// This code was taken from the chainbridge-solidity project listed below,
// licensed under MIT. Branched from the v3.0.1 tag.
// We've replaced use of msgSender with msg.sender everywhere. We need to do this because we use access control in the
// constructor of Bridge.sol but _msgSender() cannot be called from a constructor as it accesses `immutable` vars.
// https://forum.openzeppelin.com/t/erc2771context-typeerror-immutable-variables-cannot-be-read-during-contract-creation-time/8513
// Also removed inheritance of Context.sol since we dont need it now.
// Note that since we've replaced _msgSender with msg.sender in here care should
// be take when using a Forwarder contract to call functions in this method. In this
// case the msg.sender will be the Forwarder contract instead of the admin.
//
// https://github.com/OpenZeppelin/openzeppelin-contracts/
pragma solidity ^0.6.0;
import "@openzeppelin/contracts/utils/EnumerableSet.sol";
import "@openzeppelin/contracts/utils/Address.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
using Address for address;
struct RoleData {
EnumerableSet.AddressSet members;
bytes32 adminRole;
}
mapping (bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view returns (bool) {
return _roles[role].members.contains(account);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view returns (uint256) {
return _roles[role].members.length();
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view returns (address) {
return _roles[role].members.at(index);
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) public virtual {
require(hasRole(_roles[role].adminRole, msg.sender), "AccessControl: sender must be an admin to grant");
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) public virtual {
require(hasRole(_roles[role].adminRole, msg.sender), "AccessControl: sender must be an admin to revoke");
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) public virtual {
require(account == msg.sender, "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
_roles[role].adminRole = adminRole;
}
function _grantRole(bytes32 role, address account) private {
if (_roles[role].members.add(account)) {
emit RoleGranted(role, account, msg.sender);
}
}
function _revokeRole(bytes32 role, address account) private {
if (_roles[role].members.remove(account)) {
emit RoleRevoked(role, account, msg.sender);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// This code was taken from the chainbridge-solidity project listed below,
// licensed under GPL v3. We've made slight modifications, branched from
// the v1.0.0 tag.
//
// https://github.com/ChainSafe/chainbridge-solidity.git
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
import "./utils/AccessControl.sol";
import "./utils/SafeMathBase.sol";
import "./utils/Pausable.sol";
import "./utils/ERC2771Context.sol";
import "./interfaces/IDepositExecute.sol";
import "./interfaces/IBridge.sol";
import "./interfaces/IERCHandler.sol";
import "./interfaces/IGenericHandler.sol";
/**
@title Facilitates deposits, creation and votiing of deposit proposals, and deposit executions.
@author ChainSafe Systems.
*/
contract Bridge is Pausable, AccessControl, SafeMathBase, ERC2771Context {
uint8 public _chainID;
uint256 public _relayerThreshold;
uint256 public _totalRelayers;
uint256 public _totalProposals;
uint256 public _fee;
uint256 public _expiry;
enum Vote {No, Yes}
enum ProposalStatus {Inactive, Active, Passed, Executed, Cancelled}
struct Proposal {
bytes32 _resourceID;
bytes32 _dataHash;
address[] _yesVotes;
address[] _noVotes;
ProposalStatus _status;
uint256 _proposedBlock;
}
// destinationChainID => number of deposits
mapping(uint8 => uint64) public _depositCounts;
// resourceID => handler address
mapping(bytes32 => address) public _resourceIDToHandlerAddress;
// depositNonce => destinationChainID => bytes
mapping(uint64 => mapping(uint8 => bytes)) public _depositRecords;
// destinationChainID + depositNonce => dataHash => Proposal
mapping(uint72 => mapping(bytes32 => Proposal)) public _proposals;
// destinationChainID + depositNonce => dataHash => relayerAddress => bool
mapping(uint72 => mapping(bytes32 => mapping(address => bool))) public _hasVotedOnProposal;
event RelayerThresholdChanged(uint indexed newThreshold);
event RelayerAdded(address indexed relayer);
event RelayerRemoved(address indexed relayer);
event Deposit(
uint8 indexed destinationChainID,
bytes32 indexed resourceID,
uint64 indexed depositNonce
);
event ProposalEvent(
uint8 indexed originChainID,
uint64 indexed depositNonce,
ProposalStatus indexed status,
bytes32 resourceID,
bytes32 dataHash
);
event ProposalVote(
uint8 indexed originChainID,
uint64 indexed depositNonce,
ProposalStatus indexed status,
bytes32 resourceID
);
bytes32 public constant RELAYER_ROLE = keccak256("RELAYER_ROLE");
modifier onlyAdmin() {
_onlyAdmin();
_;
}
modifier onlyAdminOrRelayer() {
_onlyAdminOrRelayer();
_;
}
modifier onlyRelayers() {
_onlyRelayers();
_;
}
function _onlyAdminOrRelayer() private {
require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()) || hasRole(RELAYER_ROLE, _msgSender()),
"sender is not relayer or admin");
}
function _onlyAdmin() private {
require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "sender doesn't have admin role");
}
function _onlyRelayers() private {
require(hasRole(RELAYER_ROLE, _msgSender()), "sender doesn't have relayer role");
}
/**
@notice Initializes Bridge, creates and grants {msg.sender} the admin role,
creates and grants {initialRelayers} the relayer role.
