// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)pragmasolidity ^0.8.1;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0// for contracts in construction, since the code is only stored at the end// of the constructor execution.return account.code.length>0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/functionverifyCallResultFromTarget(address target,
bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
if (success) {
if (returndata.length==0) {
// only check isContract if the call was successful and the return data is empty// otherwise we already know that it was a contractrequire(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function_revert(bytesmemory returndata, stringmemory errorMessage) privatepure{
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly/// @solidity memory-safe-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)pragmasolidity ^0.8.0;/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/libraryBase64{
/**
* @dev Base64 Encoding/Decoding Table
*/stringinternalconstant _TABLE ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/functionencode(bytesmemory data) internalpurereturns (stringmemory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/if (data.length==0) return"";
// Loads the table into memorystringmemory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter// and split into 4 numbers of 6 bits.// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up// - `data.length + 2` -> Round up// - `/ 3` -> Number of 3-bytes chunks// - `4 *` -> 4 characters for each chunkstringmemory result =newstring(4* ((data.length+2) /3));
/// @solidity memory-safe-assemblyassembly {
// Prepare the lookup table (skip the first "length" byte)let tablePtr :=add(table, 1)
// Prepare result pointer, jump over lengthlet resultPtr :=add(result, 32)
// Run over the input, 3 bytes at a timefor {
let dataPtr := data
let endPtr :=add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr :=add(dataPtr, 3)
let input :=mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)// and apply logical AND with 0x3F which is the number of// the previous character in the ASCII table prior to the Base64 Table// The result is then added to the table to get the character to write,// and finally write it in the result pointer but with a left shift// of 256 (1 byte) - 8 (1 ASCII char) = 248 bitsmstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr :=add(resultPtr, 1) // Advancemstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr :=add(resultPtr, 1) // Advancemstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr :=add(resultPtr, 1) // Advancemstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr :=add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long// it is padded with `=` characters at the endswitchmod(mload(data), 3)
case1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
Contract Source Code
File 4 of 19: Context.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)pragmasolidity ^0.8.0;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
}
Contract Source Code
File 5 of 19: DynamicBuffer.sol
// SPDX-License-Identifier: MIT// Copyright (c) 2021 the ethier authors (github.com/divergencetech/ethier)pragmasolidity 0.8.21;/// @title DynamicBuffer/// @author David Huber (@cxkoda) and Simon Fremaux (@dievardump). See also/// https://raw.githubusercontent.com/dievardump/solidity-dynamic-buffer/// @notice This library is used to allocate a big amount of container memory// which will be subsequently filled without needing to reallocate/// memory./// @dev First, allocate memory./// Then use `buffer.appendUnchecked(theBytes)` or `appendSafe()` if/// bounds checking is required.libraryDynamicBuffer{
/// @notice Allocates container space for the DynamicBuffer/// @param capacity_ The intended max amount of bytes in the buffer/// @return buffer The memory location of the buffer/// @dev Allocates `capacity_ + 0x60` bytes of space/// The buffer array starts at the first container data position,/// (i.e. `buffer = container + 0x20`)functionallocate(uint256 capacity_
) internalpurereturns (bytesmemory buffer) {
assembly {
// Get next-free memory addresslet container :=mload(0x40)
// Allocate memory by setting a new next-free address
{
// Add 2 x 32 bytes in size for the two length fields// Add 32 bytes safety space for 32B chunked copylet size :=add(capacity_, 0x60)
let newNextFree :=add(container, size)
mstore(0x40, newNextFree)
}
// Set the correct container length
{
let length :=add(capacity_, 0x40)
mstore(container, length)
}
// The buffer starts at idx 1 in the container (0 is length)
buffer :=add(container, 0x20)
// Init content with length 0mstore(buffer, 0)
}
return buffer;
}
/// @notice Appends data to buffer, and update buffer length/// @param buffer the buffer to append the data to/// @param data the data to append/// @dev Does not perform out-of-bound checks (container capacity)/// for efficiency.functionappendUnchecked(bytesmemory buffer,
bytesmemory data
) internalpure{
assembly {
let length :=mload(data)
for {
data :=add(data, 0x20)
let dataEnd :=add(data, length)
let copyTo :=add(buffer, add(mload(buffer), 0x20))
} lt(data, dataEnd) {
data :=add(data, 0x20)
copyTo :=add(copyTo, 0x20)
} {
// Copy 32B chunks from data to buffer.// This may read over data array boundaries and copy invalid// bytes, which doesn't matter in the end since we will// later set the correct buffer length, and have allocated an// additional word to avoid buffer overflow.mstore(copyTo, mload(data))
}
// Update buffer lengthmstore(buffer, add(mload(buffer), length))
}
}
/// @notice Appends data to buffer, and update buffer length/// @param buffer the buffer to append the data to/// @param data the data to append/// @dev Performs out-of-bound checks and calls `appendUnchecked`.functionappendSafe(bytesmemory buffer, bytesmemory data) internalpure{
checkOverflow(buffer, data.length);
appendUnchecked(buffer, data);
}
/// @notice Appends data encoded as Base64 to buffer./// @param fileSafe Whether to replace '+' with '-' and '/' with '_'./// @param noPadding Whether to strip away the padding./// @dev Encodes `data` using the base64 encoding described in RFC 4648./// See: https://datatracker.ietf.org/doc/html/rfc4648/// Author: Modified from Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)/// Author: Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)/// Author: Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos.functionappendSafeBase64(bytesmemory buffer,
bytesmemory data,
bool fileSafe,
bool noPadding
) internalpure{
uint256 dataLength = data.length;
if (data.length==0) {
return;
}
uint256 encodedLength;
uint256 r;
assembly {
// For each 3 bytes block, we will have 4 bytes in the base64// encoding: `encodedLength = 4 * divCeil(dataLength, 3)`.// The `shl(2, ...)` is equivalent to multiplying by 4.
