// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev A library for working with mutable byte buffers in Solidity.
*
* Byte buffers are mutable and expandable, and provide a variety of primitives
* for writing to them. At any time you can fetch a bytes object containing the
* current contents of the buffer. The bytes object should not be stored between
* operations, as it may change due to resizing of the buffer.
*/
library BufferChainlink {
/**
* @dev Represents a mutable buffer. Buffers have a current value (buf) and
* a capacity. The capacity may be longer than the current value, in
* which case it can be extended without the need to allocate more memory.
*/
struct buffer {
bytes buf;
uint256 capacity;
}
/**
* @dev Initializes a buffer with an initial capacity.
* @param buf The buffer to initialize.
* @param capacity The number of bytes of space to allocate the buffer.
* @return The buffer, for chaining.
*/
function init(buffer memory buf, uint256 capacity) internal pure returns (buffer memory) {
if (capacity % 32 != 0) {
capacity += 32 - (capacity % 32);
}
// Allocate space for the buffer data
buf.capacity = capacity;
assembly {
let ptr := mload(0x40)
mstore(buf, ptr)
mstore(ptr, 0)
mstore(0x40, add(32, add(ptr, capacity)))
}
return buf;
}
/**
* @dev Initializes a new buffer from an existing bytes object.
* Changes to the buffer may mutate the original value.
* @param b The bytes object to initialize the buffer with.
* @return A new buffer.
*/
function fromBytes(bytes memory b) internal pure returns (buffer memory) {
buffer memory buf;
buf.buf = b;
buf.capacity = b.length;
return buf;
}
function resize(buffer memory buf, uint256 capacity) private pure {
bytes memory oldbuf = buf.buf;
init(buf, capacity);
append(buf, oldbuf);
}
function max(uint256 a, uint256 b) private pure returns (uint256) {
if (a > b) {
return a;
}
return b;
}
/**
* @dev Sets buffer length to 0.
* @param buf The buffer to truncate.
* @return The original buffer, for chaining..
*/
function truncate(buffer memory buf) internal pure returns (buffer memory) {
assembly {
let bufptr := mload(buf)
mstore(bufptr, 0)
}
return buf;
}
/**
* @dev Writes a byte string to a buffer. Resizes if doing so would exceed
* the capacity of the buffer.
* @param buf The buffer to append to.
* @param off The start offset to write to.
* @param data The data to append.
* @param len The number of bytes to copy.
* @return The original buffer, for chaining.
*/
function write(
buffer memory buf,
uint256 off,
bytes memory data,
uint256 len
) internal pure returns (buffer memory) {
require(len <= data.length);
if (off + len > buf.capacity) {
resize(buf, max(buf.capacity, len + off) * 2);
}
uint256 dest;
uint256 src;
assembly {
// Memory address of the buffer data
let bufptr := mload(buf)
// Length of existing buffer data
let buflen := mload(bufptr)
// Start address = buffer address + offset + sizeof(buffer length)
dest := add(add(bufptr, 32), off)
// Update buffer length if we're extending it
if gt(add(len, off), buflen) {
mstore(bufptr, add(len, off))
}
src := add(data, 32)
}
// Copy word-length chunks while possible
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
unchecked {
uint256 mask = (256**(32 - len)) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
return buf;
}
/**
* @dev Appends a byte string to a buffer. Resizes if doing so would exceed
* the capacity of the buffer.
* @param buf The buffer to append to.
* @param data The data to append.
* @param len The number of bytes to copy.
* @return The original buffer, for chaining.
*/
function append(
buffer memory buf,
bytes memory data,
uint256 len
) internal pure returns (buffer memory) {
return write(buf, buf.buf.length, data, len);
}
/**
* @dev Appends a byte string to a buffer. Resizes if doing so would exceed
* the capacity of the buffer.
* @param buf The buffer to append to.
* @param data The data to append.
* @return The original buffer, for chaining.
*/
function append(buffer memory buf, bytes memory data) internal pure returns (buffer memory) {
return write(buf, buf.buf.length, data, data.length);
}
/**
* @dev Writes a byte to the buffer. Resizes if doing so would exceed the
* capacity of the buffer.
* @param buf The buffer to append to.
* @param off The offset to write the byte at.
* @param data The data to append.
* @return The original buffer, for chaining.
