// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library to encode strings in Base64.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)
/// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <brecht@loopring.org>.
library Base64 {
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// See: https://datatracker.ietf.org/doc/html/rfc4648
/// @param fileSafe Whether to replace '+' with '-' and '/' with '_'.
/// @param noPadding Whether to strip away the padding.
function encode(bytes memory data, bool fileSafe, bool noPadding)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let dataLength := mload(data)
if dataLength {
// Multiply by 4/3 rounded up.
// The `shl(2, ...)` is equivalent to multiplying by 4.
let encodedLength := shl(2, div(add(dataLength, 2), 3))
// Set `result` to point to the start of the free memory.
result := mload(0x40)
// Store the table into the scratch space.
// Offsetted by -1 byte so that the `mload` will load the character.
// We will rewrite the free memory pointer at `0x40` later with
// the allocated size.
// The magic constant 0x0670 will turn "-_" into "+/".
mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
mstore(0x3f, xor("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0670)))
// Skip the first slot, which stores the length.
let ptr := add(result, 0x20)
let end := add(ptr, encodedLength)
let dataEnd := add(add(0x20, data), dataLength)
let dataEndValue := mload(dataEnd) // Cache the value at the `dataEnd` slot.
mstore(dataEnd, 0x00) // Zeroize the `dataEnd` slot to clear dirty bits.
// Run over the input, 3 bytes at a time.
for {} 1 {} {
data := add(data, 3) // Advance 3 bytes.
let input := mload(data)
// Write 4 bytes. Optimized for fewer stack operations.
mstore8(0, mload(and(shr(18, input), 0x3F)))
mstore8(1, mload(and(shr(12, input), 0x3F)))
mstore8(2, mload(and(shr(6, input), 0x3F)))
mstore8(3, mload(and(input, 0x3F)))
mstore(ptr, mload(0x00))
ptr := add(ptr, 4) // Advance 4 bytes.
if iszero(lt(ptr, end)) { break }
}
mstore(dataEnd, dataEndValue) // Restore the cached value at `dataEnd`.
mstore(0x40, add(end, 0x20)) // Allocate the memory.
// Equivalent to `o = [0, 2, 1][dataLength % 3]`.
let o := div(2, mod(dataLength, 3))
// Offset `ptr` and pad with '='. We can simply write over the end.
mstore(sub(ptr, o), shl(240, 0x3d3d))
// Set `o` to zero if there is padding.
o := mul(iszero(iszero(noPadding)), o)
mstore(sub(ptr, o), 0) // Zeroize the slot after the string.
mstore(result, sub(encodedLength, o)) // Store the length.
}
}
}
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// Equivalent to `encode(data, false, false)`.
function encode(bytes memory data) internal pure returns (string memory result) {
result = encode(data, false, false);
}
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// Equivalent to `encode(data, fileSafe, false)`.
function encode(bytes memory data, bool fileSafe)
internal
pure
returns (string memory result)
{
result = encode(data, fileSafe, false);
}
/// @dev Decodes base64 encoded `data`.
///
/// Supports:
/// - RFC 4648 (both standard and file-safe mode).
/// - RFC 3501 (63: ',').
///
/// Does not support:
/// - Line breaks.
///
/// Note: For performance reasons,
/// this function will NOT revert on invalid `data` inputs.
/// Outputs for invalid inputs will simply be undefined behaviour.
/// It is the user's responsibility to ensure that the `data`
/// is a valid base64 encoded string.
function decode(string memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
let dataLength := mload(data)
if dataLength {
let decodedLength := mul(shr(2, dataLength), 3)
for {} 1 {} {
// If padded.
if iszero(and(dataLength, 3)) {
let t := xor(mload(add(data, dataLength)), 0x3d3d)
// forgefmt: disable-next-item
decodedLength := sub(
decodedLength,
add(iszero(byte(30, t)), iszero(byte(31, t)))
)
break
}
// If non-padded.
decodedLength := add(decodedLength, sub(and(dataLength, 3), 1))
break
}
result := mload(0x40)
// Write the length of the bytes.
mstore(result, decodedLength)
// Skip the first slot, which stores the length.
let ptr := add(result, 0x20)
let end := add(ptr, decodedLength)
// Load the table into the scratch space.
// Constants are optimized for smaller bytecode with zero gas overhead.
// `m` also doubles as the mask of the upper 6 bits.
let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc
mstore(0x5b, m)
mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064)
mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4)
for {} 1 {} {
// Read 4 bytes.
data := add(data, 4)
let input := mload(data)
// Write 3 bytes.
// forgefmt: disable-next-item
mstore(ptr, or(
and(m, mload(byte(28, input))),
shr(6, or(
and(m, mload(byte(29, input))),
shr(6, or(
and(m, mload(byte(30, input))),
shr(6, mload(byte(31, input)))
))
))
))
ptr := add(ptr, 3)
if iszero(lt(ptr, end)) { break }
}
mstore(0x40, add(end, 0x20)) // Allocate the memory.
mstore(end, 0) // Zeroize the slot after the bytes.
mstore(0x60, 0) // Restore the zero slot.
