// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
// Check the signature length
if (signature.length != 65) {
revert("ECDSA: invalid signature length");
}
// Divide the signature in r, s and v variables
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
revert("ECDSA: invalid signature 's' value");
}
if (v != 27 && v != 28) {
revert("ECDSA: invalid signature 'v' value");
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
require(signer != address(0), "ECDSA: invalid signature");
return signer;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* replicates the behavior of the
* https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
* JSON-RPC method.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
}
// SPDX-License-Identifier:MIT
pragma solidity ^0.6.2;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/cryptography/ECDSA.sol";
import "./IForwarder.sol";
contract Forwarder is IForwarder {
using ECDSA for bytes32;
string public constant GENERIC_PARAMS = "address from,address to,uint256 value,uint256 gas,uint256 nonce,bytes data";
string public constant EIP712_DOMAIN_TYPE = "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)";
mapping(bytes32 => bool) public typeHashes;
mapping(bytes32 => bool) public domains;
// Nonces of senders, used to prevent replay attacks
mapping(address => uint256) private nonces;
// solhint-disable-next-line no-empty-blocks
receive() external payable {}
function getNonce(address from)
public view override
returns (uint256) {
return nonces[from];
}
constructor() public {
string memory requestType = string(abi.encodePacked("ForwardRequest(", GENERIC_PARAMS, ")"));
registerRequestTypeInternal(requestType);
}
function verify(
ForwardRequest memory req,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata sig)
external override view {
_verifyNonce(req);
_verifySig(req, domainSeparator, requestTypeHash, suffixData, sig);
}
function execute(
ForwardRequest memory req,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata sig
)
external payable
override
returns (bool success, bytes memory ret) {
_verifyNonce(req);
_verifySig(req, domainSeparator, requestTypeHash, suffixData, sig);
_updateNonce(req);
// solhint-disable-next-line avoid-low-level-calls
(success,ret) = req.to.call{gas : req.gas, value : req.value}(abi.encodePacked(req.data, req.from));
if ( address(this).balance>0 ) {
//can't fail: req.from signed (off-chain) the request, so it must be an EOA...
payable(req.from).transfer(address(this).balance);
}
return (success,ret);
}
function _verifyNonce(ForwardRequest memory req) internal view {
require(nonces[req.from] == req.nonce, "nonce mismatch");
}
function _updateNonce(ForwardRequest memory req) internal {
nonces[req.from]++;
}
function registerRequestType(string calldata typeName, string calldata typeSuffix) external override {
for (uint i = 0; i < bytes(typeName).length; i++) {
bytes1 c = bytes(typeName)[i];
require(c != "(" && c != ")", "invalid typename");
}
string memory requestType = string(abi.encodePacked(typeName, "(", GENERIC_PARAMS, ",", typeSuffix));
registerRequestTypeInternal(requestType);
}
function registerDomainSeparator(string calldata name, string calldata version) external override {
uint256 chainId;
/* solhint-disable-next-line no-inline-assembly */
assembly { chainId := chainid() }
bytes memory domainValue = abi.encode(
keccak256(bytes(EIP712_DOMAIN_TYPE)),
keccak256(bytes(name)),
keccak256(bytes(version)),
chainId,
address(this));
bytes32 domainHash = keccak256(domainValue);
domains[domainHash] = true;
emit DomainRegistered(domainHash, domainValue);
}
function registerRequestTypeInternal(string memory requestType) internal {
bytes32 requestTypehash = keccak256(bytes(requestType));
typeHashes[requestTypehash] = true;
emit RequestTypeRegistered(requestTypehash, requestType);
}
event DomainRegistered(bytes32 indexed domainSeparator, bytes domainValue);
event RequestTypeRegistered(bytes32 indexed typeHash, string typeStr);
function _verifySig(
ForwardRequest memory req,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes memory suffixData,
bytes memory sig)
internal
view
{
require(domains[domainSeparator], "unregistered domain separator");
require(typeHashes[requestTypeHash], "unregistered request typehash");
bytes32 digest = keccak256(abi.encodePacked(
"\x19\x01", domainSeparator,
keccak256(_getEncoded(req, requestTypeHash, suffixData))
));
require(digest.recover(sig) == req.from, "signature mismatch");
}
function _getEncoded(
ForwardRequest memory req,
bytes32 requestTypeHash,
bytes memory suffixData
)
public
pure
returns (
bytes memory
) {
return abi.encodePacked(
requestTypeHash,
abi.encode(
req.from,
req.to,
req.value,
req.gas,
req.nonce,
keccak256(req.data)
),
suffixData
);
}
}
// SPDX-License-Identifier:MIT
pragma solidity ^0.6.2;
pragma experimental ABIEncoderV2;
interface IForwarder {
struct ForwardRequest {
address from;
address to;
uint256 value;
uint256 gas;
uint256 nonce;
bytes data;
}
function getNonce(address from)
external view
returns(uint256);
/**
* verify the transaction would execute.
* validate the signature and the nonce of the request.
* revert if either signature or nonce are incorrect.
*/
function verify(
ForwardRequest calldata forwardRequest,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata signature
) external view;
/**
* execute a transaction
* @param forwardRequest - all transaction parameters
* @param domainSeparator - domain used when signing this request
* @param requestTypeHash - request type used when signing this request.
* @param suffixData - the extension data used when signing this request.
* @param signature - signature to validate.
*
* the transaction is verified, and then executed.
* the success and ret of "call" are returned.
* This method would revert only verification errors. target errors
* are reported using the returned "success" and ret string
*/
function execute(
ForwardRequest calldata forwardRequest,
bytes32 domainSeparator,
bytes32 requestTypeHash,
bytes calldata suffixData,
bytes calldata signature
)
external payable
returns (bool success, bytes memory ret);
/**
* Register a new Request typehash.
* @param typeName - the name of the request type.
* @param typeSuffix - anything after the generic params can be empty string (if no extra fields are needed)
* if it does contain a value, then a comma is added first.
*/
function registerRequestType(string calldata typeName, string calldata typeSuffix) external;
/**
* Register a new domain separator.
* The domain separator must have the following fields: name,version,chainId, verifyingContract.
* the chainId is the current network's chainId, and the verifyingContract is this forwarder.
* This method is given the domain name and version to create and register the domain separator value.
* @param name the domain's display name
* @param version the domain/protocol version
*/
function registerDomainSeparator(string calldata name, string calldata version) external;
}
{
"compilationTarget": {
"contracts/forwarder/Forwarder.sol": "Forwarder"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"domainValue","type":"bytes"}],"name":"DomainRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"typeHash","type":"bytes32"},{"indexed":false,"internalType":"string","name":"typeStr","type":"string"}],"name":"RequestTypeRegistered","type":"event"},{"inputs":[],"name":"EIP712_DOMAIN_TYPE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GENERIC_PARAMS","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"}],"name":"_getEncoded","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"domains","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"ret","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"name":"registerDomainSeparator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"typeName","type":"string"},{"internalType":"string","name":"typeSuffix","type":"string"}],"name":"registerRequestType","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"typeHashes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"gas","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IForwarder.ForwardRequest","name":"req","type":"tuple"},{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"bytes32","name":"requestTypeHash","type":"bytes32"},{"internalType":"bytes","name":"suffixData","type":"bytes"},{"internalType":"bytes","name":"sig","type":"bytes"}],"name":"verify","outputs":[],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]