer funds held by the router contract
/// @param tokens List of token address to be transferred
/// @param amounts List of amounts of each token to be transferred
/// @param dest Address to which the funds should be sent
function transferRouterFunds(
address[] calldata tokens,
uint256[] calldata amounts,
address dest
)
external
onlyOwner
{
require(tokens.length == amounts.length, "Invalid funds transfer");
for (uint256 i = 0; i < tokens.length; i++) {
_universalTransfer(
tokens[i],
dest,
amounts[i] == 0 ? _universalBalance(tokens[i]) : amounts[i]
);
}
}
/// @notice Directly swap funds held in router
/// @param inputs list of input token structs for the path being executed
/// @param outputs list of output token structs for the path being executed
/// @param valueOutMin minimum amount of value out the user will accept
/// @param pathDefinition Encoded path definition for executor
/// @param executor Address of contract that will execute the path
function swapRouterFunds(
inputTokenInfo[] memory inputs,
outputTokenInfo[] memory outputs,
uint256 valueOutMin,
bytes calldata pathDefinition,
address executor
)
external
onlyOwner
returns (uint256[] memory amountsOut)
{
uint256[] memory amountsIn = new uint256[](inputs.length);
address[] memory tokensIn = new address[](inputs.length);
for (uint256 i = 0; i < inputs.length; i++) {
tokensIn[i] = inputs[i].tokenAddress;
amountsIn[i] = inputs[i].amountIn == 0 ?
_universalBalance(tokensIn[i]) : inputs[i].amountIn;
_universalTransfer(
tokensIn[i],
inputs[i].receiver,
amountsIn[i]
);
}
// Check outputs for duplicates and record balances before swap
uint256[] memory balancesBefore = new uint256[](outputs.length);
address[] memory tokensOut = new address[](outputs.length);
for (uint256 i = 0; i < outputs.length; i++) {
tokensOut[i] = outputs[i].tokenAddress;
balancesBefore[i] = _universalBalance(tokensOut[i]);
}
// Delegate the execution of the path to the specified Odos Executor
IOdosExecutor(executor).executePath{value: 0}(pathDefinition, amountsIn, msg.sender);
uint256 valueOut;
amountsOut = new uint256[](outputs.length);
for (uint256 i = 0; i < outputs.length; i++) {
// Record the destination token balance before the path is executed
amountsOut[i] = _universalBalance(tokensOut[i]) - balancesBefore[i];
_universalTransfer(
outputs[i].tokenAddress,
outputs[i].receiver,
amountsOut[i]
);
// Add the amount out sent to the user to the total value of output
valueOut += amountsOut[i] * outputs[i].relativeValue;
}
require(valueOut >= valueOutMin, "Slippage Limit Exceeded");
emit SwapMulti(
msg.sender,
amountsIn,
tokensIn,
amountsOut,
tokensOut,
0
);
}
/// @notice helper function to get balance of ERC20 or native coin for this contract
/// @param token address of the token to check, null for native coin
/// @return balance of specified coin or token
function _universalBalance(address token) private view returns(uint256) {
if (token == _ETH) {
return address(this).balance;
} else {
return IERC20(token).balanceOf(address(this));
}
}
/// @notice helper function to transfer ERC20 or native coin
/// @param token address of the token being transferred, null for native coin
/// @param to address to transfer to
/// @param amount to transfer
function _universalTransfer(address token, address to, uint256 amount) private {
if (token == _ETH) {
(bool success,) = payable(to).call{value: amount}("");
require(success, "ETH transfer failed");
} else {
IERC20(token).safeTransfer(to, amount);
}
}
}
{
"compilationTarget": {
"OdosRouterV2.sol": "OdosRouterV2"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"inputAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"inputToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"},{"indexed":false,"internalType":"address","name":"outputToken","type":"address"},{"indexed":false,"internalType":"int256","name":"slippage","type":"int256"},{"indexed":false,"internalType":"uint32","name":"referralCode","type":"uint32"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"},{"indexed":false,"internalType":"address[]","name":"tokensIn","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"},{"indexed":false,"internalType":"address[]","name":"tokensOut","type":"address[]"},{"indexed":false,"internalType":"uint32","name":"referralCode","type":"uint32"}],"name":"SwapMulti","type":"event"},{"inputs":[],"name":"FEE_DENOM","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REFERRAL_WITH_FEE_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