// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
interface IIQNftStaking {
/**
* @dev Thrown when the address for proof verification is invalid.
*/
error InvalidProofSourceAddress();
/**
* @dev Thrown when a staker attempts to claim rewards before the next claimable timestamp.
* The staker must wait until the current block timestamp is greater than or equal to the nextClaimTimestamp.
*/
error ClaimDelayNotPassed();
/**
* @dev Thrown when caller of stake function is not Staking Manager.
*/
error CallerIsNotStakingManager();
/**
* @dev Thrown when the pool size is insufficient for a new staking action.
*/
error InsufficientPoolSize();
/**
* @dev Thrown when trying to stake a token that is already staked.
*/
error TokenAlreadyStaked();
/**
* @dev Thrown when the caller is not the owner of the NFT they are trying to stake.
*/
error NotTheOwnerOfNft();
/**
* @dev Thrown when an attempt is made to withdraw a token that is not staked.
*/
error NftNotStaked();
/**
* @dev Thrown when a user attempts to claim zero tokens.
*/
error CantClaimZero();
/**
* @dev Thrown when a user attempts to withdraw zero tokens.
*/
error CantWithdrawZero();
/**
* @dev Thrown when deployer tries to withdraw reward tokens when pool still active.
*/
error StakingShouldBeDeactivated();
/**
* @dev Thrown when a staking-related action is attempted while staking is not active.
*/
error StakingNotActive();
/**
* @notice Thrown when an attempt is made to deposit tokens into the staking pool after tokens have already been deposited.
*/
error PoolAlreadyFunded();
/**
* @notice Thrown when an attempt is made to deposit zero tokens.
*/
error PoolSizeMustBePositive();
/**
* @notice Thrown when an attempt is made to setup reward rate = 0.
*/
error RewardRateMustBePositive();
/**
* @notice Thrown when an attempt is made to setup reward frequency = 0.
*/
error RewardFrequencyMustBePositive();
/**
* @notice Thrown when an attempt is made to withdraw more than once.
*/
error TokensAlreadyWithdrawn();
/**
* @notice Thrown when an attempt is made to withdraw more than the total accrued value.
*/
error ZeroTotalAccruedValue();
/**
* @notice Thrown when an attempt is made to withdraw more than the total accrued value.
*/
error TotalAccruedIsBiggerThanPoolSize();
/**
* @notice Thrown when an attempt is made to withdraw more than the total accrued value.
*/
error InvalidWithdrawAmountIsBiggerThanLeft();
/**
* @dev Thrown when an unauthorized address attempts to claim tokens for a staker.
*/
error UnauthorizedClaimAttempt();
/**
* @notice Emitted when a staker claims their reward tokens.
* @param staker The address of the staker claiming tokens.
* @param amount The amount of tokens claimed.
* @param timestamp The timestamp when the claim occurred.
* @param claimDetails Detailed information for each claim.
*/
event TokensClaimed(address indexed staker, uint256 amount, uint256 timestamp, string claimDetails);
/**
* @notice Emitted when a staker stakes their NFTs.
* @param staker The address of the staker.
* @param tokenIds The array of token IDs that were staked.
* @param timestamp The timestamp when the staking occurred.
*/
event Staked(address indexed staker, uint256[] tokenIds, uint256 timestamp);
/**
* @notice Emitted when a staker withdraws their staked NFTs.
* @param staker The address of the staker withdrawing tokens.
* @param tokenIds The array of token IDs that were withdrawn.
* @param timestamp The timestamp when the withdrawal occurred.
*/
event WithdrawStakedTokens(address indexed staker, uint256[] tokenIds, uint256 timestamp);
/**
* @notice Emitted when tokens are deposited into the reward pool.
* @param rewardTokenAddress The adress of reward token.
* @param amount The amount of tokens deposited.
* @param rewardRate Amount of reward tokens earned for each time interval specified in @rewardFrequency.
* @param rewardFrequency Time interval in seconds between reward distributions.
* @param timestamp The timestamp when the deposit occurred.
*/
event TokensDeposited(address rewardTokenAddress, uint256 amount, uint256 rewardRate, uint256 rewardFrequency, uint256 timestamp);
/**
* @notice Emitted when staking is deactivated.
* @param timestamp The timestamp when staking was deactivated.
* @param totalRewardAccrued Quantity of tokens that users have earned and cannot be withdrawn by staking owner.
*/
event StakingDeactivated(uint256 timestamp, uint256 totalRewardAccrued);
/**
* @notice Emitted when reward tokens was withdrawed by staking pool owner.
* @param amount The amount of tokens withdrawed.
*/
event TokensWithdrawedByOwner(uint256 amount);
/**
* @notice Emitted when a new staking manager is set for the staking contract.
* @param stakingManager The address of the new staking manager.
*/
event NewStakingManagerSet(address stakingManager);
/**
* @dev Stake NFTs by providing an array of token IDs.
* @param tokenIds The array of token IDs to stake.
* @param staker The address of staker.
*/
function stake(uint256[] calldata tokenIds, address staker) external;
/**
* @dev Allows a staker to claim their reward tokens.
* @param staker The address of the staker claiming tokens.
* @param amount The amount of tokens to be claimed.
* @param claimDetails detailed information for each claim.
* @param signature The signature verifying the claim.