@param chainID ID of chain the Bridge contract exists on.
@param initialRelayers Addresses that should be initially granted the relayer role.
@param initialRelayerThreshold Number of votes needed for a deposit proposal to be considered passed.
*/
constructor (
uint8 chainID,
address[] memory initialRelayers,
uint initialRelayerThreshold,
uint256 fee,
uint256 expiry,
address forwarder
) ERC2771Context(forwarder) public {
_chainID = chainID;
_relayerThreshold = initialRelayerThreshold;
_fee = fee;
_expiry = expiry;
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
_setRoleAdmin(RELAYER_ROLE, DEFAULT_ADMIN_ROLE);
for (uint i; i < initialRelayers.length; i++) {
grantRole(RELAYER_ROLE, initialRelayers[i]);
_totalRelayers++;
}
}
/**
@notice Returns true if {relayer} has the relayer role.
@param relayer Address to check.
*/
function isRelayer(address relayer) external view returns (bool) {
return hasRole(RELAYER_ROLE, relayer);
}
/**
@notice Removes admin role from {_msgSender()} and grants it to {newAdmin}.
@notice Only callable by an address that currently has the admin role.
@param newAdmin Address that admin role will be granted to.
*/
function renounceAdmin(address newAdmin) external onlyAdmin {
grantRole(DEFAULT_ADMIN_ROLE, newAdmin);
renounceRole(DEFAULT_ADMIN_ROLE, _msgSender());
}
/**
@notice Pauses deposits, proposal creation and voting, and deposit executions.
@notice Only callable by an address that currently has the admin role.
*/
function adminPauseTransfers() external onlyAdmin {
_pause();
}
/**
@notice Unpauses deposits, proposal creation and voting, and deposit executions.
@notice Only callable by an address that currently has the admin role.
*/
function adminUnpauseTransfers() external onlyAdmin {
_unpause();
}
/**
@notice Modifies the number of votes required for a proposal to be considered passed.
@notice Only callable by an address that currently has the admin role.
@param newThreshold Value {_relayerThreshold} will be changed to.
@notice Emits {RelayerThresholdChanged} event.
*/
function adminChangeRelayerThreshold(uint newThreshold) external onlyAdmin {
_relayerThreshold = newThreshold;
emit RelayerThresholdChanged(newThreshold);
}
/**
@notice Grants {relayerAddress} the relayer role and increases {_totalRelayer} count.
@notice Only callable by an address that currently has the admin role.
@param relayerAddress Address of relayer to be added.
@notice Emits {RelayerAdded} event.
*/
function adminAddRelayer(address relayerAddress) external onlyAdmin {
require(!hasRole(RELAYER_ROLE, relayerAddress), "addr already has relayer role!");
grantRole(RELAYER_ROLE, relayerAddress);
emit RelayerAdded(relayerAddress);
_totalRelayers++;
}
/**
@notice Removes relayer role for {relayerAddress} and decreases {_totalRelayer} count.
@notice Only callable by an address that currently has the admin role.
@param relayerAddress Address of relayer to be removed.
@notice Emits {RelayerRemoved} event.
*/
function adminRemoveRelayer(address relayerAddress) external onlyAdmin {
require(hasRole(RELAYER_ROLE, relayerAddress), "addr doesn't have relayer role!");
revokeRole(RELAYER_ROLE, relayerAddress);
emit RelayerRemoved(relayerAddress);
_totalRelayers--;
}
/**
@notice Sets a new resource for handler contracts that use the IERCHandler interface,
and maps the {handlerAddress} to {resourceID} in {_resourceIDToHandlerAddress}.
@notice Only callable by an address that currently has the admin role.
@param handlerAddress Address of handler resource will be set for.
@param resourceID ResourceID to be used when making deposits.
@param tokenAddress Address of contract to be called when a deposit is made and a deposited is executed.