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
import './IERC721A.sol';
/**
* @dev Interface of ERC721 token receiver.
*/
interface ERC721A__IERC721Receiver {
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
/**
* @title ERC721A
*
* @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
* Non-Fungible Token Standard, including the Metadata extension.
* Optimized for lower gas during batch mints.
*
* Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
* starting from `_startTokenId()`.
*
* The `_sequentialUpTo()` function can be overriden to enable spot mints
* (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`.
*
* Assumptions:
*
* - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
* - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
*/
contract ERC721A is IERC721A {
// Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
struct TokenApprovalRef {
address value;
}
// =============================================================
// CONSTANTS
// =============================================================
// Mask of an entry in packed address data.
uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;
// The bit position of `numberMinted` in packed address data.
uint256 private constant _BITPOS_NUMBER_MINTED = 64;
// The bit position of `numberBurned` in packed address data.
uint256 private constant _BITPOS_NUMBER_BURNED = 128;
// The bit position of `aux` in packed address data.
uint256 private constant _BITPOS_AUX = 192;
// Mask of all 256 bits in packed address data except the 64 bits for `aux`.
uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;
// The bit position of `startTimestamp` in packed ownership.
uint256 private constant _BITPOS_START_TIMESTAMP = 160;
// The bit mask of the `burned` bit in packed ownership.
uint256 private constant _BITMASK_BURNED = 1 << 224;
// The bit position of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;
// The bit mask of the `nextInitialized` bit in packed ownership.
uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;
// The bit position of `extraData` in packed ownership.
uint256 private constant _BITPOS_EXTRA_DATA = 232;
// Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;
// The mask of the lower 160 bits for addresses.
uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;
// The maximum `quantity` that can be minted with {_mintERC2309}.
// This limit is to prevent overflows on the address data entries.
// For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
// is required to cause an overflow, which is unrealistic.
uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;
// The `Transfer` event signature is given by:
// `keccak256(bytes("Transfer(address,address,uint256)"))`.
bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
// =============================================================
// STORAGE
// =============================================================
// The next token ID to be minted.
uint256 private _currentIndex;
// The number of tokens burned.
uint256 private _burnCounter;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to ownership details
// An empty struct value does not necessarily mean the token is unowned.
// See {_packedOwnershipOf} implementation for details.
//
// Bits Layout:
// - [0..159] `addr`
// - [160..223] `startTimestamp`
// - [224] `burned`
// - [225] `nextInitialized`
// - [232..255] `extraData`
mapping(uint256 => uint256) private _packedOwnerships;
// Mapping owner address to address data.
//
// Bits Layout:
// - [0..63] `balance`
// - [64..127] `numberMinted`
// - [128..191] `numberBurned`
// - [192..255] `aux`
mapping(address => uint256) private _packedAddressData;
// Mapping from token ID to approved address.
mapping(uint256 => TokenApprovalRef) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// The amount of tokens minted above `_sequentialUpTo()`.
// We call these spot mints (i.e. non-sequential mints).
uint256 private _spotMinted;
// =============================================================
// CONSTRUCTOR
// =============================================================
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_currentIndex = _startTokenId();
if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector);
}
// =============================================================
// TOKEN COUNTING OPERATIONS
// =============================================================
/**
* @dev Returns the starting token ID for sequential mints.
*
* Override this function to change the starting token ID for sequential mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _startTokenId() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev Returns the maximum token ID (inclusive) for sequential mints.
*
* Override this function to return a value less than 2**256 - 1,
* but greater than `_startTokenId()`, to enable spot (non-sequential) mints.
*
* Note: The value returned must never change after any tokens have been minted.
*/
function _sequentialUpTo() internal view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @dev Returns the next token ID to be minted.
*/
function _nextTokenId() internal view virtual returns (uint256) {
return _currentIndex;
}
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() public view virtual override returns (uint256 result) {
// Counter underflow is impossible as `_burnCounter` cannot be incremented
// more than `_currentIndex + _spotMinted - _startTokenId()` times.
unchecked {
// With spot minting, the intermediate `result` can be temporarily negative,
// and the computation must be unchecked.
result = _currentIndex - _burnCounter - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
}
}
/**
* @dev Returns the total amount of tokens minted in the contract.
*/
function _totalMinted() internal view virtual returns (uint256 result) {
// Counter underflow is impossible as `_currentIndex` does not decrement,
// and it is initialized to `_startTokenId()`.
unchecked {
result = _currentIndex - _startTokenId();
if (_sequentialUpTo() != type(uint256).max) result += _spotMinted;
}
}
/**
* @dev Returns the total number of tokens burned.