*/
function claimTokens(address staker, uint256 amount, string memory claimDetails, bytes calldata signature) external;
/**
* @dev Withdraw staked NFTs by providing an array of token IDs.
* @param tokenIds The array of token IDs to withdraw.
* @param signature The signature verifying the withdrawal.
*/
function withdraw(uint256[] calldata tokenIds, bytes calldata signature) external;
/**
* @dev Set reward pool address, pool size and deposit rewards tokens.
* @param rewardTokenAddress Address of ERC20 reward token.
* @param tokensPoolSize Quantity of reward tokens in staking pool.
* @param rewardRate Amount of reward tokens earned for each time interval specified in @rewardFrequency.
* @param rewardFrequency Time interval in seconds between reward distributions.
* @notice Full amount should be deposited in 1 transaction.
*/
function depositRewardTokens(address rewardTokenAddress, uint256 tokensPoolSize, uint256 rewardRate,
uint256 rewardFrequency) external;
/**
* @dev Withdrawal of reward tokens from the pool.
* @param amount The amount of reward tokens to withdraw.
* @param signature The signature verifying the claim.
* @notice Pool should be deactivated to perform, only for staking pool owner.
*/
function withdrawRewardTokens(uint256 amount, bytes calldata signature) external;
/**
* @dev Deactivates staking, preventing any new stakes.
* @notice Can be called only by staking owner.
* @param totalRewardAccrued Quantity of tokens that users have earned and cannot be withdrawn.
* @param signature The signature verifying the deactivation.
*/
function deactivateStaking(uint256 totalRewardAccrued, bytes calldata signature) external;
/**
* @dev Set new staking manager for staking contract.
* @param stakingManager New staking manager address.
*/
function setStakingManager(address stakingManager) external;
/**
* @dev Returns the owner address of the specified staked token ID.
* @param tokenId The token ID being queried.
* @return The address of the owner of the specified staked token.
*/
function getOwnerOfStakedTokenId(uint256 tokenId) external view returns (address);
/**
* @dev Returns an array of token IDs staked by a specified address.
* @param staker The address of the staker.
* @return An array of token IDs staked by the specified address.
*/
function getStakedNftsByAddress(address staker) external view returns (uint256[] memory);
/**
* @dev Returns the total amount of tokens claimed by a specified address.
* @param staker The address of the staker.
* @return The total amount of tokens claimed by the specified address.
*/
function getClaimedTokensByAddress(address staker) external view returns (uint256);
/**
* @dev Checks if the specified address has claimed their tokens before.
* @param staker The address to check.
* @return True if the specified address has claimed their tokens, false otherwise.
*/
function hasClaimed(address staker) external view returns (bool);
/**
* @dev Returns the maximum size of the reward pool.
* @return The maximum size of the reward pool in tokens.
*/
function showMaxPoolSize() external view returns (uint256);
/**
* @dev Returns the total amount of tokens claimed from the pool.
* @return The total amount of tokens that have been claimed.
*/
function totalTokensClaimed() external view returns (uint256);
/**
* @dev Returns the total amount of tokens left in the reward pool.
* @return The total amount of unclaimed tokens left in the pool.
*/
function totalTokensLeft() external view returns (uint256);
/**
* @dev Returns the reward rate for staking.
* @return The rate at which rewards are generated for staking.
*/
function getRewardRate() external view returns (uint256);
/**
* @dev Returns the frequency at which rewards are calculated and can be claimed.
* @return The frequency (in seconds) of reward calculation and availability.
*/
function getRewardFrequency() external view returns (uint256);
/**
* @dev Returns the address of the reward token contract.
* @return The contract address of the reward token.
*/
function getRewardTokenAddress() external view returns (address);
/**
* @dev Returns the address of the NFT collection associated with this staking contract.
* @return The contract address of the NFT collection.
*/
function getNftCollectionAddress() external view returns (address);
/**
* @dev Get the Staking Manager address.
* @return Staking Manager address.
*/
function getStakingManagerAddress() external view returns (address);
/**
* @dev Get the proof source address.
* @return Proof source address.
*/
function getProofSourceAddress() external view returns (address);
/**
* @dev Get the next claimable timestamp for the specified staker.
* @param claimer The address to check.
* @return Timestamp when next claim will be available.
*/
function getNextClaimTimestamp(address claimer) external view returns (uint256);
/**
* @dev Checks if staking is currently active.
* @return True if staking is active, false otherwise.
*/
function isStakingActive() external view returns (bool);
/**
* @dev Checks the delay between claims.
* @return True claimed delay in seconds.
*/
function getClaimedDelay() external view returns (uint256);
/**
* @dev Indicates total amount of accrued rewards for staked tokens.
* Used for scenario, when pool owner terminates staking.
*/
function getTotalAccruedReward() external view returns (uint256);
/**
* @dev Returns the nonce counter for a given address, which can be used to prevent replay attacks.
* @param reserver The address for which the nonce counter is being queried.
* @return The current nonce for the given address.
*/
function nonceCounter(address reserver) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/utils/Multicall.sol";
import "@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol";
import "@openzeppelin/contracts/utils/Counters.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IIQNftStaking.sol";
contract IQNftStaking is IIQNftStaking, EIP712, Multicall, Ownable2Step, ReentrancyGuard {
using Counters for Counters.Counter;
using SafeERC20 for IERC20;
/**
* @dev EIP-712 type hash for claiming tokens. Used in the claimTokens function to securely claim staking rewards.
