// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/CommonEventsAndErrors.sol)
/// @notice A collection of common events and errors thrown within the Origami contracts
library CommonEventsAndErrors {
error InsufficientBalance(address token, uint256 required, uint256 balance);
error InvalidToken(address token);
error InvalidParam();
error InvalidAddress(address addr);
error InvalidAmount(address token, uint256 amount);
error ExpectedNonZero();
error Slippage(uint256 minAmountExpected, uint256 actualAmount);
error IsPaused();
error UnknownExecuteError(bytes returndata);
error InvalidAccess();
error BreachedMaxTotalSupply(uint256 totalSupply, uint256 maxTotalSupply);
event TokenRecovered(address indexed to, address indexed token, uint256 amount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/DynamicFees.sol)
import { IOrigamiOracle } from "contracts/interfaces/common/oracle/IOrigamiOracle.sol";
import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
/**
* @notice A helper to calculate dynamic entry and exit fees based off the difference
* between an oracle historic vs spot price
*/
library DynamicFees {
using OrigamiMath for uint256;
enum FeeType {
DEPOSIT_FEE,
EXIT_FEE
}
/**
* @notice The current deposit or exit fee based on market conditions.
* Fees are applied to the portion of lovToken shares the depositor
* would have received. Instead that fee portion isn't minted (benefiting remaining users)
* Ignoring the minFeeBps, deposit vs exit fees are symmetric:
* - A 0.004 cent increase in price (away from expected historic) should result a deposit fee of X bps
* - A 0.004 cent decrease in price (away from expected historic) should result an exit fee, also of X bps
* ie X is the same in both cases.
* @dev feeLeverageFactor has 4dp precision
*/
function dynamicFeeBps(
FeeType feeType,
IOrigamiOracle oracle,
address expectedBaseAsset,
uint64 minFeeBps,
uint256 feeLeverageFactor
) internal view returns (uint256) {
// Pull the spot and expected historic price from the oracle.
// Round up for both to be consistent no matter if the oracle is in expected quoted order or not.
(uint256 _spotPrice, uint256 _histPrice, address _baseAsset, address _quoteAsset) = oracle.latestPrices(
IOrigamiOracle.PriceType.SPOT_PRICE,
OrigamiMath.Rounding.ROUND_UP,
IOrigamiOracle.PriceType.HISTORIC_PRICE,
OrigamiMath.Rounding.ROUND_UP
);
// Whether the expected 'base' asset of the oracle is indeed the base asset.
// If not, then the delta and denominator is switched
bool _inQuotedOrder;
if (_baseAsset == expectedBaseAsset) {
_inQuotedOrder = true;
} else if (_quoteAsset != expectedBaseAsset) {
revert CommonEventsAndErrors.InvalidToken(expectedBaseAsset);
}
uint256 _delta;
uint256 _denominator;
if (feeType == FeeType.DEPOSIT_FEE) {
// If spot price is > than the expected historic, then they are exiting
// at a price better than expected. The exit fee is based off the relative
// difference of the expected spotPrice - historicPrice.
// Or opposite if the oracle order is inverted
unchecked {
if (_inQuotedOrder) {
if (_spotPrice < _histPrice) {
(_delta, _denominator) = (_histPrice - _spotPrice, _histPrice);
}
} else {
if (_spotPrice > _histPrice) {
(_delta, _denominator) = (_spotPrice - _histPrice, _spotPrice);
}
}
}
} else {
// If spot price is > than the expected historic, then they are exiting
// at a price better than expected. The exit fee is based off the relative
// difference of the expected spotPrice - historicPrice.
// Or opposite if the oracle order is inverted
unchecked {
if (_inQuotedOrder) {
if (_spotPrice > _histPrice) {
(_delta, _denominator) = (_spotPrice - _histPrice, _histPrice);
}
} else {
if (_spotPrice < _histPrice) {
(_delta, _denominator) = (_histPrice - _spotPrice, _spotPrice);
}
}
}
}
// If no delta, just return the min fee
if (_delta == 0) {
return minFeeBps;
}
// Relative diff multiply by a leverage factor to match the worst case lovToken
// effective exposure
// Result is in basis points, since `feeLeverageFactor` has 4dp precision
uint256 _fee = _delta.mulDiv(
feeLeverageFactor,
_denominator,
OrigamiMath.Rounding.ROUND_UP
);
// Use the maximum of the calculated fee and a pre-set minimum.
return minFeeBps > _fee ? minFeeBps : _fee;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.0;
import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
* However, to ensure consistency with the upgradeable transpiler, we will continue
* to reserve a slot.
* @custom:oz-renamed-from _PERMIT_TYPEHASH
*/
// solhint-disable-next-line var-name-mixedcase
bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @dev See {IERC20Permit-permit}.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
/**
* @dev See {IERC20Permit-nonces}.
*/
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
/**
* @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev "Consume a nonce": return the current value and increment.
*
* _Available since v4.1._
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/IMintableToken.sol)
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
/// @notice An ERC20 token which can be minted/burnt by approved accounts
interface IMintableToken is IERC20, IERC20Permit {
function mint(address to, uint256 amount) external;
function burn(address account, uint256 amount) external;
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/access/IOrigamiElevatedAccess.sol)
/**
* @notice Inherit to add Owner roles for DAO elevated access.
*/
interface IOrigamiElevatedAccess {
event ExplicitAccessSet(address indexed account, bytes4 indexed fnSelector, bool indexed value);
event NewOwnerProposed(address indexed oldOwner, address indexed oldProposedOwner, address indexed newProposedOwner);
event NewOwnerAccepted(address indexed oldOwner, address indexed newOwner);
struct ExplicitAccess {
bytes4 fnSelector;
bool allowed;
}
/**
* @notice The address of the current owner.
*/
function owner() external view returns (address);
/**
* @notice Explicit approval for an address to execute a function.
* allowedCaller => function selector => true/false
*/
function explicitFunctionAccess(address contractAddr, bytes4 functionSelector) external view returns (bool);
/**
* @notice Revoke ownership. Be very certain before calling this, as no
* further elevated access can be called.
*/
function revokeOwnership() external;
/**
* @notice Proposes a new Owner.
* Can only be called by the current owner
*/
function proposeNewOwner(address account) external;
/**
* @notice Caller accepts the role as new Owner.
* Can only be called by the proposed owner
*/
function acceptOwner() external;
/**
* @notice Grant `allowedCaller` the rights to call the function selectors in the access list.
* @dev fnSelector == bytes4(keccak256("fn(argType1,argType2,...)"))
*/
function setExplicitAccess(address allowedCaller, ExplicitAccess[] calldata access) external;
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/IOrigamiInvestment.sol)
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
/**
* @title Origami Investment
* @notice Users invest in the underlying protocol and receive a number of this Origami investment in return.
* Origami will apply the accepted investment token into the underlying protocol in the most optimal way.
*/
interface IOrigamiInvestment is IERC20Metadata, IERC20Permit {
event TokenPricesSet(address indexed _tokenPrices);
event ManagerSet(address indexed manager);
event PerformanceFeeSet(uint256 fee);
/**
* @notice Track the depoyed version of this contract.
*/
function apiVersion() external pure returns (string memory);
/**
* @notice The underlying token this investment wraps.
* @dev For informational purposes only, eg integrations/FE
* If the investment wraps a protocol without an ERC20 (eg a non-liquid staked position)
* then this may be 0x0
*/
function baseToken() external view returns (address);
/**
* @notice Emitted when a user makes a new investment
* @param user The user who made the investment
* @param fromTokenAmount The number of `fromToken` used to invest
* @param fromToken The token used to invest, one of `acceptedInvestTokens()`
* @param investmentAmount The number of investment tokens received, after fees
**/
event Invested(address indexed user, uint256 fromTokenAmount, address indexed fromToken, uint256 investmentAmount);
/**
* @notice Emitted when a user exists a position in an investment
* @param user The user who exited the investment
* @param investmentAmount The number of Origami investment tokens sold
* @param toToken The token the user exited into
* @param toTokenAmount The number of `toToken` received, after fees
* @param recipient The receipient address of the `toToken`s
**/
event Exited(address indexed user, uint256 investmentAmount, address indexed toToken, uint256 toTokenAmount, address indexed recipient);
/// @notice Errors for unsupported functions - for example if native chain ETH/AVAX/etc isn't a vaild investment
error Unsupported();
/**
* @notice The set of accepted tokens which can be used to invest.