*/
function _totalBurned() internal view virtual returns (uint256) {
return _burnCounter;
}
/**
* @dev Returns the total number of tokens that are spot-minted.
*/
function _totalSpotMinted() internal view virtual returns (uint256) {
return _spotMinted;
}
// =============================================================
// ADDRESS DATA OPERATIONS
// =============================================================
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector);
return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens minted by `owner`.
*/
function _numberMinted(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the number of tokens burned by or on behalf of `owner`.
*/
function _numberBurned(address owner) internal view returns (uint256) {
return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
}
/**
* Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
*/
function _getAux(address owner) internal view returns (uint64) {
return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
}
/**
* Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
* If there are multiple variables, please pack them into a uint64.
*/
function _setAux(address owner, uint64 aux) internal virtual {
uint256 packed = _packedAddressData[owner];
uint256 auxCasted;
// Cast `aux` with assembly to avoid redundant masking.
assembly {
auxCasted := aux
}
packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
_packedAddressData[owner] = packed;
}
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
// The interface IDs are constants representing the first 4 bytes
// of the XOR of all function selectors in the interface.
// See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
// (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
return
interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
}
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the token collection symbol.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector);
string memory baseURI = _baseURI();
return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, it can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return '';
}
// =============================================================
// OWNERSHIPS OPERATIONS
// =============================================================
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return address(uint160(_packedOwnershipOf(tokenId)));
}
/**
* @dev Gas spent here starts off proportional to the maximum mint batch size.
* It gradually moves to O(1) as tokens get transferred around over time.
*/
function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnershipOf(tokenId));
}
/**
* @dev Returns the unpacked `TokenOwnership` struct at `index`.
*/
function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
return _unpackedOwnership(_packedOwnerships[index]);
}
/**
* @dev Returns whether the ownership slot at `index` is initialized.
* An uninitialized slot does not necessarily mean that the slot has no owner.
*/
function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) {
return _packedOwnerships[index] != 0;
}
/**
* @dev Initializes the ownership slot minted at `index` for efficiency purposes.
*/
function _initializeOwnershipAt(uint256 index) internal virtual {
if (_packedOwnerships[index] == 0) {
_packedOwnerships[index] = _packedOwnershipOf(index);
}
}
/**
* @dev Returns the packed ownership data of `tokenId`.
*/
function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) {
if (_startTokenId() <= tokenId) {
packed = _packedOwnerships[tokenId];
if (tokenId > _sequentialUpTo()) {
if (_packedOwnershipExists(packed)) return packed;
_revert(OwnerQueryForNonexistentToken.selector);
}
// If the data at the starting slot does not exist, start the scan.
if (packed == 0) {
if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector);
// Invariant:
// There will always be an initialized ownership slot
// (i.e. `ownership.addr != address(0) && ownership.burned == false`)
// before an unintialized ownership slot
// (i.e. `ownership.addr == address(0) && ownership.burned == false`)
// Hence, `tokenId` will not underflow.
//
// We can directly compare the packed value.
// If the address is zero, packed will be zero.
for (;;) {
unchecked {
packed = _packedOwnerships[--tokenId];
}
if (packed == 0) continue;
if (packed & _BITMASK_BURNED == 0) return packed;
// Otherwise, the token is burned, and we must revert.
// This handles the case of batch burned tokens, where only the burned bit
// of the starting slot is set, and remaining slots are left uninitialized.
_revert(OwnerQueryForNonexistentToken.selector);
}
}
// Otherwise, the data exists and we can skip the scan.
// This is possible because we have already achieved the target condition.
// This saves 2143 gas on transfers of initialized tokens.
// If the token is not burned, return `packed`. Otherwise, revert.
if (packed & _BITMASK_BURNED == 0) return packed;
}
_revert(OwnerQueryForNonexistentToken.selector);
}
/**
* @dev Returns the unpacked `TokenOwnership` struct from `packed`.
*/
function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
ownership.addr = address(uint160(packed));
ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
ownership.burned = packed & _BITMASK_BURNED != 0;
ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
}
/**
* @dev Packs ownership data into a single uint256.
*/
function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
}
}
/**
* @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
*/
function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
// For branchless setting of the `nextInitialized` flag.
assembly {
// `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
}
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
*/
function approve(address to, uint256 tokenId) public payable virtual override {
_approve(to, tokenId, true);
}
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector);
return _tokenApprovals[tokenId].value;
}
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_operatorApprovals[_msgSenderERC721A()][operator] = approved;
emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
}
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted. See {_mint}.
*/
function _exists(uint256 tokenId) internal view virtual returns (bool result) {
if (_startTokenId() <= tokenId) {
if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]);
if (tokenId < _currentIndex) {
uint256 packed;
while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId;
result = packed & _BITMASK_BURNED == 0;
}
}
}
/**
* @dev Returns whether `packed` represents a token that exists.