*/
function writeUint8(
buffer memory buf,
uint256 off,
uint8 data
) internal pure returns (buffer memory) {
if (off >= buf.capacity) {
resize(buf, buf.capacity * 2);
}
assembly {
// Memory address of the buffer data
let bufptr := mload(buf)
// Length of existing buffer data
let buflen := mload(bufptr)
// Address = buffer address + sizeof(buffer length) + off
let dest := add(add(bufptr, off), 32)
mstore8(dest, data)
// Update buffer length if we extended it
if eq(off, buflen) {
mstore(bufptr, add(buflen, 1))
}
}
return buf;
}
/**
* @dev Appends a byte to the buffer. Resizes if doing so would exceed the
* capacity of the buffer.
* @param buf The buffer to append to.
* @param data The data to append.
* @return The original buffer, for chaining.
*/
function appendUint8(buffer memory buf, uint8 data) internal pure returns (buffer memory) {
return writeUint8(buf, buf.buf.length, data);
}
/**
* @dev Writes up to 32 bytes to the buffer. Resizes if doing so would
* exceed the capacity of the buffer.
* @param buf The buffer to append to.
* @param off The offset to write at.
* @param data The data to append.
* @param len The number of bytes to write (left-aligned).
* @return The original buffer, for chaining.
*/
function write(
buffer memory buf,
uint256 off,
bytes32 data,
uint256 len
) private pure returns (buffer memory) {
if (len + off > buf.capacity) {
resize(buf, (len + off) * 2);
}
unchecked {
uint256 mask = (256**len) - 1;
// Right-align data
data = data >> (8 * (32 - len));
assembly {
// Memory address of the buffer data
let bufptr := mload(buf)
// Address = buffer address + sizeof(buffer length) + off + len
let dest := add(add(bufptr, off), len)
mstore(dest, or(and(mload(dest), not(mask)), data))
// Update buffer length if we extended it
if gt(add(off, len), mload(bufptr)) {
mstore(bufptr, add(off, len))
}
}
}
return buf;
}
/**
* @dev Writes a bytes20 to the buffer. Resizes if doing so would exceed the
* capacity of the buffer.
* @param buf The buffer to append to.
* @param off The offset to write at.
* @param data The data to append.
* @return The original buffer, for chaining.
*/
function writeBytes20(
buffer memory buf,
uint256 off,
bytes20 data
) internal pure returns (buffer memory) {
return write(buf, off, bytes32(data), 20);
}
/**
* @dev Appends a bytes20 to the buffer. Resizes if doing so would exceed
* the capacity of the buffer.
* @param buf The buffer to append to.
* @param data The data to append.
* @return The original buffer, for chhaining.
*/
function appendBytes20(buffer memory buf, bytes20 data) internal pure returns (buffer memory) {
return write(buf, buf.buf.length, bytes32(data), 20);
}
/**
* @dev Appends a bytes32 to the buffer. Resizes if doing so would exceed
* the capacity of the buffer.
* @param buf The buffer to append to.
* @param data The data to append.
* @return The original buffer, for chaining.
*/
function appendBytes32(buffer memory buf, bytes32 data) internal pure returns (buffer memory) {
return write(buf, buf.buf.length, data, 32);
}
/**
* @dev Writes an integer to the buffer. Resizes if doing so would exceed
* the capacity of the buffer.
* @param buf The buffer to append to.
* @param off The offset to write at.
* @param data The data to append.
* @param len The number of bytes to write (right-aligned).
* @return The original buffer, for chaining.
*/
function writeInt(
buffer memory buf,
uint256 off,
uint256 data,
uint256 len
) private pure returns (buffer memory) {
if (len + off > buf.capacity) {
resize(buf, (len + off) * 2);
}
uint256 mask = (256**len) - 1;
assembly {
// Memory address of the buffer data
let bufptr := mload(buf)
// Address = buffer address + off + sizeof(buffer length) + len
let dest := add(add(bufptr, off), len)
mstore(dest, or(and(mload(dest), not(mask)), data))
// Update buffer length if we extended it
if gt(add(off, len), mload(bufptr)) {
mstore(bufptr, add(off, len))
}
}
return buf;
}
/**
* @dev Appends a byte to the end of the buffer. Resizes if doing so would
* exceed the capacity of the buffer.
* @param buf The buffer to append to.
* @param data The data to append.
* @return The original buffer.