* If the native chain ETH/AVAX is accepted, 0x0 will also be included in this list.
*/
function acceptedInvestTokens() external view returns (address[] memory);
/**
* @notice The set of accepted tokens which can be used to exit into.
* If the native chain ETH/AVAX is accepted, 0x0 will also be included in this list.
*/
function acceptedExitTokens() external view returns (address[] memory);
/**
* @notice Whether new investments are paused.
*/
function areInvestmentsPaused() external view returns (bool);
/**
* @notice Whether exits are temporarily paused.
*/
function areExitsPaused() external view returns (bool);
/**
* @notice Quote data required when entering into this investment.
*/
struct InvestQuoteData {
/// @notice The token used to invest, which must be one of `acceptedInvestTokens()`
address fromToken;
/// @notice The quantity of `fromToken` to invest with
uint256 fromTokenAmount;
/// @notice The maximum acceptable slippage of the `expectedInvestmentAmount`
uint256 maxSlippageBps;
/// @notice The maximum deadline to execute the transaction.
uint256 deadline;
/// @notice The expected amount of this Origami Investment token to receive in return
uint256 expectedInvestmentAmount;
/// @notice The minimum amount of this Origami Investment Token to receive after
/// slippage has been applied.
uint256 minInvestmentAmount;
/// @notice Any extra quote parameters required by the underlying investment
bytes underlyingInvestmentQuoteData;
}
/**
* @notice Quote data required when exoomg this investment.
*/
struct ExitQuoteData {
/// @notice The amount of this investment to sell
uint256 investmentTokenAmount;
/// @notice The token to sell into, which must be one of `acceptedExitTokens()`
address toToken;
/// @notice The maximum acceptable slippage of the `expectedToTokenAmount`
uint256 maxSlippageBps;
/// @notice The maximum deadline to execute the transaction.
uint256 deadline;
/// @notice The expected amount of `toToken` to receive in return
/// @dev Note slippage is applied to this when calling `invest()`
uint256 expectedToTokenAmount;
/// @notice The minimum amount of `toToken` to receive after
/// slippage has been applied.
uint256 minToTokenAmount;
/// @notice Any extra quote parameters required by the underlying investment
bytes underlyingInvestmentQuoteData;
}
/**
* @notice Get a quote to buy this Origami investment using one of the accepted tokens.
* @dev The 0x0 address can be used for native chain ETH/AVAX
* @param fromTokenAmount How much of `fromToken` to invest with
* @param fromToken What ERC20 token to purchase with. This must be one of `acceptedInvestTokens`
* @param maxSlippageBps The maximum acceptable slippage of the received investment amount
* @param deadline The maximum deadline to execute the exit.
* @return quoteData The quote data, including any params required for the underlying investment type.
* @return investFeeBps Any fees expected when investing with the given token, either from Origami or from the underlying investment.
*/
function investQuote(
uint256 fromTokenAmount,
address fromToken,
uint256 maxSlippageBps,
uint256 deadline
) external view returns (
InvestQuoteData memory quoteData,
uint256[] memory investFeeBps
);
/**
* @notice User buys this Origami investment with an amount of one of the approved ERC20 tokens.
* @param quoteData The quote data received from investQuote()
* @return investmentAmount The actual number of this Origami investment tokens received.
*/
function investWithToken(
InvestQuoteData calldata quoteData
) external returns (
uint256 investmentAmount
);
/**
* @notice User buys this Origami investment with an amount of native chain token (ETH/AVAX)
* @param quoteData The quote data received from investQuote()
* @return investmentAmount The actual number of this Origami investment tokens received.
*/
function investWithNative(
InvestQuoteData calldata quoteData
) external payable returns (
uint256 investmentAmount
);
/**
* @notice Get a quote to sell this Origami investment to receive one of the accepted tokens.
* @dev The 0x0 address can be used for native chain ETH/AVAX
* @param investmentAmount The number of Origami investment tokens to sell
* @param toToken The token to receive when selling. This must be one of `acceptedExitTokens`
* @param maxSlippageBps The maximum acceptable slippage of the received `toToken`
* @param deadline The maximum deadline to execute the exit.
* @return quoteData The quote data, including any params required for the underlying investment type.
* @return exitFeeBps Any fees expected when exiting the investment to the nominated token, either from Origami or from the underlying investment.
*/
function exitQuote(
uint256 investmentAmount,
address toToken,
uint256 maxSlippageBps,
uint256 deadline
) external view returns (
ExitQuoteData memory quoteData,
uint256[] memory exitFeeBps
);
/**
* @notice Sell this Origami investment to receive one of the accepted tokens.
* @param quoteData The quote data received from exitQuote()
* @param recipient The receiving address of the `toToken`
* @return toTokenAmount The number of `toToken` tokens received upon selling the Origami investment tokens.
*/
function exitToToken(
ExitQuoteData calldata quoteData,
address recipient
) external returns (
uint256 toTokenAmount
);
/**
* @notice Sell this Origami investment to native ETH/AVAX.
* @param quoteData The quote data received from exitQuote()
* @param recipient The receiving address of the native chain token.
* @return nativeAmount The number of native chain ETH/AVAX/etc tokens received upon selling the Origami investment tokens.
*/
function exitToNative(
ExitQuoteData calldata quoteData,
address payable recipient
) external returns (
uint256 nativeAmount
);
/**
* @notice The maximum amount of fromToken's that can be deposited
* taking any other underlying protocol constraints into consideration
*/
function maxInvest(address fromToken) external view returns (uint256 amount);
/**
* @notice The maximum amount of tokens that can be exited into the toToken
* taking any other underlying protocol constraints into consideration
*/
function maxExit(address toToken) external view returns (uint256 amount);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/lovToken/IOrigamiLovToken.sol)
import { IOrigamiOTokenManager } from "contracts/interfaces/investments/IOrigamiOTokenManager.sol";
import { IOrigamiInvestment } from "contracts/interfaces/investments/IOrigamiInvestment.sol";
import { ITokenPrices } from "contracts/interfaces/common/ITokenPrices.sol";
/**
* @title Origami lovToken
*
* @notice Users deposit with an accepted token and are minted lovTokens
* Origami will rebalance to lever up on the underlying reserve token, targetting a
* specific A/L (assets / liabilities) range
*
* @dev The logic on how to handle the specific deposits/exits for each lovToken is delegated
* to a manager contract
*/
interface IOrigamiLovToken is IOrigamiInvestment {
event PerformanceFeesCollected(address indexed feeCollector, uint256 mintAmount);
event FeeCollectorSet(address indexed feeCollector);
event MaxTotalSupplySet(uint256 maxTotalSupply);
/**
* @notice The token used to track reserves for this investment
*/
function reserveToken() external view returns (address);
/**
* @notice The Origami contract managing the deposits/exits and the application of
* the deposit tokens into the underlying protocol
*/
function manager() external view returns (IOrigamiOTokenManager);
/**
* @notice Set the Origami lovToken Manager.