*/
function _packedOwnershipExists(uint256 packed) private pure returns (bool result) {
assembly {
// The following is equivalent to `owner != address(0) && burned == false`.
// Symbolically tested.
result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED))
}
}
/**
* @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
*/
function _isSenderApprovedOrOwner(
address approvedAddress,
address owner,
address msgSender
) private pure returns (bool result) {
assembly {
// Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
owner := and(owner, _BITMASK_ADDRESS)
// Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
msgSender := and(msgSender, _BITMASK_ADDRESS)
// `msgSender == owner || msgSender == approvedAddress`.
result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
}
}
/**
* @dev Returns the storage slot and value for the approved address of `tokenId`.
*/
function _getApprovedSlotAndAddress(uint256 tokenId)
private
view
returns (uint256 approvedAddressSlot, address approvedAddress)
{
TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
// The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
assembly {
approvedAddressSlot := tokenApproval.slot
approvedAddress := sload(approvedAddressSlot)
}
}
// =============================================================
// TRANSFER OPERATIONS
// =============================================================
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
// Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean.
from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS));
if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector);
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
_beforeTokenTransfers(from, to, tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// We can directly increment and decrement the balances.
--_packedAddressData[from]; // Updates: `balance -= 1`.
++_packedAddressData[to]; // Updates: `balance += 1`.
// Updates:
// - `address` to the next owner.
// - `startTimestamp` to the timestamp of transfering.
// - `burned` to `false`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
from, // `from`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
if (toMasked == 0) _revert(TransferToZeroAddress.selector);
_afterTokenTransfers(from, to, tokenId, 1);
}
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public payable virtual override {
safeTransferFrom(from, to, tokenId, '');
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public payable virtual override {
transferFrom(from, to, tokenId);
if (to.code.length != 0)
if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
}
/**
* @dev Hook that is called before a set of serially-ordered token IDs
* are about to be transferred. This includes minting.
* And also called before burning one token.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _beforeTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Hook that is called after a set of serially-ordered token IDs
* have been transferred. This includes minting.
* And also called after one token has been burned.
*
* `startTokenId` - the first token ID to be transferred.
* `quantity` - the amount to be transferred.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
* transferred to `to`.
* - When `from` is zero, `tokenId` has been minted for `to`.
* - When `to` is zero, `tokenId` has been burned by `from`.
* - `from` and `to` are never both zero.
*/
function _afterTokenTransfers(
address from,
address to,
uint256 startTokenId,
uint256 quantity
) internal virtual {}
/**
* @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
*
* `from` - Previous owner of the given token ID.
* `to` - Target address that will receive the token.
* `tokenId` - Token ID to be transferred.
* `_data` - Optional data to send along with the call.
*
* Returns whether the call correctly returned the expected magic value.
*/
function _checkContractOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
bytes4 retval
) {
return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
assembly {
revert(add(32, reason), mload(reason))
}
}
}
// =============================================================
// MINT OPERATIONS
// =============================================================
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {Transfer} event for each mint.
*/
function _mint(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (quantity == 0) _revert(MintZeroQuantity.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are incredibly unrealistic.
// `balance` and `numberMinted` have a maximum limit of 2**64.
// `tokenId` has a maximum limit of 2**256.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
uint256 end = startTokenId + quantity;
uint256 tokenId = startTokenId;
if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
do {
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
// The `!=` check ensures that large values of `quantity`
// that overflows uint256 will make the loop run out of gas.
} while (++tokenId != end);
_currentIndex = end;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Mints `quantity` tokens and transfers them to `to`.
*
* This function is intended for efficient minting only during contract creation.
*
* It emits only one {ConsecutiveTransfer} as defined in
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
* instead of a sequence of {Transfer} event(s).
*
* Calling this function outside of contract creation WILL make your contract
* non-compliant with the ERC721 standard.
* For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
* {ConsecutiveTransfer} event is only permissible during contract creation.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `quantity` must be greater than 0.
*
* Emits a {ConsecutiveTransfer} event.
*/
function _mintERC2309(address to, uint256 quantity) internal virtual {
uint256 startTokenId = _currentIndex;
if (to == address(0)) _revert(MintToZeroAddress.selector);
if (quantity == 0) _revert(MintZeroQuantity.selector);
if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector);
_beforeTokenTransfers(address(0), to, startTokenId, quantity);
// Overflows are unrealistic due to the above check for `quantity` to be below the limit.
unchecked {
// Updates:
// - `balance += quantity`.
// - `numberMinted += quantity`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `quantity == 1`.
_packedOwnerships[startTokenId] = _packOwnershipData(
to,
_nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
);
if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector);
emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);
_currentIndex = startTokenId + quantity;
}
_afterTokenTransfers(address(0), to, startTokenId, quantity);
}
/**
* @dev Safely mints `quantity` tokens and transfers them to `to`.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
* - `quantity` must be greater than 0.