*/
function adminSetResource(address handlerAddress, bytes32 resourceID, address tokenAddress) external onlyAdmin {
_resourceIDToHandlerAddress[resourceID] = handlerAddress;
IERCHandler handler = IERCHandler(handlerAddress);
handler.setResource(resourceID, tokenAddress);
}
/**
@notice Sets a new resource for handler contracts that use the IGenericHandler interface,
and maps the {handlerAddress} to {resourceID} in {_resourceIDToHandlerAddress}.
@notice Only callable by an address that currently has the admin role.
@param handlerAddress Address of handler resource will be set for.
@param resourceID ResourceID to be used when making deposits.
@param contractAddress Address of contract to be called when a deposit is made and a deposited is executed.
*/
function adminSetGenericResource(
address handlerAddress,
bytes32 resourceID,
address contractAddress,
bytes4 depositFunctionSig,
bytes4 executeFunctionSig
) external onlyAdmin {
_resourceIDToHandlerAddress[resourceID] = handlerAddress;
IGenericHandler handler = IGenericHandler(handlerAddress);
handler.setResource(resourceID, contractAddress, depositFunctionSig, executeFunctionSig);
}
/**
@notice Sets a resource as burnable for handler contracts that use the IERCHandler interface.
@notice Only callable by an address that currently has the admin role.
@param handlerAddress Address of handler resource will be set for.
@param tokenAddress Address of contract to be called when a deposit is made and a deposited is executed.
*/
function adminSetBurnable(address handlerAddress, address tokenAddress) external onlyAdmin {
IERCHandler handler = IERCHandler(handlerAddress);
handler.setBurnable(tokenAddress);
}
/**
@notice Returns a proposal.
@param originChainID Chain ID deposit originated from.
@param depositNonce ID of proposal generated by proposal's origin Bridge contract.
@param dataHash Hash of data to be provided when deposit proposal is executed.
@return Proposal which consists of:
- _dataHash Hash of data to be provided when deposit proposal is executed.
- _yesVotes Number of votes in favor of proposal.
- _noVotes Number of votes against proposal.
- _status Current status of proposal.
*/
function getProposal(uint8 originChainID, uint64 depositNonce, bytes32 dataHash) external view returns (Proposal memory) {
uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(originChainID);
return _proposals[nonceAndID][dataHash];
}
/**
@notice Changes deposit fee.
@notice Only callable by admin.
@param newFee Value {_fee} will be updated to.
*/
function adminChangeFee(uint newFee) external onlyAdmin {
require(_fee != newFee, "Current fee is equal to new fee");
_fee = newFee;
}
/**
@notice Used to manually withdraw funds from ERC safes.
@param handlerAddress Address of handler to withdraw from.
@param tokenAddress Address of token to withdraw.
@param recipient Address to withdraw tokens to.
@param amountOrTokenID Either the amount of ERC20 tokens or the ERC721 token ID to withdraw.
*/
function adminWithdraw(
address handlerAddress,
address tokenAddress,
address recipient,
uint256 amountOrTokenID
) external onlyAdmin {
IERCHandler handler = IERCHandler(handlerAddress);
handler.withdraw(tokenAddress, recipient, amountOrTokenID);
}
/**
@notice Initiates a transfer using a specified handler contract.
@notice Only callable when Bridge is not paused.
@param destinationChainID ID of chain deposit will be bridged to.
@param resourceID ResourceID used to find address of handler to be used for deposit.
@param data Additional data to be passed to specified handler.
@notice Emits {Deposit} event.
*/
function _deposit(uint8 destinationChainID, bytes32 resourceID, bytes memory data) internal whenNotPaused {
require(msg.value == _fee, "Incorrect fee supplied");
address handler = _resourceIDToHandlerAddress[resourceID];
require(handler != address(0), "resourceID not mapped to handler");
uint64 depositNonce = ++_depositCounts[destinationChainID];
_depositRecords[depositNonce][destinationChainID] = data;
IDepositExecute depositHandler = IDepositExecute(handler);
depositHandler.deposit(resourceID, destinationChainID, depositNonce, _msgSender(), data);
emit Deposit(destinationChainID, resourceID, depositNonce);
}
/**
@notice When called, {_msgSender()} will be marked as voting in favor of proposal.
@notice Only callable by relayers when Bridge is not paused.
@param chainID ID of chain deposit originated from.
@param depositNonce ID of deposited generated by origin Bridge contract.
@param dataHash Hash of data provided when deposit was made.
@notice Proposal must not have already been passed or executed.
@notice {_msgSender()} must not have already voted on proposal.
@notice Emits {ProposalEvent} event with status indicating the proposal status.
@notice Emits {ProposalVote} event.