*/
function setManager(address _manager) external;
/**
* @notice Set the vault performance fee
* @dev Represented in basis points
*/
function setAnnualPerformanceFee(uint48 _annualPerformanceFeeBps) external;
/**
* @notice Set the max total supply allowed for investments into this lovToken
*/
function setMaxTotalSupply(uint256 _maxTotalSupply) external;
/**
* @notice Set the Origami performance fee collector address
*/
function setFeeCollector(address _feeCollector) external;
/**
* @notice Set the helper to calculate current off-chain/subgraph integration
*/
function setTokenPrices(address _tokenPrices) external;
/**
* @notice Collect the performance fees to the Origami Treasury
*/
function collectPerformanceFees() external returns (uint256 amount);
/**
* @notice How many reserve tokens would one get given a number of lovToken shares
* @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
*/
function sharesToReserves(uint256 shares) external view returns (uint256);
/**
* @notice How many lovToken shares would one get given a number of reserve tokens
* @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
*/
function reservesToShares(uint256 reserves) external view returns (uint256);
/**
* @notice How many reserve tokens would one get given a single share, as of now
* @dev Implementations must use the Oracle 'HISTORIC_PRICE' to value any debt in terms of the reserve token
*/
function reservesPerShare() external view returns (uint256);
/**
* @notice The current amount of available reserves for redemptions
* @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
*/
function totalReserves() external view returns (uint256);
/**
* @notice The maximum allowed supply of this token for user investments
* @dev The actual totalSupply() may be greater than `maxTotalSupply`
* in order to start organically shrinking supply or from performance fees
*/
function maxTotalSupply() external view returns (uint256);
/**
* @notice Retrieve the current assets, liabilities and calculate the ratio
* @dev Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
*/
function assetsAndLiabilities() external view returns (
uint256 assets,
uint256 liabilities,
uint256 ratio
);
/**
* @notice The current effective exposure (EE) of this lovToken
* to `PRECISION` precision
* @dev = reserves / (reserves - liabilities)
* Implementations must use the Oracle 'SPOT_PRICE' to value any debt in terms of the reserve token
*/
function effectiveExposure() external view returns (uint128);
/**
* @notice The valid lower and upper bounds of A/L allowed when users deposit/exit into lovToken
* @dev Transactions will revert if the resulting A/L is outside of this range
*/
function userALRange() external view returns (uint128 floor, uint128 ceiling);
/**
* @notice The current deposit and exit fee based on market conditions.
* Fees are the equivalent of burning lovToken shares - benefit remaining vault users
* @dev represented in basis points
*/
function getDynamicFeesBps() external view returns (uint256 depositFeeBps, uint256 exitFeeBps);
/**
* @notice The address used to collect the Origami performance fees.
*/
function feeCollector() external view returns (address);
/**
* @notice The annual performance fee to Origami treasury
* Represented in basis points
*/
function annualPerformanceFeeBps() external view returns (uint48);
/**
* @notice The last time the performance fee was collected
*/
function lastPerformanceFeeTime() external view returns (uint48);
/**
* @notice The helper contract to retrieve Origami USD prices
* @dev Required for off-chain/subgraph integration
*/
function tokenPrices() external view returns (ITokenPrices);
/**
* @notice The performance fee amount which would be collected as of now,
* based on the total supply
*/
function accruedPerformanceFee() external view returns (uint256);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/lovToken/managers/IOrigamiLovTokenManager.sol)
import { IOrigamiOTokenManager } from "contracts/interfaces/investments/IOrigamiOTokenManager.sol";
import { IWhitelisted } from "contracts/interfaces/common/access/IWhitelisted.sol";
import { IOrigamiOracle } from "contracts/interfaces/common/oracle/IOrigamiOracle.sol";
import { IOrigamiLovToken } from "contracts/interfaces/investments/lovToken/IOrigamiLovToken.sol";
/**
* @title Origami lovToken Manager
* @notice The delegated logic to handle deposits/exits, and borrow/repay (rebalances) into the underlying reserve token
*/
interface IOrigamiLovTokenManager is IOrigamiOTokenManager, IWhitelisted {
event FeeConfigSet(uint16 maxExitFeeBps, uint16 minExitFeeBps, uint24 feeLeverageFactor);
event UserALRangeSet(uint128 floor, uint128 ceiling);
event RebalanceALRangeSet(uint128 floor, uint128 ceiling);
event Rebalance(
/// @dev positive when Origami supplies the `reserveToken` as new collateral, negative when Origami withdraws collateral
/// Represented in the units of the `reserveToken` of this lovToken
int256 collateralChange,
/// @dev positive when Origami borrows new debt, negative when Origami repays debt
/// Represented in the units of the `debtToken` of this lovToken
int256 debtChange,
/// @dev The Assets/Liabilities ratio before the rebalance
uint256 alRatioBefore,
/// @dev The Assets/Liabilities ratio after the rebalance
uint256 alRatioAfter
);
error ALTooLow(uint128 ratioBefore, uint128 ratioAfter, uint128 minRatio);
error ALTooHigh(uint128 ratioBefore, uint128 ratioAfter, uint128 maxRatio);
error NoAvailableReserves();
/**
* @notice Set the minimum fee (in basis points) of lovToken's for deposit and exit,
* and also the nominal leverage factor applied within the fee calculations
* @dev feeLeverageFactor has 4dp precision
*/
function setFeeConfig(uint16 _minDepositFeeBps, uint16 _minExitFeeBps, uint24 _feeLeverageFactor) external;
/**
* @notice Set the valid lower and upper bounds of A/L when users deposit/exit into lovToken
*/
function setUserALRange(uint128 floor, uint128 ceiling) external;
/**
* @notice Set the valid range for when a rebalance is not required.
*/
function setRebalanceALRange(uint128 floor, uint128 ceiling) external;
/**
* @notice lovToken contract - eg lovDSR
*/
function lovToken() external view returns (IOrigamiLovToken);
/**
* @notice The min deposit/exit fee and feeLeverageFactor configuration
* @dev feeLeverageFactor has 4dp precision
*/
function getFeeConfig() external view returns (uint64 minDepositFeeBps, uint64 minExitFeeBps, uint64 feeLeverageFactor);
/**
* @notice The current deposit and exit fee based on market conditions.
* Fees are the equivalent of burning lovToken shares - benefit remaining vault users
* @dev represented in basis points
*/
function getDynamicFeesBps() external view returns (uint256 depositFeeBps, uint256 exitFeeBps);
/**
* @notice The valid lower and upper bounds of A/L allowed when users deposit/exit into lovToken
* @dev Transactions will revert if the resulting A/L is outside of this range
*/
function userALRange() external view returns (uint128 floor, uint128 ceiling);
/**
* @notice The valid range for when a rebalance is not required.
* When a rebalance occurs, the transaction will revert if the resulting A/L is outside of this range.
*/
function rebalanceALRange() external view returns (uint128 floor, uint128 ceiling);
/**
* @notice The common precision used
*/
function PRECISION() external view returns (uint256);
/**
* @notice The reserveToken that the lovToken levers up on
*/
function reserveToken() external view returns (address);
/**
* @notice The token which lovToken borrows to increase the A/L ratio
*/
function debtToken() external view returns (address);
/**
* @notice The total balance of reserve tokens this lovToken holds, and also if deployed as collateral
* in other platforms
*/
function reservesBalance() external view returns (uint256);
/**
* @notice The debt of the lovToken from the borrower, converted into the reserveToken
* @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
*/
function liabilities(IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);
/**
* @notice The current asset/liability (A/L) of this lovToken
* to `PRECISION` precision
* @dev = reserves / liabilities
*/
function assetToLiabilityRatio() external view returns (uint128);
/**
* @notice Retrieve the current assets, liabilities and calculate the ratio
* @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
*/
function assetsAndLiabilities(IOrigamiOracle.PriceType debtPriceType) external view returns (
uint256 assets,
uint256 liabilities,
uint256 ratio
);
/**
* @notice The current effective exposure (EE) of this lovToken
* to `PRECISION` precision
* @dev = reserves / (reserves - liabilities)
* Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
*/
function effectiveExposure(IOrigamiOracle.PriceType debtPriceType) external view returns (uint128);
/**
* @notice The amount of reserves that users may redeem their lovTokens as of this block
* @dev = reserves - liabilities
* Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
*/
function userRedeemableReserves(IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);
/**
* @notice How many reserve tokens would one get given a number of lovToken shares
* @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
*/
function sharesToReserves(uint256 shares, IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);
/**
* @notice How many lovToken shares would one get given a number of reserve tokens
* @dev Use the Oracle `debtPriceType` to value any debt in terms of the reserve token
*/
function reservesToShares(uint256 reserves, IOrigamiOracle.PriceType debtPriceType) external view returns (uint256);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/util/IOrigamiManagerPausable.sol)
/**
* @title A mixin to add pause/unpause for Origami manager contracts
*/
interface IOrigamiManagerPausable {
struct Paused {
bool investmentsPaused;
bool exitsPaused;
}
event PauserSet(address indexed account, bool canPause);
event PausedSet(Paused paused);
/// @notice A set of accounts which are allowed to pause deposits/withdrawals immediately
/// under emergency
function pausers(address) external view returns (bool);
/// @notice Pause/unpause deposits or withdrawals
/// @dev Can only be called by allowed pausers or governance.
function setPaused(Paused memory updatedPaused) external;
/// @notice Allow/Deny an account to pause/unpause deposits or withdrawals
function setPauser(address account, bool canPause) external;
/// @notice Check if given account can pause investments/exits
function isPauser(address account) external view returns (bool canPause);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/investments/IOrigamiOTokenManager.sol)
import { IOrigamiInvestment } from "contracts/interfaces/investments/IOrigamiInvestment.sol";
import { IOrigamiManagerPausable } from "contracts/interfaces/investments/util/IOrigamiManagerPausable.sol";
import { DynamicFees } from "contracts/libraries/DynamicFees.sol";
/**
* @title Origami oToken Manager (no native ETH/AVAX/etc)
* @notice The delegated logic to handle deposits/exits into an oToken, and allocating the deposit tokens
* into the underlying protocol
*/
interface IOrigamiOTokenManager is IOrigamiManagerPausable {
event InKindFees(DynamicFees.FeeType feeType, uint256 feeBps, uint256 feeAmount);
/**
* @notice The underlying token this investment wraps.