*
* See {_mint}.
*
* Emits a {Transfer} event for each mint.
*/
function _safeMint(
address to,
uint256 quantity,
bytes memory _data
) internal virtual {
_mint(to, quantity);
unchecked {
if (to.code.length != 0) {
uint256 end = _currentIndex;
uint256 index = end - quantity;
do {
if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
} while (index < end);
// This prevents reentrancy to `_safeMint`.
// It does not prevent reentrancy to `_safeMintSpot`.
if (_currentIndex != end) revert();
}
}
}
/**
* @dev Equivalent to `_safeMint(to, quantity, '')`.
*/
function _safeMint(address to, uint256 quantity) internal virtual {
_safeMint(to, quantity, '');
}
/**
* @dev Mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* Emits a {Transfer} event for each mint.
*/
function _mintSpot(address to, uint256 tokenId) internal virtual {
if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector);
uint256 prevOwnershipPacked = _packedOwnerships[tokenId];
if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector);
_beforeTokenTransfers(address(0), to, tokenId, 1);
// Overflows are incredibly unrealistic.
// The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1.
// `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1.
unchecked {
// Updates:
// - `address` to the owner.
// - `startTimestamp` to the timestamp of minting.
// - `burned` to `false`.
// - `nextInitialized` to `true` (as `quantity == 1`).
_packedOwnerships[tokenId] = _packOwnershipData(
to,
_nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked)
);
// Updates:
// - `balance += 1`.
// - `numberMinted += 1`.
//
// We can directly add to the `balance` and `numberMinted`.
_packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1;
// Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS;
if (toMasked == 0) _revert(MintToZeroAddress.selector);
assembly {
// Emit the `Transfer` event.
log4(
0, // Start of data (0, since no data).
0, // End of data (0, since no data).
_TRANSFER_EVENT_SIGNATURE, // Signature.
0, // `address(0)`.
toMasked, // `to`.
tokenId // `tokenId`.
)
}
++_spotMinted;
}
_afterTokenTransfers(address(0), to, tokenId, 1);
}
/**
* @dev Safely mints a single token at `tokenId`.
*
* Note: A spot-minted `tokenId` that has been burned can be re-minted again.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}.
* - `tokenId` must be greater than `_sequentialUpTo()`.
* - `tokenId` must not exist.
*
* See {_mintSpot}.
*
* Emits a {Transfer} event.
*/
function _safeMintSpot(
address to,
uint256 tokenId,
bytes memory _data
) internal virtual {
_mintSpot(to, tokenId);
unchecked {
if (to.code.length != 0) {
uint256 currentSpotMinted = _spotMinted;
if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) {
_revert(TransferToNonERC721ReceiverImplementer.selector);
}
// This prevents reentrancy to `_safeMintSpot`.
// It does not prevent reentrancy to `_safeMint`.
if (_spotMinted != currentSpotMinted) revert();
}
}
}
/**
* @dev Equivalent to `_safeMintSpot(to, tokenId, '')`.
*/
function _safeMintSpot(address to, uint256 tokenId) internal virtual {
_safeMintSpot(to, tokenId, '');
}
// =============================================================
// APPROVAL OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_approve(to, tokenId, false)`.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_approve(to, tokenId, false);
}
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function _approve(
address to,
uint256 tokenId,
bool approvalCheck
) internal virtual {
address owner = ownerOf(tokenId);
if (approvalCheck && _msgSenderERC721A() != owner)
if (!isApprovedForAll(owner, _msgSenderERC721A())) {
_revert(ApprovalCallerNotOwnerNorApproved.selector);
}
_tokenApprovals[tokenId].value = to;
emit Approval(owner, to, tokenId);
}
// =============================================================
// BURN OPERATIONS
// =============================================================
/**
* @dev Equivalent to `_burn(tokenId, false)`.
*/
function _burn(uint256 tokenId) internal virtual {
_burn(tokenId, false);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);
address from = address(uint160(prevOwnershipPacked));
(uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);
if (approvalCheck) {
// The nested ifs save around 20+ gas over a compound boolean condition.
if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector);
}
_beforeTokenTransfers(from, address(0), tokenId, 1);
// Clear approvals from the previous owner.
assembly {
if approvedAddress {
// This is equivalent to `delete _tokenApprovals[tokenId]`.
sstore(approvedAddressSlot, 0)
}
}
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
// Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
unchecked {
// Updates:
// - `balance -= 1`.
// - `numberBurned += 1`.
//
// We can directly decrement the balance, and increment the number burned.
// This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
_packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;
// Updates:
// - `address` to the last owner.
// - `startTimestamp` to the timestamp of burning.
// - `burned` to `true`.
// - `nextInitialized` to `true`.