*/
function appendInt(
buffer memory buf,
uint256 data,
uint256 len
) internal pure returns (buffer memory) {
return writeInt(buf, buf.buf.length, data, len);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.19;
import {BufferChainlink} from "./BufferChainlink.sol";
library CBORChainlink {
using BufferChainlink for BufferChainlink.buffer;
uint8 private constant MAJOR_TYPE_INT = 0;
uint8 private constant MAJOR_TYPE_NEGATIVE_INT = 1;
uint8 private constant MAJOR_TYPE_BYTES = 2;
uint8 private constant MAJOR_TYPE_STRING = 3;
uint8 private constant MAJOR_TYPE_ARRAY = 4;
uint8 private constant MAJOR_TYPE_MAP = 5;
uint8 private constant MAJOR_TYPE_TAG = 6;
uint8 private constant MAJOR_TYPE_CONTENT_FREE = 7;
uint8 private constant TAG_TYPE_BIGNUM = 2;
uint8 private constant TAG_TYPE_NEGATIVE_BIGNUM = 3;
function encodeFixedNumeric(BufferChainlink.buffer memory buf, uint8 major, uint64 value) private pure {
if(value <= 23) {
buf.appendUint8(uint8((major << 5) | value));
} else if (value <= 0xFF) {
buf.appendUint8(uint8((major << 5) | 24));
buf.appendInt(value, 1);
} else if (value <= 0xFFFF) {
buf.appendUint8(uint8((major << 5) | 25));
buf.appendInt(value, 2);
} else if (value <= 0xFFFFFFFF) {
buf.appendUint8(uint8((major << 5) | 26));
buf.appendInt(value, 4);
} else {
buf.appendUint8(uint8((major << 5) | 27));
buf.appendInt(value, 8);
}
}
function encodeIndefiniteLengthType(BufferChainlink.buffer memory buf, uint8 major) private pure {
buf.appendUint8(uint8((major << 5) | 31));
}
function encodeUInt(BufferChainlink.buffer memory buf, uint value) internal pure {
if(value > 0xFFFFFFFFFFFFFFFF) {
encodeBigNum(buf, value);
} else {
encodeFixedNumeric(buf, MAJOR_TYPE_INT, uint64(value));
}
}
function encodeInt(BufferChainlink.buffer memory buf, int value) internal pure {
if(value < -0x10000000000000000) {
encodeSignedBigNum(buf, value);
} else if(value > 0xFFFFFFFFFFFFFFFF) {
encodeBigNum(buf, uint(value));
} else if(value >= 0) {
encodeFixedNumeric(buf, MAJOR_TYPE_INT, uint64(uint256(value)));
} else {
encodeFixedNumeric(buf, MAJOR_TYPE_NEGATIVE_INT, uint64(uint256(-1 - value)));
}
}
function encodeBytes(BufferChainlink.buffer memory buf, bytes memory value) internal pure {
encodeFixedNumeric(buf, MAJOR_TYPE_BYTES, uint64(value.length));
buf.append(value);
}
function encodeBigNum(BufferChainlink.buffer memory buf, uint value) internal pure {
buf.appendUint8(uint8((MAJOR_TYPE_TAG << 5) | TAG_TYPE_BIGNUM));
encodeBytes(buf, abi.encode(value));
}
function encodeSignedBigNum(BufferChainlink.buffer memory buf, int input) internal pure {
buf.appendUint8(uint8((MAJOR_TYPE_TAG << 5) | TAG_TYPE_NEGATIVE_BIGNUM));
encodeBytes(buf, abi.encode(uint256(-1 - input)));
}
function encodeString(BufferChainlink.buffer memory buf, string memory value) internal pure {
encodeFixedNumeric(buf, MAJOR_TYPE_STRING, uint64(bytes(value).length));
buf.append(bytes(value));
}
function startArray(BufferChainlink.buffer memory buf) internal pure {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_ARRAY);
}
function startMap(BufferChainlink.buffer memory buf) internal pure {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_MAP);
}
function endSequence(BufferChainlink.buffer memory buf) internal pure {
encodeIndefiniteLengthType(buf, MAJOR_TYPE_CONTENT_FREE);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {CBORChainlink} from "./vendor/CBORChainlink.sol";
import {BufferChainlink} from "./vendor/BufferChainlink.sol";
/**
* @title Library for common Chainlink functions
* @dev Uses imported CBOR library for encoding to buffer
*/
library Chainlink {
uint256 internal constant defaultBufferSize = 256; // solhint-disable-line const-name-snakecase
using CBORChainlink for BufferChainlink.buffer;
struct Request {
bytes32 id;
address callbackAddress;
bytes4 callbackFunctionId;
uint256 nonce;
BufferChainlink.buffer buf;
}
/**
* @notice Initializes a Chainlink request
* @dev Sets the ID, callback address, and callback function signature on the request
* @param self The uninitialized request
* @param jobId The Job Specification ID
* @param callbackAddr The callback address
* @param callbackFunc The callback function signature
* @return The initialized request
*/
function initialize(
Request memory self,
bytes32 jobId,
address callbackAddr,
bytes4 callbackFunc
) internal pure returns (Chainlink.Request memory) {
BufferChainlink.init(self.buf, defaultBufferSize);
self.id = jobId;
self.callbackAddress = callbackAddr;
self.callbackFunctionId = callbackFunc;
return self;
}
/**
* @notice Sets the data for the buffer without encoding CBOR on-chain
* @dev CBOR can be closed with curly-brackets {} or they can be left off
* @param self The initialized request
* @param data The CBOR data
*/
function setBuffer(Request memory self, bytes memory data) internal pure {
BufferChainlink.init(self.buf, data.length);
BufferChainlink.append(self.buf, data);
}
/**
* @notice Adds a string value to the request with a given key name