* @dev For informational purposes only, eg integrations/FE
*/
function baseToken() external view returns (address);
/**
* @notice The set of accepted tokens which can be used to invest.
*/
function acceptedInvestTokens() external view returns (address[] memory);
/**
* @notice The set of accepted tokens which can be used to exit into.
*/
function acceptedExitTokens() external view returns (address[] memory);
/**
* @notice Whether new investments are paused.
*/
function areInvestmentsPaused() external view returns (bool);
/**
* @notice Whether exits are temporarily paused.
*/
function areExitsPaused() external view returns (bool);
/**
* @notice Get a quote to buy this oToken using one of the accepted tokens.
* @param fromTokenAmount How much of `fromToken` to invest with
* @param fromToken What ERC20 token to purchase with. This must be one of `acceptedInvestTokens`
* @param maxSlippageBps The maximum acceptable slippage of the received investment amount
* @param deadline The maximum deadline to execute the exit.
* @return quoteData The quote data, including any params required for the underlying investment type.
* @return investFeeBps Any fees expected when investing with the given token, either from Origami or from the underlying investment.
*/
function investQuote(
uint256 fromTokenAmount,
address fromToken,
uint256 maxSlippageBps,
uint256 deadline
) external view returns (
IOrigamiInvestment.InvestQuoteData memory quoteData,
uint256[] memory investFeeBps
);
/**
* @notice User buys this Origami investment with an amount of one of the approved ERC20 tokens.
* @param account The account to deposit on behalf of
* @param quoteData The quote data received from investQuote()
* @return investmentAmount The actual number of this Origami investment tokens received.
*/
function investWithToken(
address account,
IOrigamiInvestment.InvestQuoteData calldata quoteData
) external returns (
uint256 investmentAmount
);
/**
* @notice Get a quote to sell this oToken to receive one of the accepted tokens.
* @param investmentAmount The number of oTokens to sell
* @param toToken The token to receive when selling. This must be one of `acceptedExitTokens`
* @param maxSlippageBps The maximum acceptable slippage of the received `toToken`
* @param deadline The maximum deadline to execute the exit.
* @return quoteData The quote data, including any params required for the underlying investment type.
* @return exitFeeBps Any fees expected when exiting the investment to the nominated token, either from Origami or from the underlying protocol.
*/
function exitQuote(
uint256 investmentAmount,
address toToken,
uint256 maxSlippageBps,
uint256 deadline
) external view returns (
IOrigamiInvestment.ExitQuoteData memory quoteData,
uint256[] memory exitFeeBps
);
/**
* @notice Sell this oToken to receive one of the accepted tokens.
* @param account The account to exit on behalf of
* @param quoteData The quote data received from exitQuote()
* @param recipient The receiving address of the `toToken`
* @return toTokenAmount The number of `toToken` tokens received upon selling the oToken
* @return toBurnAmount The number of oToken to be burnt after exiting this position
*/
function exitToToken(
address account,
IOrigamiInvestment.ExitQuoteData calldata quoteData,
address recipient
) external returns (uint256 toTokenAmount, uint256 toBurnAmount);
/**
* @notice The maximum amount of fromToken's that can be deposited
* taking any other underlying protocol constraints into consideration
*/
function maxInvest(address fromToken) external view returns (uint256 amount);
/**
* @notice The maximum amount of tokens that can be exited into the toToken
* taking any other underlying protocol constraints into consideration
*/
function maxExit(address toToken) external view returns (uint256 amount);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/oracle/IOrigamiOracle.sol)
import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";
/**
* @notice An oracle which returns prices for pairs of assets, where an asset
* could refer to a token (eg DAI) or a currency (eg USD)
* Convention is the same as the FX market. Given the DAI/USD pair:
* - DAI = Base Asset (LHS of pair)
* - USD = Quote Asset (RHS of pair)
* This price defines how many USD you get if selling 1 DAI
*
* Further, an oracle can define two PriceType's:
* - SPOT_PRICE: The latest spot price, for example from a chainlink oracle
* - HISTORIC_PRICE: An expected (eg 1:1 peg) or calculated historic price (eg TWAP)
*
* For assets which do are not tokens (eg USD), an internal address reference will be used
* since this is for internal purposes only
*/
interface IOrigamiOracle {
error InvalidPrice(address oracle, int256 price);
error InvalidOracleData(address oracle);
error StalePrice(address oracle, uint256 lastUpdatedAt, int256 price);
error UnknownPriceType(uint8 priceType);
error BelowMinValidRange(address oracle, uint256 price, uint128 floor);
error AboveMaxValidRange(address oracle, uint256 price, uint128 ceiling);
event ValidPriceRangeSet(uint128 validFloor, uint128 validCeiling);
enum PriceType {
/// @notice The current spot price of this Oracle
SPOT_PRICE,
/// @notice The historic price of this Oracle.
/// It may be a fixed expectation (eg DAI/USD would be fixed to 1)
/// or use a TWAP or some other moving average, etc.
HISTORIC_PRICE
}
/**
* @dev Wrapped in a struct to remove stack-too-deep constraints
*/
struct BaseOracleParams {
string description;
address baseAssetAddress;
uint8 baseAssetDecimals;
address quoteAssetAddress;
uint8 quoteAssetDecimals;
}
/**
* @notice The address used to reference the baseAsset for amount conversions
*/
function baseAsset() external view returns (address);
/**
* @notice The address used to reference the quoteAsset for amount conversions
*/
function quoteAsset() external view returns (address);
/**
* @notice The number of decimals of precision the price is returned as
*/
function decimals() external view returns (uint8);
/**
* @notice The precision that the cross rate oracle price is returned as: `10^decimals`
*/
function precision() external view returns (uint256);
/**
* @notice When converting from baseAsset<->quoteAsset, the fixed point amounts
* need to be scaled by this amount.
*/
function assetScalingFactor() external view returns (uint256);
/**
* @notice A human readable description for this oracle
*/
function description() external view returns (string memory);
/**
* @notice Return the latest oracle price, to `decimals` precision
* @dev This may still revert - eg if deemed stale, div by 0, negative price
* @param priceType What kind of price - Spot or Historic
* @param roundingMode Round the price at each intermediate step such that the final price rounds in the specified direction.
*/
function latestPrice(
PriceType priceType,
OrigamiMath.Rounding roundingMode
) external view returns (uint256 price);
/**
* @notice Same as `latestPrice()` but for two separate prices from this oracle
*/
function latestPrices(
PriceType priceType1,
OrigamiMath.Rounding roundingMode1,
PriceType priceType2,
OrigamiMath.Rounding roundingMode2
) external view returns (
uint256 price1,
uint256 price2,
address oracleBaseAsset,
address oracleQuoteAsset
);
/**
* @notice Convert either the baseAsset->quoteAsset or quoteAsset->baseAsset
* @dev The `fromAssetAmount` needs to be in it's natural fixed point precision (eg USDC=6dp)
* The `toAssetAmount` will also be returned in it's natural fixed point precision
*/
function convertAmount(
address fromAsset,
uint256 fromAssetAmount,
PriceType priceType,
OrigamiMath.Rounding roundingMode
) external view returns (uint256 toAssetAmount);
/**
* @notice Match whether a pair of assets match the base and quote asset on this oracle, in either order
*/
function matchAssets(address asset1, address asset2) external view returns (bool);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/ITokenPrices.sol)
/// @title Token Prices
/// @notice A utility contract to pull token prices from on-chain.