*/
function voteProposal(uint8 chainID, uint64 depositNonce, bytes32 resourceID, bytes32 dataHash) external onlyRelayers whenNotPaused {
uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(chainID);
Proposal storage proposal = _proposals[nonceAndID][dataHash];
address msgSender = _msgSender();
require(_resourceIDToHandlerAddress[resourceID] != address(0), "no handler for resourceID");
require(uint(proposal._status) <= 1, "proposal already passed/executed/cancelled");
require(!_hasVotedOnProposal[nonceAndID][dataHash][msgSender], "relayer already voted");
if (uint(proposal._status) == 0) {
++_totalProposals;
_proposals[nonceAndID][dataHash] = Proposal({
_resourceID : resourceID,
_dataHash : dataHash,
_yesVotes : new address[](1),
_noVotes : new address[](0),
_status : ProposalStatus.Active,
_proposedBlock : block.number
});
proposal._yesVotes[0] = msgSender;
emit ProposalEvent(chainID, depositNonce, ProposalStatus.Active, resourceID, dataHash);
} else {
if (sub(block.number, proposal._proposedBlock) > _expiry) {
// if the number of blocks that has passed since this proposal was
// submitted exceeds the expiry threshold set, cancel the proposal
proposal._status = ProposalStatus.Cancelled;
emit ProposalEvent(chainID, depositNonce, ProposalStatus.Cancelled, resourceID, dataHash);
} else {
require(dataHash == proposal._dataHash, "datahash mismatch");
proposal._yesVotes.push(msgSender);
}
}
if (proposal._status != ProposalStatus.Cancelled) {
_hasVotedOnProposal[nonceAndID][dataHash][msgSender] = true;
emit ProposalVote(chainID, depositNonce, proposal._status, resourceID);
// If _depositThreshold is set to 1, then auto finalize
// or if _relayerThreshold has been exceeded
if (_relayerThreshold <= 1 || proposal._yesVotes.length >= _relayerThreshold) {
proposal._status = ProposalStatus.Passed;
emit ProposalEvent(chainID, depositNonce, ProposalStatus.Passed, resourceID, dataHash);
}
}
}
/**
@notice Executes a deposit proposal that is considered passed using a specified handler contract.
@notice Only callable by relayers when Bridge is not paused.
@param chainID ID of chain deposit originated from.
@param depositNonce ID of deposited generated by origin Bridge contract.
@param dataHash Hash of data originally provided when deposit was made.
@notice Proposal must be past expiry threshold.
@notice Emits {ProposalEvent} event with status {Cancelled}.
*/
function cancelProposal(uint8 chainID, uint64 depositNonce, bytes32 dataHash) public onlyAdminOrRelayer {
uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(chainID);
Proposal storage proposal = _proposals[nonceAndID][dataHash];
require(proposal._status != ProposalStatus.Cancelled, "Proposal already cancelled");
require(sub(block.number, proposal._proposedBlock) > _expiry, "Proposal not at expiry threshold");
proposal._status = ProposalStatus.Cancelled;
emit ProposalEvent(chainID, depositNonce, ProposalStatus.Cancelled, proposal._resourceID, proposal._dataHash);
}
/**
@notice Executes a deposit proposal that is considered passed using a specified handler contract.
@notice Only callable by relayers when Bridge is not paused.
@param chainID ID of chain deposit originated from.
@param resourceID ResourceID to be used when making deposits.
@param depositNonce ID of deposited generated by origin Bridge contract.
@param data Data originally provided when deposit was made.
@notice Proposal must have Passed status.
@notice Hash of {data} must equal proposal's {dataHash}.
@notice Emits {ProposalEvent} event with status {Executed}.
*/
function _executeProposal(uint8 chainID, uint64 depositNonce, bytes memory data, bytes32 resourceID) internal onlyRelayers whenNotPaused {
address handler = _resourceIDToHandlerAddress[resourceID];
uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(chainID);
bytes32 dataHash = keccak256(abi.encodePacked(handler, data));
Proposal storage proposal = _proposals[nonceAndID][dataHash];
require(proposal._status != ProposalStatus.Inactive, "proposal is not active");
require(proposal._status == ProposalStatus.Passed, "proposal already transferred");
require(dataHash == proposal._dataHash, "data doesn't match datahash");
proposal._status = ProposalStatus.Executed;
IDepositExecute depositHandler = IDepositExecute(_resourceIDToHandlerAddress[proposal._resourceID]);
depositHandler.executeProposal(proposal._resourceID, data);
emit ProposalEvent(chainID, depositNonce, proposal._status, proposal._resourceID, proposal._dataHash);
}
/**
@notice Transfers eth in the contract to the specified addresses. The parameters addrs and amounts are mapped 1-1.