* @param self The initialized request
* @param key The name of the key
* @param value The string value to add
*/
function add(
Request memory self,
string memory key,
string memory value
) internal pure {
self.buf.encodeString(key);
self.buf.encodeString(value);
}
/**
* @notice Adds a bytes value to the request with a given key name
* @param self The initialized request
* @param key The name of the key
* @param value The bytes value to add
*/
function addBytes(
Request memory self,
string memory key,
bytes memory value
) internal pure {
self.buf.encodeString(key);
self.buf.encodeBytes(value);
}
/**
* @notice Adds a int256 value to the request with a given key name
* @param self The initialized request
* @param key The name of the key
* @param value The int256 value to add
*/
function addInt(
Request memory self,
string memory key,
int256 value
) internal pure {
self.buf.encodeString(key);
self.buf.encodeInt(value);
}
/**
* @notice Adds a uint256 value to the request with a given key name
* @param self The initialized request
* @param key The name of the key
* @param value The uint256 value to add
*/
function addUint(
Request memory self,
string memory key,
uint256 value
) internal pure {
self.buf.encodeString(key);
self.buf.encodeUInt(value);
}
/**
* @notice Adds an array of strings to the request with a given key name
* @param self The initialized request
* @param key The name of the key
* @param values The array of string values to add
*/
function addStringArray(
Request memory self,
string memory key,
string[] memory values
) internal pure {
self.buf.encodeString(key);
self.buf.startArray();
for (uint256 i = 0; i < values.length; i++) {
self.buf.encodeString(values[i]);
}
self.buf.endSequence();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./Chainlink.sol";
import "./interfaces/ENSInterface.sol";
import "./interfaces/LinkTokenInterface.sol";
import "./interfaces/ChainlinkRequestInterface.sol";
import "./interfaces/OperatorInterface.sol";
import "./interfaces/PointerInterface.sol";
import {ENSResolver as ENSResolver_Chainlink} from "./vendor/ENSResolver.sol";
/**
* @title The ChainlinkClient contract
* @notice Contract writers can inherit this contract in order to create requests for the
* Chainlink network
*/
abstract contract ChainlinkClient {
using Chainlink for Chainlink.Request;
uint256 internal constant LINK_DIVISIBILITY = 10**18;
uint256 private constant AMOUNT_OVERRIDE = 0;
address private constant SENDER_OVERRIDE = address(0);
uint256 private constant ORACLE_ARGS_VERSION = 1;
uint256 private constant OPERATOR_ARGS_VERSION = 2;
bytes32 private constant ENS_TOKEN_SUBNAME = keccak256("link");
bytes32 private constant ENS_ORACLE_SUBNAME = keccak256("oracle");
address private constant LINK_TOKEN_POINTER = 0xC89bD4E1632D3A43CB03AAAd5262cbe4038Bc571;
ENSInterface private s_ens;
bytes32 private s_ensNode;
LinkTokenInterface private s_link;
OperatorInterface private s_oracle;
uint256 private s_requestCount = 1;
mapping(bytes32 => address) private s_pendingRequests;
event ChainlinkRequested(bytes32 indexed id);
event ChainlinkFulfilled(bytes32 indexed id);
event ChainlinkCancelled(bytes32 indexed id);
/**
* @notice Creates a request that can hold additional parameters
* @param specId The Job Specification ID that the request will be created for
* @param callbackAddr address to operate the callback on
* @param callbackFunctionSignature function signature to use for the callback
* @return A Chainlink Request struct in memory
*/
function buildChainlinkRequest(
bytes32 specId,
address callbackAddr,
bytes4 callbackFunctionSignature
) internal pure returns (Chainlink.Request memory) {
Chainlink.Request memory req;
return req.initialize(specId, callbackAddr, callbackFunctionSignature);
}
/**
* @notice Creates a request that can hold additional parameters
* @param specId The Job Specification ID that the request will be created for
* @param callbackFunctionSignature function signature to use for the callback
* @return A Chainlink Request struct in memory
*/
function buildOperatorRequest(bytes32 specId, bytes4 callbackFunctionSignature)
internal
view
returns (Chainlink.Request memory)
{
Chainlink.Request memory req;
return req.initialize(specId, address(this), callbackFunctionSignature);
}
/**
* @notice Creates a Chainlink request to the stored oracle address
* @dev Calls `chainlinkRequestTo` with the stored oracle address
* @param req The initialized Chainlink Request
* @param payment The amount of LINK to send for the request
* @return requestId The request ID
*/
function sendChainlinkRequest(Chainlink.Request memory req, uint256 payment) internal returns (bytes32) {
return sendChainlinkRequestTo(address(s_oracle), req, payment);
}
/**
* @notice Creates a Chainlink request to the specified oracle address
* @dev Generates and stores a request ID, increments the local nonce, and uses `transferAndCall` to
* send LINK which creates a request on the target oracle contract.