/// @dev composable functions (uisng encoded function calldata) to build up price formulas
interface ITokenPrices {
/// @notice How many decimals places are the token prices reported in
function decimals() external view returns (uint8);
/// @notice Retrieve the price for a given token.
/// @dev If not mapped, or an underlying error occurs, FailedPriceLookup will be thrown.
/// @dev 0x000...0 is the native chain token (ETH/AVAX/etc)
function tokenPrice(address token) external view returns (uint256 price);
/// @notice Retrieve the price for a list of tokens.
/// @dev If any aren't mapped, or an underlying error occurs, FailedPriceLookup will be thrown.
/// @dev Not particularly gas efficient - wouldn't recommend to use on-chain
function tokenPrices(address[] memory tokens) external view returns (uint256[] memory prices);
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (interfaces/common/access/Whitelisted.sol)
/**
* @title Whitelisted abstract contract
* @notice Functionality to deny non-EOA addresses unless whitelisted
*/
interface IWhitelisted {
event AllowAllSet(bool value);
event AllowAccountSet(address indexed account, bool value);
/**
* @notice Allow all (both EOAs and contracts) without whitelisting
*/
function allowAll() external view returns (bool);
/**
* @notice A mapping of whitelisted accounts (not required for EOAs)
*/
function allowedAccounts(address account) external view returns (bool allowed);
/**
* @notice Allow all callers without whitelisting
*/
function setAllowAll(bool value) external;
/**
* @notice Set whether a given account is allowed or not
*/
function setAllowAccount(address account, bool value) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/MintableToken.sol)
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { ERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IMintableToken } from "contracts/interfaces/common/IMintableToken.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
import { OrigamiElevatedAccess } from "contracts/common/access/OrigamiElevatedAccess.sol";
/// @notice An ERC20 token which can be minted/burnt by approved accounts
abstract contract MintableToken is IMintableToken, ERC20Permit, OrigamiElevatedAccess {
using SafeERC20 for IERC20;
/// @notice A set of addresses which are approved to mint/burn
mapping(address account => bool canMint) internal _minters;
event AddedMinter(address indexed account);
event RemovedMinter(address indexed account);
function isMinter(address account) external view returns (bool) {
return _minters[account];
}
error CannotMintOrBurn(address caller);
constructor(string memory _name, string memory _symbol, address _initialOwner)
ERC20(_name, _symbol)
ERC20Permit(_name)
OrigamiElevatedAccess(_initialOwner)
{}
function mint(address _to, uint256 _amount) external override {
if (!_minters[msg.sender]) revert CannotMintOrBurn(msg.sender);
_mint(_to, _amount);
}
function burn(address account, uint256 amount) external override {
if (!_minters[msg.sender]) revert CannotMintOrBurn(msg.sender);
_burn(account, amount);
}
function addMinter(address account) external onlyElevatedAccess {
_minters[account] = true;
emit AddedMinter(account);
}
function removeMinter(address account) external onlyElevatedAccess {
_minters[account] = false;
emit RemovedMinter(account);
}
/**
* @notice Recover any token -- this contract should not ordinarily hold any tokens.
* @param token Token to recover
* @param to Recipient address
* @param amount Amount to recover
*/
function recoverToken(address token, address to, uint256 amount) external virtual onlyElevatedAccess {
emit CommonEventsAndErrors.TokenRecovered(to, token, amount);
IERC20(token).safeTransfer(to, amount);
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/access/OrigamiElevatedAccessBase.sol)
import { OrigamiElevatedAccessBase } from "contracts/common/access/OrigamiElevatedAccessBase.sol";
/**
* @notice Inherit to add Owner roles for DAO elevated access.
*/
abstract contract OrigamiElevatedAccess is OrigamiElevatedAccessBase {
constructor(address initialOwner) {
_init(initialOwner);
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (common/access/OrigamiElevatedAccessBase.sol)
import { IOrigamiElevatedAccess } from "contracts/interfaces/common/access/IOrigamiElevatedAccess.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
/**
* @notice Inherit to add Owner roles for DAO elevated access.
*/
abstract contract OrigamiElevatedAccessBase is IOrigamiElevatedAccess {
/**
* @notice The address of the current owner.
*/
address public override owner;
/**
* @notice Explicit approval for an address to execute a function.
* allowedCaller => function selector => true/false
*/
mapping(address => mapping(bytes4 => bool)) public override explicitFunctionAccess;
/// @dev Track proposed owner
address private _proposedNewOwner;
/// @dev propose this as the new owner before revoking, for 2 step approval
address private constant PROPOSED_DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;
function _init(address initialOwner) internal {
if (owner != address(0)) revert CommonEventsAndErrors.InvalidAccess();
if (initialOwner == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
owner = initialOwner;
}
/**
* @notice Revoke ownership.
* @dev To enforce a two-step revoke, it must first propose to 0x000...dEaD prior to calling.
* This cannot be undone.
*/
function revokeOwnership() external override onlyElevatedAccess {
if (_proposedNewOwner != PROPOSED_DEAD_ADDRESS) revert CommonEventsAndErrors.InvalidAddress(_proposedNewOwner);
emit NewOwnerAccepted(owner, address(0));
owner = address(0);
}
/**
* @notice Proposes a new Owner.
* Can only be called by the current owner
*/
function proposeNewOwner(address account) external override onlyElevatedAccess {
if (account == address(0)) revert CommonEventsAndErrors.InvalidAddress(account);
emit NewOwnerProposed(owner, _proposedNewOwner, account);
_proposedNewOwner = account;
}
/**
* @notice Caller accepts the role as new Owner.
* Can only be called by the proposed owner
*/
function acceptOwner() external override {
if (msg.sender != _proposedNewOwner) revert CommonEventsAndErrors.InvalidAccess();
emit NewOwnerAccepted(owner, msg.sender);
owner = msg.sender;
delete _proposedNewOwner;
}
/**
* @notice Grant `allowedCaller` the rights to call the function selectors in the access list.
* @dev fnSelector == bytes4(keccak256("fn(argType1,argType2,...)"))
*/
function setExplicitAccess(address allowedCaller, ExplicitAccess[] calldata access) external override onlyElevatedAccess {
if (allowedCaller == address(0)) revert CommonEventsAndErrors.InvalidAddress(allowedCaller);
ExplicitAccess memory _access;
for (uint256 i; i < access.length; ++i) {
_access = access[i];
emit ExplicitAccessSet(allowedCaller, _access.fnSelector, _access.allowed);
explicitFunctionAccess[allowedCaller][_access.fnSelector] = _access.allowed;
}
}
function isElevatedAccess(address caller, bytes4 fnSelector) internal view returns (bool) {
return (
caller == owner ||
explicitFunctionAccess[caller][fnSelector]
);
}
/**
* @notice The owner is allowed to call, or if explicit access has been given to the caller.
* @dev Important: Only for use when called from an *external* contract.
* If a function with this modifier is called internally then the `msg.sig`
* will still refer to the top level externally called function.
*/
modifier onlyElevatedAccess() {
if (!isElevatedAccess(msg.sender, msg.sig)) revert CommonEventsAndErrors.InvalidAccess();
_;
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (investments/OrigamiInvestment.sol)
import { IOrigamiInvestment } from "contracts/interfaces/investments/IOrigamiInvestment.sol";
import { MintableToken } from "contracts/common/MintableToken.sol";
import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
/**
* @title Origami Investment
* @notice Users invest in the underlying protocol and receive a number of this Origami investment in return.
* Origami will apply the accepted investment token into the underlying protocol in the most optimal way.
*/
abstract contract OrigamiInvestment is IOrigamiInvestment, MintableToken, ReentrancyGuard {
string public constant API_VERSION = "0.2.0";
/**
* @notice Track the depoyed version of this contract.