* This type hash includes the address of the staker, a nonce for replay protection, and the amount of tokens to claim.
*/
bytes32 private constant CLAIM_TOKENS_TYPEHASH = keccak256(
"ClaimTokens(address staker,uint256 nonce,uint256 amount,string claimDetails)"
);
/**
* @dev EIP-712 type hash for withdrawing tokens. Used in the withdraw function to securely withdraw staked tokens.
* This type hash includes the address of the staker, a nonce for replay protection, and the token IDs to withdraw.
*/
bytes32 private constant WITHDRAW_TOKENS_TYPEHASH = keccak256(
"Withdraw(address staker,uint256 nonce,uint256[] tokenIds)"
);
/**
* @dev EIP-712 type hash for withdrawing reward tokens by the owner. Used in the withdrawRewardTokens function to securely withdraw tokens from the contract.
* This type hash includes the address of the withdrawer, the amount of tokens to withdraw, and a nonce for replay protection.
*/
bytes32 private constant WITHDRAW_REWARD_TOKENS_TYPEHASH = keccak256(
"WithdrawRewardTokens(address withdrawer,uint256 amount,uint256 nonce)"
);
/**
* @dev EIP-712 type hash for withdrawing reward tokens by the owner. Used in the deactivateStaking function to securely deactivate staking.
* This type hash includes the address of the deactivator, the quantity of reward tokens accrued, and a nonce for replay protection.
*/
bytes32 private constant DEACTIVATE_STAKING_TYPEHASH = keccak256(
"DeactivateStaking(address deactivator,uint256 totalRewardAccrued,uint256 nonce)"
);
/**
* @dev Nonce counters for each reserver.
* Used to prevent replay attacks.
*/
mapping(address => Counters.Counter) private _nonceCounters;
/**
* @dev NFT collection for staking.
*/
IERC721 immutable _nftCollection;
/**
* @dev ERC20 reward token, that use for reward distribution.
*/
IERC20 private _rewardToken;
/**
* @dev Indicates IQ signer account.
*/
address immutable _proofSource;
/**
* @dev Indicates IQ Staking Manager address.
*/
address private _stakingManager;
/**
* @dev Indicates maximum pool size.
*/
uint256 private _poolSize;
/**
* @dev Indicates quantity of tokens, that staker get for 1 NFT in staking per 1 tic.
*/
uint256 private _rewardRate;
/**
* @dev Indicates frequency of reward discribution (tics).
*/
uint256 private _rewardFrequency;
/**
* @dev Indicates total amount of accrued rewards for staked tokens.
* Used for scenario, when pool owner terminates staking.
*/
uint256 private _totalRewardAccrued;
/**
* @dev Indicates total quantity of claimed tokens.
*/
uint256 private _totalTokensClaimed;
/**
* @dev Indicates total quantity of tokens withdrawed by owner.
*/
uint256 private _tokensWithdrawedByOwner;
/**
* @dev Indicates total quantity of tokens left in the pool.
*/
uint256 private _totalTokensLeft;
/**
* @dev Indicates delay in seconds for claim transaction.
*/
uint256 constant _claimDelay = 3600;
/**
* @dev Indicates next claim timestamp for each user.
*/
mapping(address => uint256) private _nextClaimTimestamp;
/**
* @dev Indicates the status of staking pool.
*/
bool private _stakingActive;
/**
* @dev Indicates the status of tokens withdrawed by owner.
*/
bool private _tokensWithdrawn;
/**
* @dev Indicates staked tokens by address.
*/
mapping(address => uint256[]) private _stakedTokens;
/**
* @dev Indicates indexes of staked tokens.
*/
mapping(uint256 => uint256) private _stakedTokenIndexes;
/**
* @dev Indicates owners of staked tokens.
*/
mapping(uint256 => address) private _tokenOwners;
/**
* @dev Indicates quantity of claimed tokens per address.
*/
mapping(address => uint256) private _claimedTokens;
/**
* @dev Constructor for the IQStaking contract.
* @param proofSource Address of the backend that will provide the signature for the reservation.
* @param nftCollectionAddress ERC721 collection eligible for staking.