encodedLength :=shl(2, div(add(dataLength, 2), 3))
r :=mod(dataLength, 3)
if noPadding {
// if r == 0 => no modification// if r == 1 => encodedLength -= 2// if r == 2 => encodedLength -= 1
encodedLength :=sub(
encodedLength,
add(iszero(iszero(r)), eq(r, 1))
)
}
}
checkOverflow(buffer, encodedLength);
assembly {
let nextFree :=mload(0x40)
// Store the table into the scratch space.// Offsetted by -1 byte so that the `mload` will load the character.// We will rewrite the free memory pointer at `0x40` later with// the allocated size.mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
mstore(
0x3f,
sub(
"ghijklmnopqrstuvwxyz0123456789-_",
// The magic constant 0x0230 will translate "-_" + "+/".mul(iszero(fileSafe), 0x0230)
)
)
// Skip the first slot, which stores the length.let ptr :=add(add(buffer, 0x20), mload(buffer))
let end :=add(data, dataLength)
// Run over the input, 3 bytes at a time.// prettier-ignore// solhint-disable-next-line no-empty-blocksfor {} 1 {} {
data :=add(data, 3) // Advance 3 bytes.let input :=mload(data)
// Write 4 bytes. Optimized for fewer stack operations.mstore8( ptr , mload(and(shr(18, input), 0x3F)))
mstore8(add(ptr, 1), mload(and(shr(12, input), 0x3F)))
mstore8(add(ptr, 2), mload(and(shr( 6, input), 0x3F)))
mstore8(add(ptr, 3), mload(and( input , 0x3F)))
ptr :=add(ptr, 4) // Advance 4 bytes.// prettier-ignoreifiszero(lt(data, end)) { break }
}
ifiszero(noPadding) {
// Offset `ptr` and pad with '='. We can simply write over the end.mstore8(sub(ptr, iszero(iszero(r))), 0x3d) // Pad at `ptr - 1` if `r > 0`.mstore8(sub(ptr, shl(1, eq(r, 1))), 0x3d) // Pad at `ptr - 2` if `r == 1`.
}
mstore(buffer, add(mload(buffer), encodedLength))
mstore(0x40, nextFree)
}
}
/// @notice Returns the capacity of a given buffer.functioncapacity(bytesmemory buffer) internalpurereturns (uint256) {
uint256 cap;
assembly {
cap :=sub(mload(sub(buffer, 0x20)), 0x40)
}
return cap;
}
/// @notice Reverts if the buffer will overflow after appending a given/// number of bytes.functioncheckOverflow(bytesmemory buffer,
uint256 addedLength
) internalpure{
uint256 cap = capacity(buffer);
uint256 newLength = buffer.length+ addedLength;
if (cap < newLength) {
revert("DynamicBuffer: Appending out of bounds.");
}
}
}
Contract Source Code
File 6 of 19: ENSResolver.sol
// SPDX-License-Identifier: GPL-3.0pragmasolidity 0.8.21;import"@openzeppelin/contracts/utils/Strings.sol";
interfacePublicResolver{
functionname(bytes32 node) externalviewreturns (stringmemory);
}
interfaceReverseRegistry{
functionnode(address addr) externalviewreturns (bytes32);
}
/// @title On-Chain ENS Resolution/// @author Miragenesi/// @notice Use this contract to resolve the ENS name of an addresscontractENSResolver{
ReverseRegistry _reverseRegistry;
PublicResolver _publicResolver;
bytes32constant DEFAULT_NAME =keccak256("reverse.ens.eth");
bytes32constant EMPTY_NAME =keccak256("");
constructor(address reverseRegistry, address publicResolver) {
_reverseRegistry = ReverseRegistry(reverseRegistry);
_publicResolver = PublicResolver(publicResolver);
}
/**
* Returns whatever is resolved for this address.