This means that the address at index 0 for addrs will receive the amount (in WEI) from amounts at index 0.
@param addrs Array of addresses to transfer {amounts} to.
@param amounts Array of amonuts to transfer to {addrs}.
*/
function transferFunds(address payable[] calldata addrs, uint[] calldata amounts) external onlyAdmin {
for (uint i = 0; i < addrs.length; i++) {
addrs[i].transfer(amounts[i]);
}
}
}
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
contract BridgeFaucet is Ownable {
address public initiator;
uint256 public maxTopUpAmount;
event Received(address from, uint amount);
event AddressToppedUp(address recipient, uint amount);
modifier onlyInitiator() {
require(msg.sender == initiator, "Only initiator allowed");
_;
}
constructor(uint256 _maxTopUpAmount) public {
maxTopUpAmount = _maxTopUpAmount;
}
////
// Redeem functions
////
function topUpAddress(address payable recipient) public onlyInitiator {
require(recipient.balance < maxTopUpAmount, "User has enough PALM");
uint amountNeeded = SafeMath.sub(maxTopUpAmount, recipient.balance);
require(this.getBalance() >= amountNeeded, "Not enough PALM in faucet. Refill faucet.");
recipient.transfer(amountNeeded);
}
function getBalance() public view returns (uint) {
return address(this).balance;
}
////
// Management functions
////
function setInitiator(address _initiator) public onlyOwner {
initiator = _initiator;
}
function setMaxTopUpAmount(uint256 _maxTopUpAmount) public onlyOwner {
maxTopUpAmount = _maxTopUpAmount;
}
function withdrawRemaining(address payable recipient) public onlyOwner {
recipient.transfer(this.getBalance());
}
////
// Receive Palm
////
receive() external payable {
emit Received(msg.sender, msg.value);
}
}
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/math/SafeMath.sol";
import "../utils/AccessControl.sol";
contract BridgeTollBooth is AccessControl, Context {
IERC20 public tollToken;
bytes32 public constant INITIATOR_ROLE = keccak256("INITIATOR_ROLE");
bytes32 public constant FEE_CONTROLLER_ROLE = keccak256("FEE_CONTROLLER_ROLE");
struct Fees {
uint relayFee;
uint greenFee;
}
Fees public fees;
event FeesCollected(address from, uint relayFee, uint greenFee);
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "sender doesn't have admin role");
_;
}
modifier onlyInitiator() {
require(hasRole(INITIATOR_ROLE, _msgSender()), "Only fee initiator allowed");
_;
}
modifier onlyFeeController() {
require(hasRole(FEE_CONTROLLER_ROLE, _msgSender()), "Only fee controller allowed");
_;
}
constructor() public {
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
_setRoleAdmin(INITIATOR_ROLE, DEFAULT_ADMIN_ROLE);
_setRoleAdmin(FEE_CONTROLLER_ROLE, DEFAULT_ADMIN_ROLE);
grantRole(FEE_CONTROLLER_ROLE, msg.sender);
}
////
// Fee functions
////
function getFees() public view returns (Fees memory) {
return fees;
}
function totalFees() public view returns (uint) {
return SafeMath.add(fees.relayFee, fees.greenFee);
}
function feesAllowed(address driver) public view returns (uint) {
return tollToken.allowance(driver, address(this));
}
function collectedFees() public view returns (uint) {
return tollToken.balanceOf(address(this));
}
// This assumes that the user has call the right approve transaction
// on the DAI ERC-20 token first. We use "driver" as the person who
// has to pay the toll -- the person crossing the bridge.
function collectFees(address driver) public onlyInitiator {
// Let's explicitly ensure the user has approved the
// right amount of DAI, and that they have enough in their account.
require(this.feesAllowed(driver) >= this.totalFees(), "User hasn't approved enough fees");
require(tollToken.balanceOf(driver) >= this.totalFees(), "User doesn't have enough funds to pay fee");
tollToken.transferFrom(
driver,
address(this),
this.totalFees()
);
emit FeesCollected(driver, fees.relayFee, fees.greenFee);
}
////
// Management functions
////
function setTollToken(address _tollToken) public onlyAdmin {
tollToken = IERC20(_tollToken);
}
// Set fixed values for the relay fee and green fee.
// Note that these are denominated in the same decimal
// places as DAI.
function setFees(uint relayFee, uint greenFee) public onlyFeeController {
fees = Fees(relayFee, greenFee);
}
// Send all fees owned by this contract to a separate address.
function withdrawCollectedFees(address recipient) public onlyAdmin {
tollToken.transfer(recipient, this.collectedFees());
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// This code was taken from the chainbridge-solidity project listed below,
// licensed under MIT. Slight modifications (downgraded to 0.6.0), branched from
// the v4.0.1 tag.