*/
constructor(
address proofSource,
address stakingManager,
address nftCollectionAddress,
address owner
) payable EIP712("IQNftStaking", "1") {
if (proofSource == address(0)) revert InvalidProofSourceAddress();
_proofSource = proofSource;
_stakingManager = stakingManager;
_nftCollection = IERC721(nftCollectionAddress);
_transferOwnership(owner);
}
/**
* @inheritdoc IIQNftStaking
*/
function stake(
uint256[] calldata tokenIds,
address staker
) external nonReentrant {
if (msg.sender != _stakingManager) revert CallerIsNotStakingManager();
if (!_stakingActive) revert StakingNotActive();
bool hasNoStakedTokens = _stakedTokens[staker].length == 0;
// execute staking logic
for (uint i = 0; i < tokenIds.length; ++i) {
unchecked {
if (_nftCollection.ownerOf(tokenIds[i]) != staker) revert NotTheOwnerOfNft();
_nftCollection.transferFrom(staker, address(this), tokenIds[i]);
// Add the token to the staked array and map its index
_stakedTokens[staker].push(tokenIds[i]);
_stakedTokenIndexes[tokenIds[i]] = _stakedTokens[staker].length - 1;
_tokenOwners[tokenIds[i]] = staker;
}
}
if (hasNoStakedTokens) {
_nextClaimTimestamp[staker] = block.timestamp + _claimDelay;
}
// emit event
emit Staked(staker, tokenIds, block.timestamp);
}
/**
* @inheritdoc IIQNftStaking
*/
function claimTokens(
address staker,
uint256 amount,
string memory claimDetails,
bytes calldata signature
) external nonReentrant {
// basic checks
if (msg.sender != staker) revert UnauthorizedClaimAttempt();
if (amount == 0) revert CantClaimZero();
if (_nextClaimTimestamp[staker] > block.timestamp) revert ClaimDelayNotPassed();
if (_totalTokensClaimed + amount > _poolSize) revert InsufficientPoolSize();
// verify nonce
uint256 nonce = _useNonce(staker);
// generate typed data signature for verification
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
CLAIM_TOKENS_TYPEHASH,
staker,
nonce,
amount,
keccak256(abi.encodePacked(claimDetails))
)));
// verify that signature from backend is correct
require(_verifySignature(_proofSource, digest, signature));
// execute claim logic
_claimedTokens[staker] = _claimedTokens[staker] + amount;
_totalTokensClaimed = _totalTokensClaimed + amount;
_totalTokensLeft = _totalTokensLeft - amount;
_nextClaimTimestamp[staker] = block.timestamp + _claimDelay;
// safe transfer tokens to staker
_rewardToken.safeTransfer(staker, amount);
// emit event
emit TokensClaimed(staker, amount, block.timestamp, claimDetails);
}
/**
* @inheritdoc IIQNftStaking
*/
function withdraw(
uint256[] calldata tokenIds,
bytes calldata signature
) external nonReentrant {
uint256 length = tokenIds.length;
address staker = msg.sender;
// check that staker is the owner of the NFTs
for (uint i = 0; i < length; ++i) {
uint256 tokenId = tokenIds[i];
// check that NFT is owned by this contract currently
if (_nftCollection.ownerOf(tokenId) != address(this)) revert NftNotStaked();
// check that staker is the owner of the NFT
if (_tokenOwners[tokenId] != staker) revert NotTheOwnerOfNft();
}
// verify nonce
uint256 nonce = _useNonce(staker);
// generate typed data signature for verification
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
WITHDRAW_TOKENS_TYPEHASH,
staker,
nonce,
keccak256(abi.encodePacked(tokenIds))
)));
// verify that signature from backend is correct
require(_verifySignature(_proofSource, digest, signature));
for (uint i = 0; i < length; ++i) {
uint256 tokenId = tokenIds[i];
_nftCollection.transferFrom(address(this), staker, tokenId);
_removeNftFromStaking(staker, tokenId);
}
emit WithdrawStakedTokens(msg.sender, tokenIds, block.timestamp);
}
function _removeNftFromStaking(address user, uint256 tokenId) private {
uint256 lastTokenIndex = _stakedTokens[user].length - 1;
uint256 tokenIndex = _stakedTokenIndexes[tokenId];
// Move the last token to the place of the one to be removed
if (tokenIndex != lastTokenIndex) {
uint256 lastTokenId = _stakedTokens[user][lastTokenIndex];
_stakedTokens[user][tokenIndex] = lastTokenId;
_stakedTokenIndexes[lastTokenId] = tokenIndex;
}
// Remove the last element (now duplicated)
_stakedTokens[user].pop();
delete _stakedTokenIndexes[tokenId]; // Remove the index tracking
delete _tokenOwners[tokenId]; // Update ownership mapping
}
/**
* @inheritdoc IIQNftStaking
*/
function depositRewardTokens(address rewardTokenAddress, uint256 tokensPoolSize, uint256 rewardRate,
uint256 rewardFrequency) external onlyOwner {
if (_poolSize != 0) revert PoolAlreadyFunded();
if (tokensPoolSize == 0) revert PoolSizeMustBePositive();
if (rewardRate == 0) revert RewardRateMustBePositive();
if (rewardFrequency == 0) revert RewardFrequencyMustBePositive();
_rewardToken = IERC20(rewardTokenAddress);
_poolSize = tokensPoolSize;
_totalTokensLeft = tokensPoolSize;
_rewardRate = rewardRate;
_rewardFrequency = rewardFrequency;
_rewardToken.safeTransferFrom(msg.sender, address(this), _poolSize);
_stakingActive = true;
emit TokensDeposited(rewardTokenAddress, _poolSize, _rewardRate, _rewardFrequency, block.timestamp);
}
/**
* @inheritdoc IIQNftStaking
*/
function withdrawRewardTokens(uint256 amount, bytes calldata signature) external onlyOwner {
if (_stakingActive) revert StakingShouldBeDeactivated();
if (amount == 0) revert CantWithdrawZero();
if (_tokensWithdrawn) revert TokensAlreadyWithdrawn();