* It might be the ENS name, empty or some default
* result.
* @param addr the requested address
* @return ENS or 0x string of the requested address
* @return always false;
*/functionresolve(address addr) publicviewreturns (stringmemory, bool) {
return _resolve(addr, false);
}
/**
* Returns the ENS of the given address, or the hex-string
* version of the address if no ENS is associated to it.
* @param addr the requested address
* @return ENS or 0x string of the requested address
* @return whether the string represents the ENS or the 0x-address
*/functionresolveWithFallback(address addr
) publicviewreturns (stringmemory, bool) {
return _resolve(addr, true);
}
function_resolve(address addr,
bool fall
) internalviewreturns (stringmemory name, bool didFallback) {
if (
address(_reverseRegistry) !=address(0) &&address(_publicResolver) !=address(0)
) {
try _reverseRegistry.node(addr) returns (bytes32 node) {
try _publicResolver.name(node) returns (stringmemory name_) {
name = name_;
} catch (bytesmemory) {}
} catch (bytesmemory) {}
}
if (fall) {
bytes32 khash =keccak256(abi.encodePacked(name));
if (khash == DEFAULT_NAME || khash == EMPTY_NAME) {
name = Strings.toHexString(addr);
didFallback =true;
}
}
}
}
Contract Source Code
File 7 of 19: ERC165.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)pragmasolidity ^0.8.0;import"./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/abstractcontractERC165isIERC165{
/**
* @dev See {IERC165-supportsInterface}.
*/functionsupportsInterface(bytes4 interfaceId) publicviewvirtualoverridereturns (bool) {
return interfaceId ==type(IERC165).interfaceId;
}
}
Contract Source Code
File 8 of 19: ERC721.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.2) (token/ERC721/ERC721.sol)pragmasolidity ^0.8.0;import"./IERC721.sol";
import"./IERC721Receiver.sol";
import"./extensions/IERC721Metadata.sol";
import"../../utils/Address.sol";
import"../../utils/Context.sol";
import"../../utils/Strings.sol";
import"../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/contractERC721isContext, ERC165, IERC721, IERC721Metadata{
usingAddressforaddress;
usingStringsforuint256;
// Token namestringprivate _name;
// Token symbolstringprivate _symbol;
// Mapping from token ID to owner addressmapping(uint256=>address) private _owners;
// Mapping owner address to token countmapping(address=>uint256) private _balances;
// Mapping from token ID to approved addressmapping(uint256=>address) private _tokenApprovals;
// Mapping from owner to operator approvalsmapping(address=>mapping(address=>bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/constructor(stringmemory name_, stringmemory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/functionsupportsInterface(bytes4 interfaceId
) publicviewvirtualoverride(ERC165, IERC165) returns (bool) {
return
interfaceId ==type(IERC721).interfaceId||
interfaceId ==type(IERC721Metadata).interfaceId||super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/functionbalanceOf(address owner
) publicviewvirtualoverridereturns (uint256) {
require(
owner !=address(0),
"ERC721: address zero is not a valid owner"
);
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/functionownerOf(uint256 tokenId
) publicviewvirtualoverridereturns (address) {
address owner = _ownerOf(tokenId);
require(owner !=address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/functionname() publicviewvirtualoverridereturns (stringmemory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/functionsymbol() publicviewvirtualoverridereturns (stringmemory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/functiontokenURI(uint256 tokenId
) publicviewvirtualoverridereturns (stringmemory) {
_requireMinted(tokenId);
stringmemory baseURI = _baseURI();
returnbytes(baseURI).length>0
? string(abi.encodePacked(baseURI, tokenId.toString()))
: "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/function_baseURI() internalviewvirtualreturns (stringmemory) {
return"";
}
/**
* @dev See {IERC721-approve}.