_packedOwnerships[tokenId] = _packOwnershipData(
from,
(_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
);
// If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
uint256 nextTokenId = tokenId + 1;
// If the next slot's address is zero and not burned (i.e. packed value is zero).
if (_packedOwnerships[nextTokenId] == 0) {
// If the next slot is within bounds.
if (nextTokenId != _currentIndex) {
// Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
_packedOwnerships[nextTokenId] = prevOwnershipPacked;
}
}
}
}
emit Transfer(from, address(0), tokenId);
_afterTokenTransfers(from, address(0), tokenId, 1);
// Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times.
unchecked {
_burnCounter++;
}
}
// =============================================================
// EXTRA DATA OPERATIONS
// =============================================================
/**
* @dev Directly sets the extra data for the ownership data `index`.
*/
function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
uint256 packed = _packedOwnerships[index];
if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector);
uint256 extraDataCasted;
// Cast `extraData` with assembly to avoid redundant masking.
assembly {
extraDataCasted := extraData
}
packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
_packedOwnerships[index] = packed;
}
/**
* @dev Called during each token transfer to set the 24bit `extraData` field.
* Intended to be overridden by the cosumer contract.
*
* `previousExtraData` - the value of `extraData` before transfer.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, `tokenId` will be burned by `from`.
* - `from` and `to` are never both zero.
*/
function _extraData(
address from,
address to,
uint24 previousExtraData
) internal view virtual returns (uint24) {}
/**
* @dev Returns the next extra data for the packed ownership data.
* The returned result is shifted into position.
*/
function _nextExtraData(
address from,
address to,
uint256 prevOwnershipPacked
) private view returns (uint256) {
uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
}
// =============================================================
// OTHER OPERATIONS
// =============================================================
/**
* @dev Returns the message sender (defaults to `msg.sender`).
*
* If you are writing GSN compatible contracts, you need to override this function.
*/
function _msgSenderERC721A() internal view virtual returns (address) {
return msg.sender;
}
/**
* @dev Converts a uint256 to its ASCII string decimal representation.
*/
function _toString(uint256 value) internal pure virtual returns (string memory str) {
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
let m := add(mload(0x40), 0xa0)
// Update the free memory pointer to allocate.
mstore(0x40, m)
// Assign the `str` to the end.
str := sub(m, 0x20)
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
// prettier-ignore
for { let temp := value } 1 {} {
str := sub(str, 1)
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
// prettier-ignore
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/**
* @dev For more efficient reverts.
*/
function _revert(bytes4 errorSelector) internal pure {
assembly {
mstore(0x00, errorSelector)
revert(0x00, 0x04)
}
}
}
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.3.0
// Creator: Chiru Labs
pragma solidity ^0.8.4;
/**
* @dev Interface of ERC721A.
*/
interface IERC721A {
/**
* The caller must own the token or be an approved operator.
*/
error ApprovalCallerNotOwnerNorApproved();
/**
* The token does not exist.
*/
error ApprovalQueryForNonexistentToken();
/**
* Cannot query the balance for the zero address.
*/
error BalanceQueryForZeroAddress();
/**
* Cannot mint to the zero address.
*/
error MintToZeroAddress();
/**
* The quantity of tokens minted must be more than zero.
*/
error MintZeroQuantity();
/**
* The token does not exist.
*/
error OwnerQueryForNonexistentToken();
/**
* The caller must own the token or be an approved operator.
*/
error TransferCallerNotOwnerNorApproved();
/**
* The token must be owned by `from`.
*/
error TransferFromIncorrectOwner();
/**
* Cannot safely transfer to a contract that does not implement the
* ERC721Receiver interface.
*/
error TransferToNonERC721ReceiverImplementer();
/**
* Cannot transfer to the zero address.
*/
error TransferToZeroAddress();
/**
* The token does not exist.
*/
error URIQueryForNonexistentToken();
/**
* The `quantity` minted with ERC2309 exceeds the safety limit.
*/
error MintERC2309QuantityExceedsLimit();
/**
* The `extraData` cannot be set on an unintialized ownership slot.
*/
error OwnershipNotInitializedForExtraData();
/**
* `_sequentialUpTo()` must be greater than `_startTokenId()`.
*/
error SequentialUpToTooSmall();
/**
* The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`.
*/
error SequentialMintExceedsLimit();
/**
* Spot minting requires a `tokenId` greater than `_sequentialUpTo()`.
*/
error SpotMintTokenIdTooSmall();
/**
* Cannot mint over a token that already exists.
*/
error TokenAlreadyExists();
/**
* The feature is not compatible with spot mints.