* Emits ChainlinkRequested event.
* @param oracleAddress The address of the oracle for the request
* @param req The initialized Chainlink Request
* @param payment The amount of LINK to send for the request
* @return requestId The request ID
*/
function sendChainlinkRequestTo(
address oracleAddress,
Chainlink.Request memory req,
uint256 payment
) internal returns (bytes32 requestId) {
uint256 nonce = s_requestCount;
s_requestCount = nonce + 1;
bytes memory encodedRequest = abi.encodeWithSelector(
ChainlinkRequestInterface.oracleRequest.selector,
SENDER_OVERRIDE, // Sender value - overridden by onTokenTransfer by the requesting contract's address
AMOUNT_OVERRIDE, // Amount value - overridden by onTokenTransfer by the actual amount of LINK sent
req.id,
address(this),
req.callbackFunctionId,
nonce,
ORACLE_ARGS_VERSION,
req.buf.buf
);
return _rawRequest(oracleAddress, nonce, payment, encodedRequest);
}
/**
* @notice Creates a Chainlink request to the stored oracle address
* @dev This function supports multi-word response
* @dev Calls `sendOperatorRequestTo` with the stored oracle address
* @param req The initialized Chainlink Request
* @param payment The amount of LINK to send for the request
* @return requestId The request ID
*/
function sendOperatorRequest(Chainlink.Request memory req, uint256 payment) internal returns (bytes32) {
return sendOperatorRequestTo(address(s_oracle), req, payment);
}
/**
* @notice Creates a Chainlink request to the specified oracle address
* @dev This function supports multi-word response
* @dev Generates and stores a request ID, increments the local nonce, and uses `transferAndCall` to
* send LINK which creates a request on the target oracle contract.
* Emits ChainlinkRequested event.
* @param oracleAddress The address of the oracle for the request
* @param req The initialized Chainlink Request
* @param payment The amount of LINK to send for the request
* @return requestId The request ID
*/
function sendOperatorRequestTo(
address oracleAddress,
Chainlink.Request memory req,
uint256 payment
) internal returns (bytes32 requestId) {
uint256 nonce = s_requestCount;
s_requestCount = nonce + 1;
bytes memory encodedRequest = abi.encodeWithSelector(
OperatorInterface.operatorRequest.selector,
SENDER_OVERRIDE, // Sender value - overridden by onTokenTransfer by the requesting contract's address
AMOUNT_OVERRIDE, // Amount value - overridden by onTokenTransfer by the actual amount of LINK sent
req.id,
req.callbackFunctionId,
nonce,
OPERATOR_ARGS_VERSION,
req.buf.buf
);
return _rawRequest(oracleAddress, nonce, payment, encodedRequest);
}
/**
* @notice Make a request to an oracle
* @param oracleAddress The address of the oracle for the request
* @param nonce used to generate the request ID
* @param payment The amount of LINK to send for the request
* @param encodedRequest data encoded for request type specific format
* @return requestId The request ID
*/
function _rawRequest(
address oracleAddress,
uint256 nonce,
uint256 payment,
bytes memory encodedRequest
) private returns (bytes32 requestId) {
requestId = keccak256(abi.encodePacked(this, nonce));
s_pendingRequests[requestId] = oracleAddress;
emit ChainlinkRequested(requestId);
require(s_link.transferAndCall(oracleAddress, payment, encodedRequest), "unable to transferAndCall to oracle");
}
/**
* @notice Allows a request to be cancelled if it has not been fulfilled
* @dev Requires keeping track of the expiration value emitted from the oracle contract.
* Deletes the request from the `pendingRequests` mapping.
* Emits ChainlinkCancelled event.