*/functionapprove(address to, uint256 tokenId) publicvirtualoverride{
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/functiongetApproved(uint256 tokenId
) publicviewvirtualoverridereturns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/functionsetApprovalForAll(address operator,
bool approved
) publicvirtualoverride{
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/functionisApprovedForAll(address owner,
address operator
) publicviewvirtualoverridereturns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/functiontransferFrom(addressfrom,
address to,
uint256 tokenId
) publicvirtualoverride{
//solhint-disable-next-line max-line-lengthrequire(
_isApprovedOrOwner(_msgSender(), tokenId),
"ERC721: caller is not token owner or approved"
);
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId
) publicvirtualoverride{
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId,
bytesmemory data
) publicvirtualoverride{
require(
_isApprovedOrOwner(_msgSender(), tokenId),
"ERC721: caller is not token owner or approved"
);
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/function_safeTransfer(addressfrom,
address to,
uint256 tokenId,
bytesmemory data
) internalvirtual{
_transfer(from, to, tokenId);
require(
_checkOnERC721Received(from, to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/function_ownerOf(uint256 tokenId) internalviewvirtualreturns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/function_exists(uint256 tokenId) internalviewvirtualreturns (bool) {
return _ownerOf(tokenId) !=address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/function_isApprovedOrOwner(address spender,
uint256 tokenId
) internalviewvirtualreturns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner ||
isApprovedForAll(owner, spender) ||
getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/function_safeMint(address to, uint256 tokenId) internalvirtual{
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/function_safeMint(address to,
uint256 tokenId,
bytesmemory data
) internalvirtual{
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/function_mint(address to, uint256 tokenId) internalvirtual{
require(to !=address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hookrequire(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.// Given that tokens are minted one by one, it is impossible in practice that// this ever happens. Might change if we allow batch minting.// The ERC fails to describe this case.
_balances[to] +=1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/function_burn(uint256 tokenId) internalvirtual{
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvalsdelete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred// out than the owner initially received through minting and transferring in.
_balances[owner] -=1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/function_transfer(addressfrom,
address to,
uint256 tokenId
) internalvirtual{
require(
ERC721.ownerOf(tokenId) ==from,
"ERC721: transfer from incorrect owner"
);
require(to !=address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hookrequire(
ERC721.ownerOf(tokenId) ==from,
"ERC721: transfer from incorrect owner"
);
// Clear approvals from the previous ownerdelete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:// `from`'s balance is the number of token held, which is at least one before the current// transfer.// `_balances[to]` could overflow in the conditions described in `_mint`. That would require// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -=1;
_balances[to] +=1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/function_approve(address to, uint256 tokenId) internalvirtual{
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/function_setApprovalForAll(address owner,
address operator,
bool approved
) internalvirtual{
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/function_requireMinted(uint256 tokenId) internalviewvirtual{
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/function_checkOnERC721Received(addressfrom,
address to,
uint256 tokenId,
bytesmemory data
) privatereturns (bool) {
if (to.isContract()) {
try
IERC721Receiver(to).onERC721Received(
_msgSender(),
from,
tokenId,
data
)
returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytesmemory reason) {
if (reason.length==0) {
revert(
"ERC721: transfer to non ERC721Receiver implementer"
);
} else {
/// @solidity memory-safe-assemblyassembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
returntrue;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_beforeTokenTransfer(addressfrom,
address to,
uint256 firstTokenId,
uint256 batchSize
) internalvirtual{}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_afterTokenTransfer(addressfrom,
address to,
uint256 firstTokenId,
uint256 batchSize
) internalvirtual{}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/// solhint-disable-next-line func-name-mixedcasefunction__unsafe_increaseBalance(address account,
uint256 amount
) internal{
_balances[account] += amount;
}
}
Contract Source Code
File 9 of 19: IERC165.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/interfaceIERC165{
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/functionsupportsInterface(bytes4 interfaceId) externalviewreturns (bool);
}
Contract Source Code
File 10 of 19: IERC721.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)pragmasolidity ^0.8.0;import"../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/interfaceIERC721isIERC165{
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/eventApproval(addressindexed owner, addressindexed approved, uint256indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/eventApprovalForAll(addressindexed owner, addressindexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/functionbalanceOf(address owner) externalviewreturns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/functionownerOf(uint256 tokenId) externalviewreturns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId,
bytescalldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/functionapprove(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/functionsetApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/functiongetApproved(uint256 tokenId) externalviewreturns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/functionisApprovedForAll(address owner, address operator) externalviewreturns (bool);
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)pragmasolidity ^0.8.0;/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/interfaceIERC721Receiver{
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/functiononERC721Received(address operator,
addressfrom,
uint256 tokenId,
bytescalldata data
) externalreturns (bytes4);
}
Contract Source Code
File 13 of 19: Math.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)pragmasolidity ^0.8.0;/**
* @dev Standard math utilities missing in the Solidity language.