*/
function apiVersion() external override pure returns (string memory) {
return API_VERSION;
}
constructor(
string memory _name,
string memory _symbol,
address _initialOwner
) MintableToken(_name, _symbol, _initialOwner) {
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (investments/lovToken/OrigamiLovToken.sol)
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IOrigamiOTokenManager } from "contracts/interfaces/investments/IOrigamiOTokenManager.sol";
import { IOrigamiLovToken } from "contracts/interfaces/investments/lovToken/IOrigamiLovToken.sol";
import { IOrigamiLovTokenManager } from "contracts/interfaces/investments/lovToken/managers/IOrigamiLovTokenManager.sol";
import { ITokenPrices } from "contracts/interfaces/common/ITokenPrices.sol";
import { IOrigamiOracle } from "contracts/interfaces/common/oracle/IOrigamiOracle.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
import { OrigamiInvestment } from "contracts/investments/OrigamiInvestment.sol";
import { OrigamiMath } from "contracts/libraries/OrigamiMath.sol";
/**
* @title Origami lovToken
*
* @notice Users deposit with an accepted token and are minted lovTokens
* Origami will rebalance to lever up on the underlying reserve token, targetting a
* specific A/L (assets / liabilities) range
*
* @dev The logic on how to handle the specific deposits/exits for each lovToken is delegated
* to a manager contract
*/
contract OrigamiLovToken is IOrigamiLovToken, OrigamiInvestment {
using SafeERC20 for IERC20;
/**
* @notice The Origami contract managing the deposits/exits and the application of
* the deposit tokens into the underlying protocol
*/
IOrigamiLovTokenManager internal lovManager;
/**
* @notice The address used to collect the Origami performance fees.
*/
address public override feeCollector;
/**
* @notice The annual performance fee which Origami takes from harvested rewards before compounding into reserves.
* @dev Represented in basis points
*/
uint48 public override annualPerformanceFeeBps;
/**
* @notice The last time the performance fee was collected
*/
uint48 public override lastPerformanceFeeTime;
/**
* @notice The helper contract to retrieve Origami USD prices
* @dev Required for off-chain/subgraph integration
*/
ITokenPrices public override tokenPrices;
/**
* @notice The maximum allowed supply of this token for user investments
* @dev The actual totalSupply() may be greater than `maxTotalSupply`
* in order to start organically shrinking supply or from performance fees
*/
uint256 public override maxTotalSupply;
constructor(
address _initialOwner,
string memory _name,
string memory _symbol,
uint48 _annualPerformanceFeeBps,
address _feeCollector,
address _tokenPrices,
uint256 _maxTotalSupply
) OrigamiInvestment(_name, _symbol, _initialOwner) {
if (_annualPerformanceFeeBps > OrigamiMath.BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();
annualPerformanceFeeBps = _annualPerformanceFeeBps;
lastPerformanceFeeTime = uint48(block.timestamp);
feeCollector = _feeCollector;
tokenPrices = ITokenPrices(_tokenPrices);
maxTotalSupply = _maxTotalSupply;
}
/**
* @notice Set the Origami lovToken Manager.
*/
function setManager(address _manager) external override onlyElevatedAccess {
if (_manager == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
emit ManagerSet(_manager);
lovManager = IOrigamiLovTokenManager(_manager);
}
/**
* @notice Set the vault annual performance fee
* @dev Represented in basis points
*/
function setAnnualPerformanceFee(uint48 _annualPerformanceFeeBps) external override onlyElevatedAccess {
if (_annualPerformanceFeeBps > OrigamiMath.BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();
// Harvest on the old rate prior to updating the fee
_collectPerformanceFees();
emit PerformanceFeeSet(_annualPerformanceFeeBps);
annualPerformanceFeeBps = _annualPerformanceFeeBps;
}
/**
* @notice Set the max total supply allowed for investments into this lovToken
*/
function setMaxTotalSupply(uint256 _maxTotalSupply) external onlyElevatedAccess {
maxTotalSupply = _maxTotalSupply;
emit MaxTotalSupplySet(_maxTotalSupply);
}
/**
* @notice Set the Origami performance fee collector address
*/
function setFeeCollector(address _feeCollector) external override onlyElevatedAccess {
if (_feeCollector == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
emit FeeCollectorSet(_feeCollector);
feeCollector = _feeCollector;
}
/**
* @notice Set the helper to calculate current off-chain/subgraph integration
*/
function setTokenPrices(address _tokenPrices) external override onlyElevatedAccess {
if (_tokenPrices == address(0)) revert CommonEventsAndErrors.InvalidAddress(address(0));
emit TokenPricesSet(_tokenPrices);
tokenPrices = ITokenPrices(_tokenPrices);
}
/**
* @notice User buys this lovToken with an amount of one of the approved ERC20 tokens
* @param quoteData The quote data received from investQuote()
* @return investmentAmount The actual number of receipt tokens received, inclusive of any fees.
*/
function investWithToken(
InvestQuoteData calldata quoteData
) external virtual override nonReentrant returns (uint256 investmentAmount) {
if (quoteData.fromTokenAmount == 0) revert CommonEventsAndErrors.ExpectedNonZero();
// Send the investment token to the manager
IOrigamiLovTokenManager _manager = lovManager;
IERC20(quoteData.fromToken).safeTransferFrom(msg.sender, address(_manager), quoteData.fromTokenAmount);
investmentAmount = _manager.investWithToken(msg.sender, quoteData);
emit Invested(msg.sender, quoteData.fromTokenAmount, quoteData.fromToken, investmentAmount);
// Mint the lovToken for the user
if (investmentAmount != 0) {
_mint(msg.sender, investmentAmount);
if (totalSupply() > maxTotalSupply) {
revert CommonEventsAndErrors.BreachedMaxTotalSupply(totalSupply(), maxTotalSupply);
}
}
}
/**
* @notice Sell this lovToken to receive one of the accepted exit tokens.
* @param quoteData The quote data received from exitQuote()
* @param recipient The receiving address of the `toToken`
* @return toTokenAmount The number of `toToken` tokens received upon selling the lovToken.
*/
function exitToToken(
ExitQuoteData calldata quoteData,
address recipient
) external virtual override nonReentrant returns (
uint256 toTokenAmount
) {
if (quoteData.investmentTokenAmount == 0) revert CommonEventsAndErrors.ExpectedNonZero();
if (recipient == address(0)) revert CommonEventsAndErrors.InvalidAddress(recipient);
uint256 lovTokenToBurn;
(toTokenAmount, lovTokenToBurn) = lovManager.exitToToken(msg.sender, quoteData, recipient);
emit Exited(msg.sender, quoteData.investmentTokenAmount, quoteData.toToken, toTokenAmount, recipient);
// Burn the lovToken
if (lovTokenToBurn != 0) {
_burn(msg.sender, lovTokenToBurn);
}
}
/**
* @notice Unsupported - cannot invest in this lovToken to the native chain asset (eg ETH)
* @dev In future, if required, a separate version which does support this flow will be added
*/
function investWithNative(
InvestQuoteData calldata /*quoteData*/
) external payable virtual override returns (uint256) {
revert Unsupported();
}
/**
* @notice Unsupported - cannot exit this lovToken to the native chain asset (eg ETH)
* @dev In future, if required, a separate version which does support this flow will be added
*/
function exitToNative(
ExitQuoteData calldata /*quoteData*/, address payable /*recipient*/
) external virtual override returns (uint256 /*nativeAmount*/) {
revert Unsupported();
}
/**
* @notice Collect the performance fees to the Origami Treasury
*/
function collectPerformanceFees() external override onlyElevatedAccess returns (uint256 amount) {
return _collectPerformanceFees();
}
/**
* @notice The Origami contract managing the deposits/exits and the application of
* the deposit tokens into the underlying protocol
*/
function manager() external view returns (IOrigamiOTokenManager) {
return IOrigamiOTokenManager(address(lovManager));
}
/**
* @notice The token used to track reserves for this investment
*/
function reserveToken() external view returns (address) {
return lovManager.reserveToken();
}
/**
* @notice The underlying reserve token this investment wraps.