"addressList","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"}],"name":"referralLookup","outputs":[{"internalType":"uint64","name":"referralFee","type":"uint64"},{"internalType":"address","name":"beneficiary","type":"address"},{"internalType":"bool","name":"registered","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"_referralCode","type":"uint32"},{"internalType":"uint64","name":"_referralFee","type":"uint64"},{"internalType":"address","name":"_beneficiary","type":"address"}],"name":"registerReferralCode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_swapMultiFee","type":"uint256"}],"name":"setSwapMultiFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"address","name":"inputReceiver","type":"address"},{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"outputQuote","type":"uint256"},{"internalType":"uint256","name":"outputMin","type":"uint256"},{"internalType":"address","name":"outputReceiver","type":"address"}],"internalType":"struct OdosRouterV2.swapTokenInfo","name":"tokenInfo","type":"tuple"},{"internalType":"bytes","name":"pathDefinition","type":"bytes"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"uint32","name":"referralCode","type":"uint32"}],"name":"swap","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"swapCompact","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"internalType":"struct OdosRouterV2.inputTokenInfo[]","name":"inputs","type":"tuple[]"},{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"relativeValue","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"internalType":"struct OdosRouterV2.outputTokenInfo[]","name":"outputs","type":"tuple[]"},{"internalType":"uint256","name":"valueOutMin","type":"uint256"},{"internalType":"bytes","name":"pathDefinition","type":"bytes"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"uint32","name":"referralCode","type":"uint32"}],"name":"swapMulti","outputs":[{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"swapMultiCompact","outputs":[{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"swapMultiFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct OdosRouterV2.permit2Info","name":"permit2","type":"tuple"},{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"internalType":"struct OdosRouterV2.inputTokenInfo[]","name":"inputs","type":"tuple[]"},{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"relativeValue","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"internalType":"struct OdosRouterV2.outputTokenInfo[]","name":"outputs","type":"tuple[]"},{"internalType":"uint256","name":"valueOutMin","type":"uint256"},{"internalType":"bytes","name":"pathDefinition","type":"bytes"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"uint32","name":"referralCode","type":"uint32"}],"name":"swapMultiPermit2","outputs":[{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct OdosRouterV2.permit2Info","name":"permit2","type":"tuple"},{"components":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"address","name":"inputReceiver","type":"address"},{"internalType":"address","name":"outputToken","type":"address"},{"internalType":"uint256","name":"outputQuote","type":"uint256"},{"internalType":"uint256","name":"outputMin","type":"uint256"},{"internalType":"address","name":"outputReceiver","type":"address"}],"internalType":"struct OdosRouterV2.swapTokenInfo","name":"tokenInfo","type":"tuple"},{"internalType":"bytes","name":"pathDefinition","type":"bytes"},{"internalType":"address","name":"executor","type":"address"},{"internalType":"uint32","name":"referralCode","type":"uint32"}],"name":"swapPermit2","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"internalType":"struct OdosRouterV2.inputTokenInfo[]","name":"inputs","type":"tuple[]"},{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"relativeValue","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"internalType":"struct OdosRouterV2.outputTokenInfo[]","name":"outputs","type":"tuple[]"},{"internalType":"uint256","name":"valueOutMin","type":"uint256"},{"internalType":"bytes","name":"pathDefinition","type":"bytes"},{"internalType":"address","name":"executor","type":"address"}],"name":"swapRouterFunds","outputs":[{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"address","name":"dest","type":"address"}],"name":"transferRouterFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"addresses","type":"address[]"}],"name":"writeAddressList","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]