*/libraryMath{
enumRounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/functionmax(uint256 a, uint256 b) internalpurereturns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/functionmin(uint256 a, uint256 b) internalpurereturns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/functionaverage(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b) / 2 can overflow.return (a & b) + (a ^ b) /2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/functionceilDiv(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.return a ==0 ? 0 : (a -1) / b +1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/functionmulDiv(uint256 x,
uint256 y,
uint256 denominator
) internalpurereturns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256// variables such that product = prod1 * 2^256 + prod0.uint256 prod0; // Least significant 256 bits of the productuint256 prod1; // Most significant 256 bits of the productassembly {
let mm :=mulmod(x, y, not(0))
prod0 :=mul(x, y)
prod1 :=sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.if (prod1 ==0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.require(denominator > prod1);
///////////////////////////////////////////////// 512 by 256 division.///////////////////////////////////////////////// Make division exact by subtracting the remainder from [prod1 prod0].uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder :=mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 :=sub(prod1, gt(remainder, prod0))
prod0 :=sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.// See https://cs.stackexchange.com/q/138556/92363.// Does not overflow because the denominator cannot be zero at this stage in the function.uint256 twos = denominator & (~denominator +1);
assembly {
// Divide denominator by twos.
denominator :=div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 :=div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos :=add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for// four bits. That is, denominator * inv = 1 mod 2^4.uint256 inverse = (3* denominator) ^2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works// in modular arithmetic, doubling the correct bits in each step.
inverse *=2- denominator * inverse; // inverse mod 2^8
inverse *=2- denominator * inverse; // inverse mod 2^16
inverse *=2- denominator * inverse; // inverse mod 2^32
inverse *=2- denominator * inverse; // inverse mod 2^64
inverse *=2- denominator * inverse; // inverse mod 2^128
inverse *=2- denominator * inverse; // inverse mod 2^256// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/functionmulDiv(uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internalpurereturns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up &&mulmod(x, y, denominator) >0) {
result +=1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/functionsqrt(uint256 a) internalpurereturns (uint256) {
if (a ==0) {
return0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.//// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.//// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`//// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.uint256 result =1<< (log2(a) >>1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision// into the expected uint128 result.unchecked {
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/functionsqrt(uint256 a, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >>128>0) {
value >>=128;
result +=128;
}
if (value >>64>0) {
value >>=64;
result +=64;
}
if (value >>32>0) {
value >>=32;
result +=32;
}
if (value >>16>0) {
value >>=16;
result +=16;
}
if (value >>8>0) {
value >>=8;
result +=8;
}
if (value >>4>0) {
value >>=4;
result +=4;
}
if (value >>2>0) {
value >>=2;
result +=2;
}
if (value >>1>0) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result =log2(value);
return result + (rounding == Rounding.Up &&1<< result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >=10**64) {
value /=10**64;
result +=64;
}
if (value >=10**32) {
value /=10**32;
result +=32;
}
if (value >=10**16) {
value /=10**16;
result +=16;
}
if (value >=10**8) {
value /=10**8;
result +=8;
}
if (value >=10**4) {
value /=10**4;
result +=4;
}
if (value >=10**2) {
value /=10**2;
result +=2;
}
if (value >=10**1) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up &&10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/functionlog256(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >>128>0) {
value >>=128;
result +=16;
}
if (value >>64>0) {
value >>=64;
result +=8;
}
if (value >>32>0) {
value >>=32;
result +=4;
}
if (value >>16>0) {
value >>=16;
result +=2;
}
if (value >>8>0) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog256(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up &&1<< (result *8) < value ? 1 : 0);
}
}
}
Contract Source Code
File 14 of 19: MerkleProof.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)pragmasolidity ^0.8.0;/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/libraryMerkleProof{
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/functionverify(bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internalpurereturns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/functionverifyCalldata(bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internalpurereturns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/functionprocessProof(bytes32[] memory proof, bytes32 leaf) internalpurereturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/functionprocessProofCalldata(bytes32[] calldata proof, bytes32 leaf) internalpurereturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/functionmultiProofVerify(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internalpurereturns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/functionmultiProofVerifyCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internalpurereturns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/functionprocessMultiProof(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internalpurereturns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the merkle tree.uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.require(leavesLen + proof.length-1== totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](totalHashes);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes >0) {