if (amount > _poolSize - _totalTokensClaimed) revert InvalidWithdrawAmountIsBiggerThanLeft();
uint256 nonce = _useNonce(msg.sender);
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
WITHDRAW_REWARD_TOKENS_TYPEHASH,
msg.sender,
amount,
nonce
)));
require(_verifySignature(_proofSource, digest, signature));
_rewardToken.safeTransfer(msg.sender, amount);
_tokensWithdrawedByOwner = amount;
_totalTokensLeft = _totalTokensLeft - amount;
_tokensWithdrawn = true;
emit TokensWithdrawedByOwner(amount);
}
/**
* @inheritdoc IIQNftStaking
*/
function deactivateStaking(uint256 totalRewardAccrued, bytes calldata signature) external onlyOwner {
if (!_stakingActive) revert StakingNotActive();
if (totalRewardAccrued == 0) revert ZeroTotalAccruedValue();
if (totalRewardAccrued > _poolSize) revert TotalAccruedIsBiggerThanPoolSize();
uint256 nonce = _useNonce(msg.sender);
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
DEACTIVATE_STAKING_TYPEHASH,
msg.sender,
totalRewardAccrued,
nonce
)));
require(_verifySignature(_proofSource, digest, signature));
_stakingActive = false;
_totalRewardAccrued = totalRewardAccrued;
emit StakingDeactivated(block.timestamp, _totalRewardAccrued);
}
/**
* @inheritdoc IIQNftStaking
*/
function setStakingManager(address stakingManager) external {
if (msg.sender != _stakingManager) revert CallerIsNotStakingManager();
_stakingManager = stakingManager;
emit NewStakingManagerSet(stakingManager);
}
/**
* @inheritdoc IIQNftStaking
*/
function getNextClaimTimestamp(address claimer) external view returns (uint256) {
return _nextClaimTimestamp[claimer];
}
/**
* @inheritdoc IIQNftStaking
*/
function getOwnerOfStakedTokenId(uint256 tokenId) external view returns (address) {
return _tokenOwners[tokenId];
}
/**
* @inheritdoc IIQNftStaking
*/
function getStakedNftsByAddress(address staker) external view returns (uint256[] memory) {
return _stakedTokens[staker];
}
/**
* @inheritdoc IIQNftStaking
*/
function getClaimedTokensByAddress(address staker) external view returns (uint256) {
return _claimedTokens[staker];
}
/**
* @inheritdoc IIQNftStaking
*/
function hasClaimed(address staker) external view returns (bool) {
return _claimedTokens[staker] != 0;
}
/**
* @inheritdoc IIQNftStaking
*/
function showMaxPoolSize() external view returns (uint256) {
return _poolSize;
}
/**
* @inheritdoc IIQNftStaking
*/
function totalTokensClaimed() external view returns (uint256) {
return _totalTokensClaimed;
}
/**
* @inheritdoc IIQNftStaking
*/
function totalTokensLeft() external view returns (uint256) {
return _totalTokensLeft;
}
/**
* @inheritdoc IIQNftStaking
*/
function getRewardRate() external view returns (uint256) {
return _rewardRate;
}
/**
* @inheritdoc IIQNftStaking
*/
function getRewardFrequency() external view returns (uint256) {
return _rewardFrequency;
}
/**
* @inheritdoc IIQNftStaking
*/
function getRewardTokenAddress() external view returns (address) {
return address(_rewardToken);
}
/**
* @inheritdoc IIQNftStaking
*/
function getNftCollectionAddress() external view returns (address) {
return address(_nftCollection);
}
/**
* @inheritdoc IIQNftStaking
*/
function getProofSourceAddress() external view returns (address) {
return _proofSource;
}
/**
* @inheritdoc IIQNftStaking
*/
function getStakingManagerAddress() external view returns (address) {
return _stakingManager;
}
/**
* @inheritdoc IIQNftStaking
*/
function isStakingActive() external view returns (bool) {
return _stakingActive;
}
/**
* @inheritdoc IIQNftStaking
*/
function getClaimedDelay() external pure returns (uint256) {
return _claimDelay;
}
/**
* @inheritdoc IIQNftStaking
*/
function getTotalAccruedReward() external view returns (uint256) {
return _totalRewardAccrued;
}
/**
* @inheritdoc IIQNftStaking
*/
function nonceCounter(address reserver) external view returns (uint256) {
return _nonceCounters[reserver].current();
}
/**
* @dev Increments the nonce for the reserver and returns the used nonce.
* @param reserver The address for which the nonce is being incremented.
* @return The used nonce.
*/
function _useNonce(address reserver) internal returns (uint256) {
_nonceCounters[reserver].increment();
return _nonceCounters[reserver].current() - 1; // Return the used nonce
}
/**
* @dev Verifies the signature for the reservation.
* @param signer The address that signed the reservation.
* @param digest The hash of the reservation details.
* @param signature The signature to verify.
* @return True if the signature is valid, false otherwise.
*/
function _verifySignature(
address signer,
bytes32 digest,
bytes memory signature
) internal pure returns (bool) {
return ECDSA.recover(digest, signature) == signer;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "./IQNftStaking.sol";
interface IStakingManager {
/**
* @notice Thrown when an attempt is made to withdraw funds from empty contract.
*/
error CantWithdrawZero();
/**
* @notice Thrown when an attempt is made to send incorrect amount of ether to cover the fees.
*/
error IncorrectEtherSent();
/**
* @notice Thrown when the address for proof verification is invalid.
*/
error InvalidProofSourceAddress();
/**
* @notice Thrown when attemp to withdraw ether from contract failed.
*/
error FailedToSendEther();
/**
* @notice Emitted when user deploy IQ NFT Staking.