* @param requestId The request ID
* @param payment The amount of LINK sent for the request
* @param callbackFunc The callback function specified for the request
* @param expiration The time of the expiration for the request
*/
function cancelChainlinkRequest(
bytes32 requestId,
uint256 payment,
bytes4 callbackFunc,
uint256 expiration
) internal {
OperatorInterface requested = OperatorInterface(s_pendingRequests[requestId]);
delete s_pendingRequests[requestId];
emit ChainlinkCancelled(requestId);
requested.cancelOracleRequest(requestId, payment, callbackFunc, expiration);
}
/**
* @notice the next request count to be used in generating a nonce
* @dev starts at 1 in order to ensure consistent gas cost
* @return returns the next request count to be used in a nonce
*/
function getNextRequestCount() internal view returns (uint256) {
return s_requestCount;
}
/**
* @notice Sets the stored oracle address
* @param oracleAddress The address of the oracle contract
*/
function setChainlinkOracle(address oracleAddress) internal {
s_oracle = OperatorInterface(oracleAddress);
}
/**
* @notice Sets the LINK token address
* @param linkAddress The address of the LINK token contract
*/
function setChainlinkToken(address linkAddress) internal {
s_link = LinkTokenInterface(linkAddress);
}
/**
* @notice Sets the Chainlink token address for the public
* network as given by the Pointer contract
*/
function setPublicChainlinkToken() internal {
setChainlinkToken(PointerInterface(LINK_TOKEN_POINTER).getAddress());
}
/**
* @notice Retrieves the stored address of the LINK token
* @return The address of the LINK token
*/
function chainlinkTokenAddress() internal view returns (address) {
return address(s_link);
}
/**
* @notice Retrieves the stored address of the oracle contract
* @return The address of the oracle contract
*/
function chainlinkOracleAddress() internal view returns (address) {
return address(s_oracle);
}
/**
* @notice Allows for a request which was created on another contract to be fulfilled
* on this contract
* @param oracleAddress The address of the oracle contract that will fulfill the request
* @param requestId The request ID used for the response
*/
function addChainlinkExternalRequest(address oracleAddress, bytes32 requestId) internal notPendingRequest(requestId) {
s_pendingRequests[requestId] = oracleAddress;
}
/**
* @notice Sets the stored oracle and LINK token contracts with the addresses resolved by ENS
* @dev Accounts for subnodes having different resolvers
* @param ensAddress The address of the ENS contract
* @param node The ENS node hash
*/
function useChainlinkWithENS(address ensAddress, bytes32 node) internal {
s_ens = ENSInterface(ensAddress);
s_ensNode = node;
bytes32 linkSubnode = keccak256(abi.encodePacked(s_ensNode, ENS_TOKEN_SUBNAME));
ENSResolver_Chainlink resolver = ENSResolver_Chainlink(s_ens.resolver(linkSubnode));
setChainlinkToken(resolver.addr(linkSubnode));
updateChainlinkOracleWithENS();
}
/**
* @notice Sets the stored oracle contract with the address resolved by ENS
* @dev This may be called on its own as long as `useChainlinkWithENS` has been called previously
*/
function updateChainlinkOracleWithENS() internal {
bytes32 oracleSubnode = keccak256(abi.encodePacked(s_ensNode, ENS_ORACLE_SUBNAME));
ENSResolver_Chainlink resolver = ENSResolver_Chainlink(s_ens.resolver(oracleSubnode));
setChainlinkOracle(resolver.addr(oracleSubnode));
}
/**
* @notice Ensures that the fulfillment is valid for this contract
* @dev Use if the contract developer prefers methods instead of modifiers for validation
* @param requestId The request ID for fulfillment
*/
function validateChainlinkCallback(bytes32 requestId)
internal
recordChainlinkFulfillment(requestId)
// solhint-disable-next-line no-empty-blocks
{
}
/**
* @dev Reverts if the sender is not the oracle of the request.
* Emits ChainlinkFulfilled event.
* @param requestId The request ID for fulfillment
*/
modifier recordChainlinkFulfillment(bytes32 requestId) {
require(msg.sender == s_pendingRequests[requestId], "Source must be the oracle of the request");
delete s_pendingRequests[requestId];
emit ChainlinkFulfilled(requestId);
_;
}
/**
* @dev Reverts if the request is already pending
* @param requestId The request ID for fulfillment
*/
modifier notPendingRequest(bytes32 requestId) {
require(s_pendingRequests[requestId] == address(0), "Request is already pending");
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ChainlinkRequestInterface {
function oracleRequest(
address sender,
uint256 requestPrice,
bytes32 serviceAgreementID,
address callbackAddress,
bytes4 callbackFunctionId,
uint256 nonce,
uint256 dataVersion,
bytes calldata data
) external;
function cancelOracleRequest(
bytes32 requestId,
uint256 payment,
bytes4 callbackFunctionId,
uint256 expiration
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ENSInterface {
// Logged when the owner of a node assigns a new owner to a subnode.