return hashes[totalHashes -1];
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/functionprocessMultiProofCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internalpurereturns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the merkle tree.uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.require(leavesLen + proof.length-1== totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](totalHashes);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes >0) {
return hashes[totalHashes -1];
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
function_hashPair(bytes32 a, bytes32 b) privatepurereturns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function_efficientHash(bytes32 a, bytes32 b) privatepurereturns (bytes32 value) {
/// @solidity memory-safe-assemblyassembly {
mstore(0x00, a)
mstore(0x20, b)
value :=keccak256(0x00, 0x40)
}
}
}
Contract Source Code
File 15 of 19: Ownable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)pragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Contract Source Code
File 16 of 19: Queue.sol
// SPDX-License-Identifier: GPL-3.0pragmasolidity 0.8.21;import"@openzeppelin/contracts/token/ERC721/ERC721.sol";
import"@openzeppelin/contracts/access/Ownable.sol";
import"@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import"./QueueRenderer.sol";
/**
######################### ##############################
######################## ###########################
####################### ##### #########################
##################### ### # ######################
#################### ## #### ## ###################
################## ### ## # ### #################
################# ## ### ### ## ## ##############
################ ## ## ## # ## ### ###########
############## ## ## ## ## # ## ## #########
############# ## # ## ## ## # ## ### ######
############ ## # ## # ## # # ### #### ####
########### ## ## # # # # ## ## ### #### #
######### # # # # ## ### ####
#### ## ## # # # # ## ## #### ## #
### # # # ## # # Queue # # ## ### ## ##
## # # ### ## ## # Wait # # # # # # ###
# # #### ## ## # Mint # ## ## ####
##### ### ## ## # # ## ######
## #### ### ## # ## # # # ## ## #######
##### ##### ### ## # # ## ## ## ## ## ########
####### #### ## ## ## ## ## ## ## ##########
########## #### ## ## ## ## ## ## ###########
############# ### ## # ## ### ## ############
################ ### ## #### ### ### #############
################### ### ## ### ### ###############
###################### ### #### ### ################
######################## ## ### #################
########################### ###### ##################
############################## # ####################
################################# #####################
*/contractQueueisERC721, Ownable, QueueRenderer{
uint256public mintBegin;
uint256public queueBegin;
uint256public startMintingFee;
uint256public priceIncrement;
uint256public currentToken =1;
bytes32internal _root;
uint256internal _maxBlocksRich =600;
uint256internal _maxBlocksPlain =1300;
uint256internalconstant DISCOUNTED =85;
mapping(uint256=>uint256) internal _tokenViews;
constructor(stringmemory name,
stringmemory symbol,
uint256 mintBegin_,
uint256 queueBegin_,
uint256 startMintingFee_,
uint256 priceIncrement_,
address assets
) QueueRenderer(assets) ERC721(name, symbol) {
mintBegin = mintBegin_;
queueBegin = queueBegin_;
startMintingFee = startMintingFee_;
priceIncrement = priceIncrement_;
}
modifiermintClosed() {
require(block.number< mintBegin, "mint begun");
_;
}
modifiermintOpen() {
require(block.number>= mintBegin, "mint closed");
_;
}
modifiertradingActive() {
require(
currentToken >= queueLength ||block.number- mintBegin > queueLength,
"trading not active"
);
_;
}
modifiermintInProgress() {
require(block.number< mintBegin + queueLength, "mint ended");
_;
}
// Adminfunctionwithdraw(address to) externalonlyOwner{
(bool success, ) = to.call{ value: address(this).balance }("");
require(success, "fail");
}
functionsetRoot(bytes32 root) externalonlyOwner{
_root = root;
}
functionsetRenderingThresholds(uint256 maxBlocksRich_,
uint256 maxBlocksPlain_
) externalonlyOwner{
_maxBlocksRich = maxBlocksRich_;
_maxBlocksPlain = maxBlocksPlain_;
}
functionsetPrices(uint256 priceIncrement_,
uint256 startMintingFee_
) externalonlyOwnermintClosed{
priceIncrement = priceIncrement_;
startMintingFee = startMintingFee_;
}
functionsetAssets(address assets) externalonlyOwner{
_assets = Assets(assets);
}
functionsetTimes(uint256 mintBegin_,
uint256 queueBegin_
) externalonlyOwnermintClosed{
mintBegin = mintBegin_;
queueBegin = queueBegin_;
}
functionmintPrivate(address[] memory wallets,
uint256[] memory amounts
) externalonlyOwnermintOpen{
uint256 walletLength = wallets.length;
for (uint256 i =0; i < walletLength; i++) {
uint256 amount = amounts[i];
require(currentToken -1+ amount <= queueLength, "sales ended");
_mintBatch(wallets[i], amount);
}
}
functionmintZero() externalonlyOwner{
_mint(owner(), 0);
}
// ***** Public *****// Write/**
* Queue up.