//
// https://github.com/OpenZeppelin/openzeppelin-contracts/
pragma solidity ^0.6.0;
import "@openzeppelin/contracts/utils/Context.sol";
/*
* @dev Context variant with ERC2771 support.
*/
contract ERC2771Context is Context {
address immutable _trustedForwarder;
constructor(address trustedForwarder) internal {
_trustedForwarder = trustedForwarder;
}
function isTrustedForwarder(address forwarder) public view virtual returns(bool) {
return forwarder == _trustedForwarder;
}
function _msgSender() internal view virtual override(Context) returns (address payable sender) {
if (isTrustedForwarder(msg.sender)) {
// The assembly code is more direct than the Solidity version using `abi.decode`.
assembly { sender := shr(96, calldataload(sub(calldatasize(), 20))) }
} else {
return super._msgSender();
}
}
function _msgData() internal view virtual override(Context) returns (bytes memory) {
if (isTrustedForwarder(msg.sender)) {
return bytes(msg.data[:msg.data.length-20]);
} else {
return super._msgData();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
// This code was taken from the chainbridge-solidity project listed below,
// licensed under GPL v3. We've made slight modifications, branched from
// the v1.0.0 tag.
//
// https://github.com/ChainSafe/chainbridge-solidity.git
pragma solidity ^0.6.0;
/**
@title Interface for Bridge contract.
@author ChainSafe Systems.
*/
interface IBridge {
/**
@notice Exposing getter for {_chainID} instead of forcing the use of call.
@return uint8 The {_chainID} that is currently set for the Bridge contract.
*/
function _chainID() external returns (uint8);
}
// This code was taken from the chainbridge-solidity project listed below,
// licensed under GPL v3. We've made slight modifications, branched from
// the v1.0.0 tag.
//
// https://github.com/ChainSafe/chainbridge-solidity.git
pragma solidity ^0.6.0;
/**
@title Interface for handler contracts that support deposits and deposit executions.
@author ChainSafe Systems.
*/
interface IDepositExecute {
/**
@notice It is intended that deposit are made using the Bridge contract.
@param destinationChainID Chain ID deposit is expected to be bridged to.
@param depositNonce This value is generated as an ID by the Bridge contract.
@param depositer Address of account making the deposit in the Bridge contract.
@param data Consists of additional data needed for a specific deposit.
*/
function deposit(bytes32 resourceID, uint8 destinationChainID, uint64 depositNonce, address depositer, bytes calldata data) external;
/**
@notice It is intended that proposals are executed by the Bridge contract.
@param data Consists of additional data needed for a specific deposit execution.
*/
function executeProposal(bytes32 resourceID, bytes calldata data) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// This code was taken from the chainbridge-solidity project listed below,
// licensed under GPL v3. We've made slight modifications, branched from
// the v1.0.0 tag.
//
// https://github.com/ChainSafe/chainbridge-solidity.git
pragma solidity ^0.6.0;
/**
@title Interface to be used with handlers that support ERC20s and ERC721s.
@author ChainSafe Systems.
*/
interface IERCHandler {
/**
@notice Correlates {resourceID} with {contractAddress}.
@param resourceID ResourceID to be used when making deposits.
@param contractAddress Address of contract to be called when a deposit is made and a deposited is executed.
*/
function setResource(bytes32 resourceID, address contractAddress) external;
/**
@notice Marks {contractAddress} as mintable/burnable.
@param contractAddress Address of contract to be used when making or executing deposits.
*/
function setBurnable(address contractAddress) external;
/**
@notice Used to manually release funds from ERC safes.
@param tokenAddress Address of token contract to release.
@param recipient Address to release tokens to.
@param amountOrTokenID Either the amount of ERC20 tokens or the ERC721 token ID to release.
*/
function withdraw(address tokenAddress, address recipient, uint256 amountOrTokenID) external;
}
// This code was taken from the chainbridge-solidity project listed below,
// licensed under GPL v3. We've made slight modifications, branched from
// the v1.0.0 tag.
//
// https://github.com/ChainSafe/chainbridge-solidity.git
pragma solidity ^0.6.0;
/**
@title Interface for handler that handles generic deposits and deposit executions.
@author ChainSafe Systems.
*/
interface IGenericHandler {
/**
@notice Correlates {resourceID} with {contractAddress}, {depositFunctionSig}, and {executeFunctionSig}.
@param resourceID ResourceID to be used when making deposits.