*/
event NftStakingDeployed(address indexed stakingContract, address indexed owner, address proofSource, address nftCollectionAddress);
/**
* @dev Emitted when the deployment price is set.
* @param newDeploymentPrice Deployment price.
*/
event DeploymentPriceSet(uint256 newDeploymentPrice);
/**
* @dev Emitted when the batch transaction fee is set.
* @param newBatchTransactionFee Batch transaction fee.
*/
event BatchTransactionFeeSet(uint256 newBatchTransactionFee);
/**
* @dev Emitted when the individual contract batch transaction fee is set.
* @param stakingContract The address of the staking contract.
* @param newBatchTransactionFee The new batch transaction fee.
*/
event IndividualContractBatchTransactionFeeSet(address indexed stakingContract, uint256 newBatchTransactionFee);
/**
* @dev Emitted when the new StakingManager is set for existing IQNftStaking contract.
* @param stakingContract The address of the staking contract.
* @param newStakingManager The new StakingManager address.
*/
event StakingManagerUpdated(address indexed stakingContract, address newStakingManager);
/**
* @dev Emitted when funds are withdrawn from the contract.
* @param to The address to which the funds were sent.
* @param amount Withdrawn amount.
*/
event FundsWithdrawn(address indexed to, uint256 amount);
/**
* @dev Emitted when the individual contract batch transaction fee is deactivated.
* @param stakingContract The address of the staking contract.
*/
event IndividualContractBatchTransactionFeeDeactivated(address indexed stakingContract);
/**
* @dev Deploy IQNftStaking contract.
* @param proofSource Backend address.
* @param nftCollectionAddress ERC721 collection address.
* @param signature eip712 signature.
* @return Deployed contract address.
*/
function deployNftStaking(address proofSource, address nftCollectionAddress, bytes calldata signature) payable external returns (address);
/**
* @dev Stake tokens in a specified staking contract.
* @param stakingContract Address of the staking contract.
* @param tokenIds Array of token IDs.
* @param signature Backend signature.
*/
function stake(address stakingContract, uint256[] calldata tokenIds, bytes calldata signature) payable external;
/**
* @dev Withdraw contract funds to a specified address.
* @param _to Address to withdraw funds to.
*/
function withdrawFunds(address payable _to) external;
/**
* @dev Set the deployment fee.
* @param deploymentFee New deployment fee.
*/
function setDeploymentPrice(uint256 deploymentFee) external;
/**
* @dev Set the batch transaction fee.
* @param batchTransactionFee New batch transaction fee.
*/
function setBatchTransactionFee(uint256 batchTransactionFee) external;
/**
* @dev Set new staking manager for staking contract.
* @param stakingContract Address of the staking contract.
* @param stakingManager New staking manager address.
*/
function setStakingManager(address stakingContract, address stakingManager) external;
/**
* @dev Sets and activates the individual batch transaction fee for the specified staking contract.
* @param stakingContract The address of the staking contract.
* @param batchTransactionFee The individual batch transaction fee to be set for the specified staking contract.
*/
function setIndividualContractBatchTransactionFee(address stakingContract, uint256 batchTransactionFee) external;
/**
* @dev Deactivates the individual batch transaction fee for the specified staking contract.
* @param stakingContract The address of the staking contract.
*/
function deactivateIndividualContractBatchTransactionFee(address stakingContract) external;
/**
* @dev Returns whether the individual batch transaction fee is active for the specified contract.
* @param stakingContract The address of the staking contract.
* @return True if the individual batch transaction fee is active, false otherwise.
*/
function isIndividualBatchTransactionFeeActive(address stakingContract) external view returns (bool);
/**
* @dev Returns the individual batch transaction fee for the specified contract.
* @param stakingContract The address of the staking contract.
* @return The individual batch transaction fee.
*/
function getIndividualBatchTransactionFee(address stakingContract) external view returns (uint256);
/**
* @dev Get the current deployment price.
* @return Deployment price.
*/
function getDeploymentPrice() external view returns (uint256);
/**
* @dev Get the current batch transaction fee.
* @return Batch transaction fee.
*/
function getBatchTransactionFee() external view returns (uint256);
/**
* @dev Get the proof source address.
* @return Proof source address.
*/
function getProofSourceAddress() external view returns (address);
/**
* @dev Get contract Balance.
* @return Actual contract balance.
*/
function getBalance() external view returns (uint256);
/**
* @dev Get the current nonce for a user.
* @param user User address.
* @return Current nonce.
*/
function nonceCounter(address user) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.5) (utils/Multicall.sol)
pragma solidity ^0.8.0;
import "./Address.sol";
import "./Context.sol";
/**
* @dev Provides a function to batch together multiple calls in a single external call.
*
* Consider any assumption about calldata validation performed by the sender may be violated if it's not especially
* careful about sending transactions invoking {multicall}. For example, a relay address that filters function
* selectors won't filter calls nested within a {multicall} operation.
*
* NOTE: Since 5.0.1 and 4.9.4, this contract identifies non-canonical contexts (i.e. `msg.sender` is not {_msgSender}).
* If a non-canonical context is identified, the following self `delegatecall` appends the last bytes of `msg.data`
* to the subcall. This makes it safe to use with {ERC2771Context}. Contexts that don't affect the resolution of
* {_msgSender} are not propagated to subcalls.