*/functionenter() externalmintClosed{
require(block.number> queueBegin, "wait to wait");
queue[queueLength++] =uint160(msg.sender);
}
/**
* Mint
*/functionmint(uint256 amount,
uint256[] calldata positions
) publicpayablemintOpenmintInProgress{
uint256 currentSlot = _calculateSlot(block.number);
_validate(
currentSlot,
amount,
_priceAt(currentSlot, queueLength) * amount,
positions
);
_mintBatch(msg.sender, amount);
}
/**
* Mint with discount options
*/functionmintDiscount(uint256 amount,
uint256[] calldata positions,
uint8 freeAmount,
bytes32[] calldata proof
) publicpayablemintOpenmintInProgress{
require(balanceOf(msg.sender) ==0, "voucher used");
bytes32 leaf =keccak256(
bytes.concat(keccak256(abi.encode(msg.sender, freeAmount)))
);
require(MerkleProof.verify(proof, _root, leaf), "invalid proof");
uint256 currentSlot = _calculateSlot(block.number);
uint256 currentPrice = _priceAt(currentSlot, queueLength);
uint256 total = ((currentPrice * DISCOUNTED) /100) *
(amount - freeAmount);
_validate(currentSlot, amount, total, positions);
_mintBatch(msg.sender, amount);
}
/**
* Explore your queue.
* @param tokenId Your token
* @param height Height of the camera
* @param subjectIndex Centered block, relative to the first block in the queue at *this* stage. Starts from 0.
*/functionexplore(uint256 tokenId,
uint256 height,
uint256 subjectIndex
) public{
require(msg.sender== ownerOf(tokenId), "not the owner");
require(height >0&& height <32, "invalid height");
require(subjectIndex < queueLength - (tokenId -1), "invalid subject");
uint256 updates = ((_tokenViews[tokenId] >>128) +1) & (2**123-1);
_tokenViews[tokenId] =
(height <<251) |
(updates <<128) |uint128(subjectIndex);
}
// Read/**
* It renders the current state of the queue as an svg.
* It will be complete right before the minting starts.
* It will be empy after the minting ends, at which point
* this method becomes pretty much useless
* (unless you are interested in a permanently degree-and-hue-rotating background).
* @param plain if true it will render a plain version of the line
* @return svg an svg string of the queue
* @return index the index currently at the head of the queue
* @return count number of blocks in the queue
*/functionrenderCurrent(bool plain
) publicviewreturns (stringmemory, uint256, uint256) {
uint256 index = _calculateSlotSafe(block.number);
(bytesmemory output, uint256 count) = _renderFrom(index, plain);
return (string(output), index, count);
}
/**
* Returns information related to the account
* @param account the desired account
* @return wallet the ENS or 0x string of the given wallet
* @return svg the block rendering of the given wallet
* @return positions the positions in line, starting from 0
*/functionaccountData(address account
)
publicviewreturns (stringmemory wallet,
stringmemory svg,
uint256[] memory positions
)
{
(wallet, ) = _assets.convertWallet(account);
svg = _renderWallet(account);
uint256 total;
uint256[] memory positionsTmp =newuint256[](4096);
for (uint256 i =0; i < queueLength; i++) {
if (queue[i] ==uint160(account)) {
positionsTmp[total++] = i;
}
}
positions =newuint256[](total);
for (uint256 i =0; i < total; i++) {
positions[i] = positionsTmp[i];
}
}
/**
* Returns information related to a given index in line.