@param contractAddress Address of contract to be called when a deposit is made and a deposited is executed.
@param depositFunctionSig Function signature of method to be called in {contractAddress} when a deposit is made.
@param executeFunctionSig Function signature of method to be called in {contractAddress} when a deposit is executed.
*/
function setResource(bytes32 resourceID, address contractAddress, bytes4 depositFunctionSig, bytes4 executeFunctionSig) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
pragma solidity 0.6.12;
pragma experimental ABIEncoderV2;
import "./Bridge.sol";
import "./palm/BridgeFaucet.sol";
import "./palm/BridgeTollBooth.sol";
contract PalmBridge is Bridge {
BridgeTollBooth public tollBooth;
BridgeFaucet public faucet;
event NotToppedUp(address recipient, string reason);
// Note this constructor sets gastoken fees to 0
constructor(uint8 chainID, address[] memory initialRelayers, uint initialRelayerThreshold, uint256 expiry, address forwarder) Bridge(chainID, initialRelayers, initialRelayerThreshold, 0, expiry, forwarder) public {}
////
// Extra admin functions
////
function adminSetTollBooth(address _tollBooth) public onlyAdmin {
tollBooth = BridgeTollBooth(_tollBooth);
}
function adminSetFaucet(address payable _faucet) public onlyAdmin {
faucet = BridgeFaucet(_faucet);
}
////
// New entry points for depositors and relayers so bridge works as expected
////
function deposit(uint8 destinationChainID, bytes32 resourceID, bytes calldata data) external whenNotPaused {
if (destinationChainID != _chainID) {
// Initiate fee transfer from tollBooth before depositing
tollBooth.collectFees(_msgSender());
}
// Now call slighly modified _deposit function on bridge
// (it's modified to accept the original sender as a parameter)
_deposit(destinationChainID, resourceID, data);
}
function executeProposal(uint8 chainID, uint64 depositNonce, bytes calldata data, bytes32 resourceID) external onlyRelayers whenNotPaused {
_executeProposal(chainID, depositNonce, data, resourceID);
address recipientAddress;
// The "data" param is structured as follows:
//
// bytes 0 to 31: amount
// bytes 32 to 63: length of the recipient address
// bytes 64 to (64 + length): recipient address
//
// Technically we're supposed to read the recipient address by
// examining the length. But we know we're bridging between
// two Etheruem-based chains, so we're guaranteed it's 20 bytes
bytes memory recipientAddressAsBytes = bytes(data[64:84]);
// Turn bytes into address type. From here:
// https://ethereum.stackexchange.com/questions/15350/how-to-convert-an-bytes-to-address-in-solidity/50528
assembly {
recipientAddress := mload(add(recipientAddressAsBytes,20))
}
// Top up the address, but don't error on the reverts
try faucet.topUpAddress(payable(recipientAddress)) {} catch Error(string memory reason) {
emit NotToppedUp(recipientAddress, reason);
}
}
// Somewhat of a cop out so I didn't have to recreate it in JS
// Taken from the original executeProposal method
function createDataHash(bytes32 resourceID, bytes memory data) public view returns(bytes32 dataHash) {
address handler = _resourceIDToHandlerAddress[resourceID];
dataHash = keccak256(abi.encodePacked(handler, data));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This is a stripped down version of Open zeppelin's Pausable contract.
* https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/EnumerableSet.sol
*
*/
contract Pausable {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_whenNotPaused();
_;
}
function _whenNotPaused() private view {
require(!_paused, "Pausable: paused");
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenPaused() {
_whenPaused();
_;
}
function _whenPaused() private view {
require(_paused, "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(msg.sender);
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(msg.sender);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "@openzeppelin/contracts/math/SafeMath.sol";
////
// NOTE: This has been edited to use OZ's SafeMath while
// preserving the ability to inherit from it.
// This is a shim to keep most of Chainbridge's code intact.