event NewOwner(bytes32 indexed node, bytes32 indexed label, address owner);
// Logged when the owner of a node transfers ownership to a new account.
event Transfer(bytes32 indexed node, address owner);
// Logged when the resolver for a node changes.
event NewResolver(bytes32 indexed node, address resolver);
// Logged when the TTL of a node changes
event NewTTL(bytes32 indexed node, uint64 ttl);
function setSubnodeOwner(
bytes32 node,
bytes32 label,
address owner
) external;
function setResolver(bytes32 node, address resolver) external;
function setOwner(bytes32 node, address owner) external;
function setTTL(bytes32 node, uint64 ttl) external;
function owner(bytes32 node) external view returns (address);
function resolver(bytes32 node) external view returns (address);
function ttl(bytes32 node) external view returns (uint64);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
abstract contract ENSResolver {
function addr(bytes32 node) public view virtual returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions,
IUniswapV3PoolOwnerActions,
IUniswapV3PoolErrors,
IUniswapV3PoolEvents
{
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
error LOK();
error TLU();
error TLM();
error TUM();
error AI();
error M0();
error M1();
error AS();
error IIA();
error L();
error F0();
error F1();
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// @return observationIndex The index of the last oracle observation that was written,
/// @return observationCardinality The current maximum number of observations stored in the pool,
/// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// @return feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
/// @return The liquidity at the current price of the pool
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper
/// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
/// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
/// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return liquidity The amount of liquidity in the position,
/// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// @return initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface LinkTokenInterface {
function allowance(address owner, address spender) external view returns (uint256 remaining);
function approve(address spender, uint256 value) external returns (bool success);
function balanceOf(address owner) external view returns (uint256 balance);
function decimals() external view returns (uint8 decimalPlaces);
function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
function increaseApproval(address spender, uint256 subtractedValue) external;
function name() external view returns (string memory tokenName);
function symbol() external view returns (string memory tokenSymbol);
function totalSupply() external view returns (uint256 totalTokensIssued);
function transfer(address to, uint256 value) external returns (bool success);
function transferAndCall(
address to,
uint256 value,
bytes calldata data
) external returns (bool success);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool success);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./OracleInterface.sol";
import "./ChainlinkRequestInterface.sol";
interface OperatorInterface is OracleInterface, ChainlinkRequestInterface {
function operatorRequest(
address sender,
uint256 payment,
bytes32 specId,
bytes4 callbackFunctionId,
uint256 nonce,
uint256 dataVersion,
bytes calldata data
) external;
function fulfillOracleRequest2(
bytes32 requestId,
uint256 payment,
address callbackAddress,
bytes4 callbackFunctionId,
uint256 expiration,
bytes calldata data
) external returns (bool);
function ownerTransferAndCall(
address to,
uint256 value,
bytes calldata data
) external returns (bool success);
function distributeFunds(address payable[] calldata receivers, uint256[] calldata amounts) external payable;
function getAuthorizedSenders() external returns (address[] memory);
function setAuthorizedSenders(address[] calldata senders) external;
function getForwarder() external returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface OracleInterface {
function fulfillOracleRequest(
bytes32 requestId,
uint256 payment,
address callbackAddress,
bytes4 callbackFunctionId,
uint256 expiration,
bytes32 data
) external returns (bool);
function isAuthorizedSender(address node) external view returns (bool);
function withdraw(address recipient, uint256 amount) external;
function withdrawable() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface PointerInterface {
function getAddress() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
error T();
error R();
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
unchecked {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
if (absTick > uint256(int256(MAX_TICK))) revert T();
uint256 ratio = absTick & 0x1 != 0
? 0xfffcb933bd6fad37aa2d162d1a594001
: 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
unchecked {
// second inequality must be < because the price can never reach the price at the max tick
if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
}
{
"compilationTarget": {
"/contracts/v6.3/GNSPriceAggregatorV6_3.sol": "GNSPriceAggregatorV6_3"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_linkToken","type":"address"},{"internalType":"contract IUniswapV3Pool","name":"_tokenDaiLp","type":"address"},{"internalType":"uint32","name":"_twapInterval","type":"uint32"},{"internalType":"contract StorageInterfaceV5","name":"_storageT","type":"address"},{"internalType":"contract PairsStorageInterfaceV6","name":"_pairsStorage","type":"address"},{"internalType":"contract