* @param index the index, starting from 0
* @return wallet the ENS or 0x string of the wallet at the given index
* @return svg the block rendering of the wallet at the given index
*/functionwalletAtIndex(uint256 index
) publicviewreturns (stringmemory wallet, stringmemory svg) {
require(index < queueLength, "index beyond queue");
address account =address(queue[index]);
(wallet, ) = _assets.convertWallet(account);
svg = _renderWallet(account);
}
// OverridesfunctiontokenURI(uint256 tokenId
) publicviewoverridereturns (stringmemory) {
require(_exists(tokenId), "non existing token");
uint256 zoom =32;
uint256 subject =0;
uint256 updates =0;
uint256 minQueueIndex =0;
uint256 blockNumber =block.number;
if (tokenId >0) {
blockNumber = mintBegin + tokenId;
(zoom, subject, updates) = _getViewConfig(tokenId);
minQueueIndex = tokenId -1;
}
bytesmemory buffer = DynamicBuffer.allocate(20000);
DynamicBuffer.appendUnchecked(buffer, "data:application/json,");
bytesmemory details = _assets.metadataDetails(tokenId);
DynamicBuffer.appendUnchecked(buffer, details);
bytesmemory output;
uint256 peopleCount;
if (tokenId >0) {
(output, peopleCount) = _render(
buffer,
Mode.STANDARD,
queueLength - minQueueIndex,
blockNumber,
minQueueIndex,
subject,
zoom
);
bytesmemory attributes = _getAttributes(
minQueueIndex,
subject,
peopleCount,
zoom,
updates
);
DynamicBuffer.appendUnchecked(output, attributes);
returnstring(output);
} else {
(output, ) = _renderFrom(0, false);
DynamicBuffer.appendUnchecked(buffer, output);
DynamicBuffer.appendUnchecked(buffer, '"}');
returnstring(buffer);
}
}
function_transfer(addressfrom,
address to,
uint256 tokenId
) internalvirtualoverridetradingActive{
super._transfer(from, to, tokenId);
}
function_approve(address to,
uint256 tokenId
) internalvirtualoverridetradingActive{
super._approve(to, tokenId);
}
function_setApprovalForAll(address owner,
address operator,
bool approved
) internalvirtualoverridetradingActive{
require(queueLength >1, "trading not active");
super._setApprovalForAll(owner, operator, approved);
}
//**** Internal *****// Writefunction_mintBatch(address to, uint256 amount) internal{
for (uint256 i =0; i < amount; i++) {
super._mint(to, currentToken++);
}
}
// Readfunction_getAttributes(uint256 minQueueIndex,
uint256 subject,
uint256 peopleCount,
uint256 zoom,
uint256 updates
) internalviewreturns (bytesmemory) {
address wallet =address(queue[minQueueIndex + subject]);
return
_assets.metadataAttributes(
peopleCount,
zoom,
subject,
minQueueIndex,
queueLength,
updates,
wallet
);
}
function_priceAt(uint256 slot,
uint256 length
) internalviewreturns (uint256) {
if (slot < length >>1) {
return startMintingFee + priceIncrement * slot;
} else {
return startMintingFee + priceIncrement * (length - slot -1);
}
}
function_validate(uint256 currentSlot,
uint256 amount,
uint256 price,
uint256[] calldata indexes
) internalview{
require(queue[indexes[0]] ==uint160(msg.sender), "invalid index");
uint256 length = indexes.length;
for (uint256 i =1; i < length; i++) {
require(
indexes[i -1] < indexes[i] &&
queue[indexes[i]] ==uint160(msg.sender),
"invalid indexes"
);
}
require(
balanceOf(msg.sender) + amount <= length <<1,
"invalid amount"
);
require(currentSlot >= indexes[0], "not your turn");
require(currentToken -1+ amount <= queueLength, "sales ended");
require(msg.value>= price, "not enough ether");
}
function_calculateSlot(uint256 blockNumber
) internalviewreturns (uint256) {
return blockNumber - mintBegin;
}
function_calculateSlotSafe(uint256 blockNumber
) internalviewreturns (uint256) {
return blockNumber < mintBegin ? 0 : _calculateSlot(blockNumber);
}
function_getViewConfig(uint256 tokenId
) internalviewreturns (uint256 zoom, uint256 subject, uint256 updates) {
uint256 tokenView = _tokenViews[tokenId];
zoom = tokenView >>251;
updates = (tokenView >>128) & (2**123-1);
subject =uint128(tokenView);
if (zoom ==0) {
uint256 randomness =uint256(
keccak256(abi.encodePacked(tokenId, queueLength))
);
uint256 prob = randomness % queueLength;
if (prob < (queueLength *850) /1000) {
zoom = (prob %5) +1;
} elseif (prob < (queueLength *950) /1000) {
zoom = (prob %6) +5;
} elseif (prob < (queueLength *999) /1000) {
zoom = (prob %11) +11;
} else {
zoom =31;
}
subject =uint128(randomness % (queueLength - tokenId +1));
}
}
function_renderFrom(uint256 index,
bool plain
) internalviewreturns (bytesmemory, uint256) {
uint256 count;
if (index < queueLength) {
count = queueLength - index;
}
Mode mode;
if (count < _maxBlocksRich &&!plain) {
mode = Mode.FULL_RICH;
} elseif (count < _maxBlocksPlain) {
mode = Mode.FULL_PLAIN;
} else {
mode = Mode.FULL_PATH;
}
bytesmemory beforeBuffer;
(bytesmemory output, ) = _render(
beforeBuffer,
mode,
count,
block.number,
index,
0,
32
);
return (output, count);
}
}