*/
error NotCompatibleWithSpotMints();
// =============================================================
// STRUCTS
// =============================================================
struct TokenOwnership {
// The address of the owner.
address addr;
// Stores the start time of ownership with minimal overhead for tokenomics.
uint64 startTimestamp;
// Whether the token has been burned.
bool burned;
// Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
uint24 extraData;
}
// =============================================================
// TOKEN COUNTERS
// =============================================================
/**
* @dev Returns the total number of tokens in existence.
* Burned tokens will reduce the count.
* To get the total number of tokens minted, please see {_totalMinted}.
*/
function totalSupply() external view returns (uint256);
// =============================================================
// IERC165
// =============================================================
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
* to learn more about how these ids are created.
*
* This function call must use less than 30000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
// =============================================================
// IERC721
// =============================================================
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables
* (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in `owner`'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`,
* checking first that contract recipients are aware of the ERC721 protocol
* to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move
* this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement
* {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external payable;
/**
* @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Transfers `tokenId` from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom}
* whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token
* by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external payable;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the
* zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external payable;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom}
* for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
// =============================================================
// IERC721Metadata
// =============================================================
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
// =============================================================
// IERC2309
// =============================================================
/**
* @dev Emitted when tokens in `fromTokenId` to `toTokenId`
* (inclusive) is transferred from `from` to `to`, as defined in the
* [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
*
* See {_mintERC2309} for more details.
*/
event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}
// SPDX-License-Identifier: MIT
/**********************************************************************
* ┓ • • ┓ *
* ┏┳┓┏┓┏┣┓┓┏┓┏┓ ┓┏┓ ╋┣┓┏┓ *
* ┛┗┗┗┻┗┛┗┗┛┗┗ ┗┛┗ ┗┛┗┗ ᵈᶦᶦᵈ ᵃⁿᵈ ᵛᵉʳᵗᵘ ᶠᶦⁿᵉ ᵃʳᵗ ᵖʳᵉˢᵉⁿᵗ *
* ░▒▓██████▓▒░░▒▓█▓▒░░▒▓█▓▒░░▒▓██████▓▒░ ░▒▓███████▓▒░▒▓████████▓▒░ *
* ░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░ *
* ░▒▓█▓▒▒▓███▓▒░▒▓████████▓▒░▒▓█▓▒░░▒▓█▓▒░░▒▓██████▓▒░ ░▒▓█▓▒░ *
* ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░ *
* ░▒▓██████▓▒░░▒▓█▓▒░░▒▓█▓▒░░▒▓██████▓▒░░▒▓███████▓▒░ ░▒▓█▓▒░ *
* *
**********************************************************************/
pragma solidity ^0.8.20;
import "erc721a/contracts/ERC721A.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "solady/src/utils/SSTORE2.sol";
import "solady/src/utils/Base64.sol";
abstract contract InflateLib {
function puff(bytes memory source, uint256 destlen) external pure virtual returns (bytes memory);
}
contract MachineInTheGhost is ERC721A, Ownable(msg.sender) {
InflateLib inflateLib;
struct Image {
address[] pointers;
uint length;
string name;
}
Image[64] public images;
struct Palette {
string name;
bytes1[3][] colors;
}
Palette[32] public palettes;
struct BayerGrid {
uint[16] grid;
uint length;
string name;
}
BayerGrid[16] public bayerGrids;
bytes32[16] physicals;
uint seed;
bool locked = false;
uint MAX_SUPPLY = 512;
uint PHYSICALS = 16;
uint RESERVED = 32;
uint price = .1 ether;
bytes32 ZERO_HASH = 0x00000000000000000000000000000000;
uint public allowlistStartTime;
uint public publicStartTime;
bytes32 public root;
mapping(address => uint) public minted;
mapping(uint => bytes32) hashes;
/*
______ ______ ______ __ __ ______
/\ ___\/\ ___\/\__ _\/\ \/\ \/\ == \
\ \___ \ \ __\\/_/\ \/\ \ \_\ \ \ _-/
\/\_____\ \_____\ \ \_\ \ \_____\ \_\