////
import "@openzeppelin/contracts/math/SafeMath.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* note that this is a stripped down version of open zeppelin's safemath
* https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/math/SafeMath.sol
*/
contract SafeMathBase {
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return SafeMath.sub(a, b);
}
}
{
"compilationTarget": {
"project:/contracts/PalmBridge.sol": "PalmBridge"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"uint8","name":"chainID","type":"uint8"},{"internalType":"address[]","name":"initialRelayers","type":"address[]"},{"internalType":"uint256","name":"initialRelayerThreshold","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"address","name":"forwarder","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint8","name":"destinationChainID","type":"uint8"},{"indexed":true,"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"indexed":true,"internalType":"uint64","name":"depositNonce","type":"uint64"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"string","name":"reason","type":"string"}],"name":"NotToppedUp","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint8","name":"originChainID","type":"uint8"},{"indexed":true,"internalType":"uint64","name":"depositNonce","type":"uint64"},{"indexed":true,"internalType":"enum Bridge.ProposalStatus","name":"status","type":"uint8"},{"indexed":false,"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"dataHash","type":"bytes32"}],"name":"ProposalEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint8","name":"originChainID","type":"uint8"},{"indexed":true,"internalType":"uint64","name":"depositNonce","type":"uint64"},{"indexed":true,"internalType":"enum Bridge.ProposalStatus","name":"status","type":"uint8"},{"indexed":false,"internalType":"bytes32","name":"resourceID","type":"bytes32"}],"name":"ProposalVote","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"relayer","type":"address"}],"name":"RelayerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"relayer","type":"address"}],"name":"RelayerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"newThreshold","type":"uint256"}],"name":"RelayerThresholdChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAYER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_chainID","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"","type":"uint8"}],"name":"_depositCounts","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"","type":"uint64"},{"internalType":"uint8","name":"","type":"uint8"}],"name":"_depositRecords","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_expiry","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint72","name":"","type":"uint72"},{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"address","name":"","type":"address"}],"name":"_hasVotedOnProposal","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint72","name":"","type":"uint72"},{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"_proposals","outputs":[{"internalType":"bytes32","name":"_resourceID","type":"bytes32"},{"internalType":"bytes32","name":"_dataHash","type":"bytes32"},{"internalType":"enum Bridge.ProposalStatus","name":"_status","type":"uint8"},{"internalType":"uint256","name":"_proposedBlock","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_relayerThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"_resourceIDToHandlerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_totalProposals","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_totalRelayers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"relayerAddress","type":"address"}],"name":"adminAddRelayer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFee","type":"uint256"}],"name":"adminChangeFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newThreshold","type":"uint256"}],"name":"adminChangeRelayerThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"adminPauseTransfers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"relayerAddress","type":"address"}],"name":"adminRemoveRelayer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"handlerAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"adminSetBurnable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_faucet","type":"address"}],"name":"adminSetFaucet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"handlerAddress","type":"address"},{"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"internalType":"address","name":"contractAddress","type":"address"},{"internalType":"bytes4","name":"depositFunctionSig","type":"bytes4"},{"internalType":"bytes4","name":"executeFunctionSig","type":"bytes4"}],"name":"adminSetGenericResource","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"handlerAddress","type":"address"},{"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"adminSetResource","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tollBooth","type":"address"}],"name":"adminSetTollBooth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"adminUnpauseTransfers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"handlerAddress","type":"address"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amountOrTokenID","type":"uint256"}],"name":"adminWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"chainID","type":"uint8"},{"internalType":"uint64","name":"depositNonce","type":"uint64"},{"internalType":"bytes32","name":"dataHash","type":"bytes32"}],"name":"cancelProposal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"createDataHash","outputs":[{"internalType":"bytes32","name":"dataHash","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"destinationChainID","type":"uint8"},{"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"chainID","type":"uint8"},{"internalType":"uint64","name":"depositNonce","type":"uint64"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32","name":"resourceID","type":"bytes32"}],"name":"executeProposal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"faucet","outputs":[{"internalType":"contract BridgeFaucet","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"originChainID","type":"uint8"},{"internalType":"uint64","name":"depositNonce","type":"uint64"},{"internalType":"bytes32","name":"dataHash","type":"bytes32"}],"name":"getProposal","outputs":[{"components":[{"internalType":"bytes32","name":"_resourceID","type":"bytes32"},{"internalType":"bytes32","name":"_dataHash","type":"bytes32"},{"internalType":"address[]","name":"_yesVotes","type":"address[]"},{"internalType":"address[]","name":"_noVotes","type":"address[]"},{"internalType":"enum Bridge.ProposalStatus","name":"_status","type":"uint8"},{"internalType":"uint256","name":"_proposedBlock","type":"uint256"}],"internalType":"struct Bridge.Proposal","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"relayer","type":"address"}],"name":"isRelayer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"forwarder","type":"address"}],"name":"isTrustedForwarder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"renounceAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tollBooth","outputs":[{"internalType":"contract BridgeTollBooth","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable[]","name":"addrs","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"transferFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"chainID","type":"uint8"},{"internalType":"uint64","name":"depositNonce","type":"uint64"},{"internalType":"bytes32","name":"resourceID","type":"bytes32"},{"internalType":"bytes32","name":"dataHash","type":"bytes32"}],"name":"voteProposal","outputs":[],"stateMutability":"nonpayable","type":"function"}]