*
* _Available since v4.1._
*/
abstract contract Multicall is Context {
/**
* @dev Receives and executes a batch of function calls on this contract.
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
bytes memory context = msg.sender == _msgSender()
? new bytes(0)
: msg.data[msg.data.length - _contextSuffixLength():];
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), bytes.concat(data[i], context));
}
return results;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol";
import "@openzeppelin/contracts/utils/Counters.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "./IIQNftStaking.sol";
import "./IStakingManager.sol";
contract StakingManager is IStakingManager, EIP712, Ownable2Step {
using Counters for Counters.Counter;
/**
* @dev EIP-712 type hash for securely IQNFTStaking deployment.
* This type hash includes the proofSource address, the nft collection address, msg.sender address and a nonce for replay protection.
*/
bytes32 private constant DEPLOY_IQ_NFT_STAKING_TYPEHASH = keccak256(
"DeployNftStaking(address proofSource,address nftCollectionAddress,address deployer,uint256 nonce)"
);
/**
* @dev EIP-712 type hash for securely tokens staking.
* This type hash includes the address of the staking contract, the array of tokens to stake, and a nonce for replay protection.
*/
bytes32 private constant STAKE_TOKENS_TYPEHASH = keccak256(
"StakeTokens(address stakingContract,uint256[] tokenIds,uint256 nonce)"
);
/**
* @dev Nonce counters for eip712 verification.
* Used to prevent replay attacks.
*/
mapping(address => Counters.Counter) private _nonceCounters;
/**
* @dev Indicates deployment price of IQ Staking.
*/
uint256 private _deploymentPrice;
/**
* @dev Indicates transaction fee for each staked subsequent NFT in a batch.
*/
uint256 private _batchTransactionFee;
/**
* @dev Stores the individual batch transaction fee for each specific contract.
*/
mapping(address => uint256) private _individualBatchTransactionFee;
/**
* @dev Indicates whether the individual batch transaction fee is active for each specific contract.
*/
mapping(address => bool) private _isIndividualBatchTransactionFeeActive;
/**
* @dev Stores backend address that will provide the signatures.
*/
address immutable _proofSource;
/**
* @dev Constructor for the StakingManager contract.
* @param proofSource Address of the backend that will provide the signature for transaction verifications.
* @param deploymentPrice Amount of fee for IQ Staking deployment.
* @param batchTransactionFee Amount of fee for each staked subsequent NFT in a batch.
*/
constructor(
address proofSource,
uint256 deploymentPrice,
uint256 batchTransactionFee
) payable EIP712("StakingManager", "1") {
if (proofSource == address(0)) revert InvalidProofSourceAddress();
_proofSource = proofSource;
_deploymentPrice = deploymentPrice;
_batchTransactionFee = batchTransactionFee;
}
/**
* @inheritdoc IStakingManager
*/
function deployNftStaking(address proofSource, address nftCollectionAddress, bytes calldata signature) payable external returns (address) {
// check msg.value is enough to cover deployment fee
if (msg.value != _deploymentPrice) revert IncorrectEtherSent();
uint256 nonce = _useNonce(msg.sender);
address deployer = msg.sender;
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
DEPLOY_IQ_NFT_STAKING_TYPEHASH,
proofSource,
nftCollectionAddress,
deployer,
nonce
)));
require(_verifySignature(_proofSource, digest, signature));
IIQNftStaking stakingContract = new IQNftStaking(proofSource, address(this), nftCollectionAddress, deployer);
emit NftStakingDeployed(address(stakingContract), deployer, proofSource, nftCollectionAddress);
return address(stakingContract);
}
/**
* @inheritdoc IStakingManager
*/
function stake(address stakingContract, uint256[] calldata tokenIds, bytes calldata signature) payable external {
// check msg.value is enough to cover transaction fee
uint256 batchTransactionFee = _isIndividualBatchTransactionFeeActive[stakingContract] ? _individualBatchTransactionFee[stakingContract] : _batchTransactionFee;
uint256 requiredFee = (tokenIds.length - 1) * batchTransactionFee;
if (msg.value < requiredFee) revert IncorrectEtherSent();
// verify nonce
uint256 nonce = _useNonce(msg.sender);
// generate typed data signature for verification
bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
STAKE_TOKENS_TYPEHASH,
stakingContract,
keccak256(abi.encodePacked(tokenIds)),
nonce
)));
// verify that signature from backend is correct
require(_verifySignature(_proofSource, digest, signature));
IIQNftStaking(stakingContract).stake(tokenIds, msg.sender);
}
/**
* @inheritdoc IStakingManager
*/
function withdrawFunds(address payable _to) external onlyOwner {
uint amount = address(this).balance;
if(amount == 0) revert CantWithdrawZero();
(bool sent, ) = _to.call{value: amount}("");
if (!sent) revert FailedToSendEther();
emit FundsWithdrawn(_to, amount);
}
/**
* @inheritdoc IStakingManager
*/
function setDeploymentPrice(uint256 deploymentFee) external onlyOwner {
_deploymentPrice = deploymentFee;
emit DeploymentPriceSet(deploymentFee);
}
/**
* @inheritdoc IStakingManager
*/
function setBatchTransactionFee(uint256 batchTransactionFee) external onlyOwner {
_batchTransactionFee = batchTransactionFee;
emit BatchTransactionFeeSet(batchTransactionFee);
}
/**
* @inheritdoc IStakingManager
*/
function setIndividualContractBatchTransactionFee(address stakingContract, uint256 batchTransactionFee) external onlyOwner {
_individualBatchTransactionFee[stakingContract] = batchTransactionFee;
_isIndividualBatchTransactionFeeActive[stakingContract] = true;
emit IndividualContractBatchTransactionFeeSet(stakingContract, batchTransactionFee);
}
/**
* @inheritdoc IStakingManager
*/
function deactivateIndividualContractBatchTransactionFee(address stakingContract) external onlyOwner {
_isIndividualBatchTransactionFeeActive[stakingContract] = false;