*/
function baseToken() external virtual override view returns (address) {
return address(lovManager.baseToken());
}
/**
* @notice The set of accepted tokens which can be used to deposit.
*/
function acceptedInvestTokens() external virtual override view returns (address[] memory) {
return lovManager.acceptedInvestTokens();
}
/**
* @notice The set of accepted tokens which can be used to exit into.
*/
function acceptedExitTokens() external virtual override view returns (address[] memory) {
return lovManager.acceptedExitTokens();
}
/**
* @notice Whether new investments are paused.
*/
function areInvestmentsPaused() external virtual override view returns (bool) {
return lovManager.areInvestmentsPaused();
}
/**
* @notice Whether exits are temporarily paused.
*/
function areExitsPaused() external virtual override view returns (bool) {
return lovManager.areExitsPaused();
}
/**
* @notice Get a quote to buy the lovToken using an accepted deposit token.
* @param fromTokenAmount How much of the deposit token to invest with
* @param fromToken What ERC20 token to purchase with. This must be one of `acceptedInvestTokens`
* @param maxSlippageBps The maximum acceptable slippage of the received investment amount
* @param deadline The maximum deadline to execute the exit.
* @return quoteData The quote data, including any params required for the underlying investment type.
* @return investFeeBps Any fees expected when investing with the given token, either from Origami or from the underlying investment.
*/
function investQuote(
uint256 fromTokenAmount,
address fromToken,
uint256 maxSlippageBps,
uint256 deadline
) external virtual override view returns (
InvestQuoteData memory quoteData,
uint256[] memory investFeeBps
) {
(quoteData, investFeeBps) = lovManager.investQuote(fromTokenAmount, fromToken, maxSlippageBps, deadline);
}
/**
* @notice Get a quote to sell this lovToken to receive one of the accepted exit tokens
* @param investmentTokenAmount The amount of this lovToken to sell
* @param toToken The token to receive when selling. This must be one of `acceptedExitTokens`
* @param maxSlippageBps The maximum acceptable slippage of the received `toToken`
* @param deadline The maximum deadline to execute the exit.
* @return quoteData The quote data, including any other quote params required for this investment type.
* @return exitFeeBps Any fees expected when exiting the investment to the nominated token, either from Origami or from the underlying investment.
*/
function exitQuote(
uint256 investmentTokenAmount,
address toToken,
uint256 maxSlippageBps,
uint256 deadline
) external virtual override view returns (
ExitQuoteData memory quoteData,
uint256[] memory exitFeeBps
) {
(quoteData, exitFeeBps) = lovManager.exitQuote(investmentTokenAmount, toToken, maxSlippageBps, deadline);
}
/**
* @notice How many reserve tokens would one get given a number of lovToken shares
* @dev This will use the `SPOT_PRICE` to value any debt in terms of the reserve token
*/
function sharesToReserves(uint256 shares) external override view returns (uint256) {
return lovManager.sharesToReserves(shares, IOrigamiOracle.PriceType.SPOT_PRICE);
}
/**
* @notice How many lovToken shares would one get given a number of reserve tokens
* @dev This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
*/
function reservesToShares(uint256 reserves) external override view returns (uint256) {
return lovManager.reservesToShares(reserves, IOrigamiOracle.PriceType.SPOT_PRICE);
}
/**
* @notice How many reserve tokens would one get given a single share, as of now
* @dev This will use the Oracle 'HISTORIC_PRICE' to value any debt in terms of the reserve token
*/
function reservesPerShare() external override view returns (uint256) {
return lovManager.sharesToReserves(10 ** decimals(), IOrigamiOracle.PriceType.HISTORIC_PRICE);
}
/**
* @notice The current amount of available reserves for redemptions
* @dev This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
*/
function totalReserves() external override view returns (uint256) {
return lovManager.userRedeemableReserves(IOrigamiOracle.PriceType.SPOT_PRICE);
}
/**
* @notice Retrieve the current assets, liabilities and calculate the ratio
* @dev This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
*/
function assetsAndLiabilities() external override view returns (
uint256 /*assets*/,
uint256 /*liabilities*/,
uint256 /*ratio*/
) {
return lovManager.assetsAndLiabilities(IOrigamiOracle.PriceType.SPOT_PRICE);
}
/**
* @notice The current effective exposure (EE) of this lovToken
* to `PRECISION` precision
* @dev = reserves / (reserves - liabilities)
* This will use the Oracle `SPOT_PRICE` to value any debt in terms of the reserve token
*/
function effectiveExposure() external override view returns (uint128 /*effectiveExposure*/) {
return lovManager.effectiveExposure(IOrigamiOracle.PriceType.SPOT_PRICE);
}
/**
* @notice The valid lower and upper bounds of A/L allowed when users deposit/exit into lovToken
* @dev Transactions will revert if the resulting A/L is outside of this range
*/
function userALRange() external override view returns (uint128 /*floor*/, uint128 /*ceiling*/) {
return lovManager.userALRange();
}
/**
* @notice The current deposit and exit fee based on market conditions.
* Fees are the equivalent of burning lovToken shares - benefit remaining vault users
* @dev represented in basis points
*/
function getDynamicFeesBps() external override view returns (uint256 depositFeeBps, uint256 exitFeeBps) {
return lovManager.getDynamicFeesBps();
}
/**
* @notice The maximum amount of fromToken's that can be deposited
* taking any other underlying protocol constraints into consideration
*/
function maxInvest(address fromToken) external override view returns (uint256) {
return lovManager.maxInvest(fromToken);
}
/**
* @notice The maximum amount of tokens that can be exited into the toToken
* taking any other underlying protocol constraints into consideration
*/
function maxExit(address toToken) external override view returns (uint256) {
return lovManager.maxExit(toToken);
}
/**
* @notice The accrued performance fee amount which would be minted as of now,
* based on the total supply
*/
function accruedPerformanceFee() public override view returns (uint256) {
// totalSupply * feeBps * timeDelta / 365 days / 10_000
// Round down (protocol takes less of a fee)
uint256 _timeDelta = block.timestamp - lastPerformanceFeeTime;
return OrigamiMath.mulDiv(
totalSupply(),
annualPerformanceFeeBps * _timeDelta,
OrigamiMath.BASIS_POINTS_DIVISOR * 365 days,
OrigamiMath.Rounding.ROUND_DOWN
);
}
function _collectPerformanceFees() internal returns (uint256 amount) {
amount = accruedPerformanceFee();
if (amount != 0) {
address _feeCollector = feeCollector;
emit PerformanceFeesCollected(_feeCollector, amount);
// Do not need to check vs maxTotalSupply here as it is
// only for new user investments
_mint(_feeCollector, amount);
}
lastPerformanceFeeTime = uint48(block.timestamp);
}
}
pragma solidity 0.8.19;
// SPDX-License-Identifier: AGPL-3.0-or-later
// Origami (libraries/OrigamiMath.sol)
import { mulDiv as prbMulDiv, PRBMath_MulDiv_Overflow } from "@prb/math/src/Common.sol";
import { CommonEventsAndErrors } from "contracts/libraries/CommonEventsAndErrors.sol";
/**
* @notice Utilities to operate on fixed point math multipliation and division
* taking rounding into consideration
*/
library OrigamiMath {
enum Rounding {
ROUND_DOWN,
ROUND_UP
}
uint256 public constant BASIS_POINTS_DIVISOR = 10_000;
function scaleUp(uint256 amount, uint256 scalar) internal pure returns (uint256) {
// Special case for scalar == 1, as it's common for token amounts to not need
// scaling if decimal places are the same
return scalar == 1 ? amount : amount * scalar;
}
function scaleDown(
uint256 amount,
uint256 scalar,
Rounding roundingMode
) internal pure returns (uint256 result) {
// Special case for scalar == 1, as it's common for token amounts to not need
// scaling if decimal places are the same
unchecked {
if (scalar == 1) {
result = amount;
} else if (roundingMode == Rounding.ROUND_DOWN) {
result = amount / scalar;
} else {
// ROUND_UP uses the same logic as OZ Math.ceilDiv()
result = amount == 0 ? 0 : (amount - 1) / scalar + 1;
}
}
}
/**
* @notice Calculates x * y / denominator with full precision,
* rounding up
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding roundingMode
) internal pure returns (uint256 result) {
result = prbMulDiv(x, y, denominator);
if (roundingMode == Rounding.ROUND_UP) {
if (mulmod(x, y, denominator) != 0) {
if (result < type(uint256).max) {
unchecked {
result = result + 1;
}
} else {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
}
}
}
function subtractBps(
uint256 inputAmount,
uint256 basisPoints,
Rounding roundingMode
) internal pure returns (uint256 result) {
uint256 numeratorBps;
unchecked {
numeratorBps = BASIS_POINTS_DIVISOR - basisPoints;
}
result = basisPoints < BASIS_POINTS_DIVISOR
? mulDiv(
inputAmount,
numeratorBps,
BASIS_POINTS_DIVISOR,
roundingMode
) : 0;
}
function addBps(
uint256 inputAmount,
uint256 basisPoints,
Rounding roundingMode
) internal pure returns (uint256 result) {
uint256 numeratorBps;
unchecked {
numeratorBps = BASIS_POINTS_DIVISOR + basisPoints;
}
// Round up for max amounts out expected
result = mulDiv(
inputAmount,
numeratorBps,
BASIS_POINTS_DIVISOR,
roundingMode
);
}
/**
* @notice Split the `inputAmount` into two parts based on the `basisPoints` fraction.