ChainlinkFeedInterfaceV5","name":"_linkPriceFeed","type":"address"},{"internalType":"uint256","name":"_minAnswers","type":"uint256"},{"internalType":"address[]","name":"_nodes","type":"address[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"T","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"id","type":"bytes32"}],"name":"ChainlinkCancelled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"id","type":"bytes32"}],"name":"ChainlinkFulfilled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"id","type":"bytes32"}],"name":"ChainlinkRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"value","type":"address"}],"name":"LinkPriceFeedUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"MinAnswersUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"},{"indexed":false,"internalType":"address","name":"value","type":"address"}],"name":"NodeAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"},{"indexed":false,"internalType":"address","name":"oldNode","type":"address"}],"name":"NodeRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"},{"indexed":false,"internalType":"address","name":"oldNode","type":"address"},{"indexed":false,"internalType":"address","name":"newNode","type":"address"}],"name":"NodeReplaced","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"value","type":"address"}],"name":"PairsStorageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"request","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"orderId","type":"uint256"},{"indexed":true,"internalType":"address","name":"node","type":"address"},{"indexed":true,"internalType":"uint256","name":"pairIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"referencePrice","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"linkFee","type":"uint256"}],"name":"PriceReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"orderId","type":"uint256"},{"indexed":true,"internalType":"bytes32","name":"job","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"pairIndex","type":"uint256"},{"indexed":false,"internalType":"enum GNSPriceAggregatorV6_3.OrderType","name":"orderType","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"nodesCount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"linkFeePerNode","type":"uint256"}],"name":"PriceRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"newValue","type":"uint32"}],"name":"TwapIntervalUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IUniswapV3Pool","name":"newValue","type":"address"}],"name":"UniV3PoolUpdated","type":"event"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"addNode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimBackLink","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"requestId","type":"bytes32"},{"internalType":"uint256","name":"price","type":"uint256"}],"name":"fulfill","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"pairIndex","type":"uint256"},{"internalType":"enum GNSPriceAggregatorV6_3.OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"leveragedPosDai","type":"uint256"}],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isGnsToken0InLp","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"pairIndex","type":"uint256"},{"internalType":"uint256","name":"leveragedPosDai","type":"uint256"}],"name":"linkFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"linkPriceFeed","outputs":[{"internalType":"contract ChainlinkFeedInterfaceV5","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minAnswers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"nodes","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"pairIndex","type":"uint256"}],"name":"openFeeP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"orderIdByRequest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"orders","outputs":[{"internalType":"uint256","name":"pairIndex","type":"uint256"},{"internalType":"enum GNSPriceAggregatorV6_3.OrderType","name":"orderType","type":"uint8"},{"internalType":"uint256","name":"linkFeePerNode","type":"uint256"},{"internalType":"bool","name":"initiated","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"ordersAnswers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pairsStorage","outputs":[{"internalType":"contract PairsStorageInterfaceV6","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"pendingSlOrders","outputs":[{"internalType":"address","name":"trader","type":"address"},{"internalType":"uint256","name":"pairIndex","type":"uint256"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"openPrice","type":"uint256"},{"internalType":"bool","name":"buy","type":"bool"},{"internalType":"uint256","name":"newSl","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"removeNode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"address","name":"a","type":"address"}],"name":"replaceNode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"storageT","outputs":[{"internalType":"contract StorageInterfaceV5","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"orderId","type":"uint256"},{"components":[{"internalType":"address","name":"trader","type":"address"},{"internalType":"uint256","name":"pairIndex","type":"uint256"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"openPrice","type":"uint256"},{"internalType":"bool","name":"buy","type":"bool"},{"internalType":"uint256","name":"newSl","type":"uint256"}],"internalType":"struct GNSPriceAggregatorV6_3.PendingSl","name":"p","type":"tuple"}],"name":"storePendingSlOrder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPriceDai","outputs":[{"internalType":"uint256","name":"price","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"twapInterval","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"uniV3Pool","outputs":[{"internalType":"contract IUniswapV3Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"orderId","type":"uint256"}],"name":"unregisterPendingSlOrder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ChainlinkFeedInterfaceV5","name":"value","type":"address"}],"name":"updateLinkPriceFeed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"updateMinAnswers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract PairsStorageInterfaceV6","name":"value","type":"address"}],"name":"updatePairsStorage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"_twapInterval","type":"uint32"}],"name":"updateTwapInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IUniswapV3Pool","name":"_uniV3Pool","type":"address"}],"name":"updateUniV3Pool","outputs":[],"stateMutability":"nonpayable","type":"function"}]