emit IndividualContractBatchTransactionFeeDeactivated(stakingContract);
}
/**
* @inheritdoc IStakingManager
*/
function setStakingManager(address stakingContract, address stakingManager) external onlyOwner {
IIQNftStaking(stakingContract).setStakingManager(stakingManager);
emit StakingManagerUpdated(stakingContract, stakingManager);
}
/**
* @inheritdoc IStakingManager
*/
function getDeploymentPrice() external view returns (uint256) {
return _deploymentPrice;
}
/**
* @inheritdoc IStakingManager
*/
function getBatchTransactionFee() external view returns (uint256) {
return _batchTransactionFee;
}
/**
* @inheritdoc IStakingManager
*/
function isIndividualBatchTransactionFeeActive(address stakingContract) external view returns (bool) {
return _isIndividualBatchTransactionFeeActive[stakingContract];
}
/**
* @inheritdoc IStakingManager
*/
function getIndividualBatchTransactionFee(address stakingContract) external view returns (uint256) {
return _individualBatchTransactionFee[stakingContract];
}
/**
* @inheritdoc IStakingManager
*/
function getProofSourceAddress() external view returns (address) {
return _proofSource;
}
/**
* @inheritdoc IStakingManager
*/
function getBalance() external view returns (uint) {
return address(this).balance;
}
/**
* @inheritdoc IStakingManager
*/
function nonceCounter(address user) external view returns (uint256) {
return _nonceCounters[user].current();
}
/**
* @dev Increments the nonce for the user and returns the used nonce.
* @param user The address for which the nonce is being incremented.
* @return The used nonce.
*/
function _useNonce(address user) internal returns (uint256) {
_nonceCounters[user].increment();
return _nonceCounters[user].current() - 1; // Return the used nonce
}
/**
* @dev Verifies the signature for the reservation.
* @param signer The address that signed the reservation.
* @param digest The hash of the reservation details.
* @param signature The signature to verify.
* @return True if the signature is valid, false otherwise.
*/
function _verifySignature(
address signer,
bytes32 digest,
bytes memory signature
) internal pure returns (bool) {
return ECDSA.recover(digest, signature) == signer;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/draft-EIP712.sol)
pragma solidity ^0.8.0;
// EIP-712 is Final as of 2022-08-11. This file is deprecated.
import "./EIP712.sol";
{
"compilationTarget": {
"contracts/staking/StakingManager.sol": "StakingManager"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"proofSource","type":"address"},{"internalType":"uint256","name":"deploymentPrice","type":"uint256"},{"internalType":"uint256","name":"batchTransactionFee","type":"uint256"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"CantWithdrawZero","type":"error"},{"inputs":[],"name":"FailedToSendEther","type":"error"},{"inputs":[],"name":"IncorrectEtherSent","type":"error"},{"inputs":[],"name":"InvalidProofSourceAddress","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newBatchTransactionFee","type":"uint256"}],"name":"BatchTransactionFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newDeploymentPrice","type":"uint256"}],"name":"DeploymentPriceSet","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"FundsWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakingContract","type":"address"}],"name":"IndividualContractBatchTransactionFeeDeactivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakingContract","type":"address"},{"indexed":false,"internalType":"uint256","name":"newBatchTransactionFee","type":"uint256"}],"name":"IndividualContractBatchTransactionFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakingContract","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"address","name":"proofSource","type":"address"},{"indexed":false,"internalType":"address","name":"nftCollectionAddress","type":"address"}],"name":"NftStakingDeployed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"stakingContract","type":"address"},{"indexed":false,"internalType":"address","name":"newStakingManager","type":"address"}],"name":"StakingManagerUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"stakingContract","type":"address"}],"name":"deactivateIndividualContractBatchTransactionFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"proofSource","type":"address"},{"internalType":"address","name":"nftCollectionAddress","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"deployNftStaking","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBatchTransactionFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDeploymentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakingContract","type":"address"}],"name":"getIndividualBatchTransactionFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProofSourceAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakingContract","type":"address"}],"name":"isIndividualBatchTransactionFeeActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"nonceCounter","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"batchTransactionFee","type":"uint256"}],"name":"setBatchTransactionFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"deploymentFee","type":"uint256"}],"name":"setDeploymentPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"stakingContract","type":"address"},{"internalType":"uint256","name":"batchTransactionFee","type":"uint256"}],"name":"setIndividualContractBatchTransactionFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"stakingContract","type":"address"},{"internalType":"address","name":"stakingManager","type":"address"}],"name":"setStakingManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"stakingContract","type":"address"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"stake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_to","type":"address"}],"name":"withdrawFunds","outputs":[],"stateMutability":"nonpayable","type":"function"}]