* eg: 3333 BPS (33.3%) can be used to split an input amount of 600 into: (result=400, removed=200).
* @dev The rounding mode is applied to the `result`
*/
function splitSubtractBps(
uint256 inputAmount,
uint256 basisPoints,
Rounding roundingMode
) internal pure returns (uint256 result, uint256 removed) {
result = subtractBps(inputAmount, basisPoints, roundingMode);
unchecked {
removed = inputAmount - result;
}
}
/**
* @notice Reverse the fractional amount of an input.
* eg: For 3333 BPS (33.3%) and the remainder=400, the result is 600
*/
function inverseSubtractBps(
uint256 remainderAmount,
uint256 basisPoints,
Rounding roundingMode
) internal pure returns (uint256 result) {
if (basisPoints == 0) return remainderAmount; // gas shortcut for 0
if (basisPoints >= BASIS_POINTS_DIVISOR) revert CommonEventsAndErrors.InvalidParam();
uint256 denominatorBps;
unchecked {
denominatorBps = BASIS_POINTS_DIVISOR - basisPoints;
}
result = mulDiv(
remainderAmount,
BASIS_POINTS_DIVISOR,
denominatorBps,
roundingMode
);
}
/**
* @notice Calculate the relative difference of a value to a reference
* @dev `value` and `referenceValue` must have the same precision
* The denominator is always the referenceValue
*/
function relativeDifferenceBps(
uint256 value,
uint256 referenceValue,
Rounding roundingMode
) internal pure returns (uint256) {
if (referenceValue == 0) revert CommonEventsAndErrors.InvalidParam();
uint256 absDelta;
unchecked {
absDelta = value < referenceValue
? referenceValue - value
: value - referenceValue;
}
return mulDiv(
absDelta,
BASIS_POINTS_DIVISOR,
referenceValue,
roundingMode
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
// EIP-2612 is Final as of 2022-11-01. This file is deprecated.
import "./IERC20Permit.sol";
{
"compilationTarget": {
"contracts/investments/lovToken/OrigamiLovToken.sol": "OrigamiLovToken"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 9999
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"uint48","name":"_annualPerformanceFeeBps","type":"uint48"},{"internalType":"address","name":"_feeCollector","type":"address"},{"internalType":"address","name":"_tokenPrices","type":"address"},{"internalType":"uint256","name":"_maxTotalSupply","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"maxTotalSupply","type":"uint256"}],"name":"BreachedMaxTotalSupply","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CannotMintOrBurn","type":"error"},{"inputs":[],"name":"ExpectedNonZero","type":"error"},{"inputs":[],"name":"InvalidAccess","type":"error"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidParam","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"Unsupported","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"AddedMinter","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"investmentAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"toToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"toTokenAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"}],"name":"Exited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"bytes4","name":"fnSelector","type":"bytes4"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"ExplicitAccessSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"feeCollector","type":"address"}],"name":"FeeCollectorSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"indexed":true,"internalType":"address","name":"fromToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"investmentAmount","type":"uint256"}],"name":"Invested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"manager","type":"address"}],"name":"ManagerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxTotalSupply","type":"uint256"}],"name":"MaxTotalSupplySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"NewOwnerAccepted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"oldProposedOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newProposedOwner","type":"address"}],"name":"NewOwnerProposed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"PerformanceFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"feeCollector","type":"address"},{"indexed":false,"internalType":"uint256","name":"mintAmount","type":"uint256"}],"name":"PerformanceFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"RemovedMinter","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_tokenPrices","type":"address"}],"name":"TokenPricesSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"API_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"acceptedExitTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptedInvestTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accruedPerformanceFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"annualPerformanceFeeBps","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"apiVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"areExitsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"areInvestmentsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assetsAndLiabilities","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"collectPerformanceFees","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"effectiveExposure","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"exitQuote","outputs":[{"components":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedToTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToTokenAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.ExitQuoteData","name":"quoteData","type":"tuple"},{"internalType":"uint256[]","name":"exitFeeBps","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedToTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToTokenAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.ExitQuoteData","name":"","type":"tuple"},{"internalType":"address payable","name":"","type":"address"}],"name":"exitToNative","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"investmentTokenAmount","type":"uint256"},{"internalType":"address","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedToTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToTokenAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.ExitQuoteData","name":"quoteData","type":"tuple"},{"internalType":"address","name":"recipient","type":"address"}],"name":"exitToToken","outputs":[{"internalType":"uint256","name":"toTokenAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bytes4","name":"","type":"bytes4"}],"name":"explicitFunctionAccess","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDynamicFeesBps","outputs":[{"internalType":"uint256","name":"depositFeeBps","type":"uint256"},{"internalType":"uint256","name":"exitFeeBps","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"investQuote","outputs":[{"components":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedInvestmentAmount","type":"uint256"},{"internalType":"uint256","name":"minInvestmentAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.InvestQuoteData","name":"quoteData","type":"tuple"},{"internalType":"uint256[]","name":"investFeeBps","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedInvestmentAmount","type":"uint256"},{"internalType":"uint256","name":"minInvestmentAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.InvestQuoteData","name":"","type":"tuple"}],"name":"investWithNative","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"fromToken","type":"address"},{"internalType":"uint256","name":"fromTokenAmount","type":"uint256"},{"internalType":"uint256","name":"maxSlippageBps","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"expectedInvestmentAmount","type":"uint256"},{"internalType":"uint256","name":"minInvestmentAmount","type":"uint256"},{"internalType":"bytes","name":"underlyingInvestmentQuoteData","type":"bytes"}],"internalType":"struct IOrigamiInvestment.InvestQuoteData","name":"quoteData","type":"tuple"}],"name":"investWithToken","outputs":[{"internalType":"uint256","name":"investmentAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isMinter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastPerformanceFeeTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"manager","outputs":[{"internalType":"contract IOrigamiOTokenManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"toToken","type":"address"}],"name":"maxExit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"fromToken","type":"address"}],"name":"maxInvest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"proposeNewOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"removeMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reservesPerShare","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reserves","type":"uint256"}],"name":"reservesToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"revokeOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"_annualPerformanceFeeBps","type":"uint48"}],"name":"setAnnualPerformanceFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"allowedCaller","type":"address"},{"components":[{"internalType":"bytes4","name":"fnSelector","type":"bytes4"},{"internalType":"bool","name":"allowed","type":"bool"}],"internalType":"struct IOrigamiElevatedAccess.ExplicitAccess[]","name":"access","type":"tuple[]"}],"name":"setExplicitAccess","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeCollector","type":"address"}],"name":"setFeeCollector","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_manager","type":"address"}],"name":"setManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxTotalSupply","type":"uint256"}],"name":"setMaxTotalSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenPrices","type":"address"}],"name":"setTokenPrices","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"sharesToReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPrices","outputs":[{"internalType":"contract ITokenPrices","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"userALRange","outputs":[{"internalType":"uint128","name":"","type":"uint128"},{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"}]