\/_____/\/_____/ \/_/ \/_____/\/_/
begin setup
(aka pre-mint stuff)
*/
constructor(address inflate) ERC721A("machine in the ghost", "MITG") {
inflateLib = InflateLib(inflate);
root = 0xacd18baca68279e4a841c887392d24ed6a03564c07be64ac5b5bdd556aae9475;
_mintERC2309(msg.sender, 16);
seed = block.timestamp;
}
modifier isUnlocked() {
require(!locked, 'Contract is locked and cannot be edited');
_;
}
function lockContract() public onlyOwner {
locked = true;
}
function setPhysicals(bytes32[] memory _physicals) public onlyOwner isUnlocked {
for (uint i = 0; i < _physicals.length; i++) {
physicals[i] = _physicals[i];
}
}
function setPhysical(bytes32 physical, uint i) public onlyOwner isUnlocked {
physicals[i] = physical;
}
function setImages(Image[] memory _images) public onlyOwner isUnlocked {
for (uint i = 0; i < _images.length; i++) {
images[i] = _images[i];
}
}
function setPalettes(Palette[] calldata _palettes) public onlyOwner isUnlocked {
for (uint i = 0; i < _palettes.length; i++) {
palettes[i] = _palettes[i];
}
}
function setBayerGrids(BayerGrid[] calldata grids) public onlyOwner isUnlocked {
for (uint i = 0; i < grids.length; i++) {
bayerGrids[i] = grids[i];
}
}
function _startTokenId() internal view virtual override returns (uint256) {
return 1;
}
/* end setup */
/*
__ __ ______ __ __
/\ \/\ \/\__ _\/\ \/\ \
\ \ \_\ \/_/\ \/\ \ \ \ \____
\ \_____\ \ \_\ \ \_\ \_____\
\/_____/ \/_/ \/_/\/_____/
begin util
(aka everything that was barely touched)
*/
function _max(int[3] memory options) private pure returns (int) {
int max = 0;
for (uint i = 0; i < options.length; i++) {
if (options[i] > max) max = options[i];
}
return max;
}
function _min(int[3] memory options) private pure returns (int) {
int min = 0xFFFFFFFFFFFFFFFF;
for (uint i = 0; i < options.length; i++) {
if (options[i] < min) min = options[i];
}
return min;
}
function _loadRawImage(uint imageId) private view returns (bytes memory) {
Image memory image = images[imageId];
// unroll the loop for efficiency, nothing is bigger than 50kb
bytes memory data = SSTORE2.read(image.pointers[0]);
if (image.pointers.length > 1) {
data = abi.encodePacked(data, SSTORE2.read(image.pointers[1]));
}
data = inflateLib.puff(data, image.length);
return data;
}
function _wrap(string memory imageUri, uint width, uint height) private pure returns(string memory) {
string memory w = Strings.toString(width * 10);
string memory h = Strings.toString(height * 10);
return string(abi.encodePacked(
'<svg viewBox="0 0 ', w, ' ', h, '" width="', w, '" height="', h, '" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><style>image {image-rendering: optimizeSpeed;image-rendering: -moz-crisp-edges;image-rendering: -o-crisp-edges;image-rendering: -webkit-optimize-contrast;image-rendering: optimize-contrast;image-rendering: crisp-edges;image-rendering: pixelated;-ms-interpolation-mode: nearest-neighbor;}</style></defs><image width="', w, 'px" height="', h, 'px" href="data:image/bmp;base64,', imageUri, '" /></svg>'
));
}
function _getDouble(bytes1 first, bytes1 second) private pure returns(uint) {
return (uint(uint8(first)) << 8) + uint8(second);
}
/* end util */
/*
__ __ ______ ______ ______ _____ ______ ______ ______
/\ "-./ \/\ ___\/\__ _\/\ __ \/\ __-./\ __ \/\__ _\/\ __ \
\ \ \-./\ \ \ __\\/_/\ \/\ \ __ \ \ \/\ \ \ __ \/_/\ \/\ \ __ \
\ \_\ \ \_\ \_____\ \ \_\ \ \_\ \_\ \____-\ \_\ \_\ \ \_\ \ \_\ \_\
\/_/ \/_/\/_____/ \/_/ \/_/\/_/\/____/ \/_/\/_/ \/_/ \/_/\/_/
start metadata
*/
function _paletteName(bytes32 hash) private view returns(string memory) {
return palettes[uint8(hash[1]) % palettes.length].name;
}
function _imageId(bytes32 hash) private pure returns(uint) {
return uint(uint8(hash[0])) & 0x3F;
}
function _bayerGrid(bytes32 hash) private view returns(string memory) {
uint alg = (uint8(hash[2]) % 8 > 0) ? 1 : 0;
uint gridIndex = (uint8(hash[3]) & 0x0f) % bayerGrids.length;
if (alg == 0) {
gridIndex = gridIndex % 4;
}
return bayerGrids[gridIndex].name;
}
function _comparison(bytes32 hash) private pure returns(string memory) {
uint comp = (uint8(hash[3]) >> 4) % 3;
if (comp == 0) {
return "RGB";
} else if (comp == 1) {
return "Luma";
} else {
return "Lightness";
}
}
function _initialPalette(bytes32 hash) private view returns(bytes1[3][] memory) {
return palettes[uint8(hash[1]) % palettes.length].colors;
}
function _getNewHash() private view returns (bytes32) {
return keccak256(abi.encodePacked(seed, _nextTokenId(), msg.sender, block.timestamp));
}
function getHash(uint256 tokenId) public view returns (bytes32) {
if (tokenId <= 16) return physicals[tokenId - 1];
else if (hashes[tokenId] != ZERO_HASH) return hashes[tokenId];
return keccak256(abi.encodePacked(tokenId, seed));
}
function getProperties(bytes32 hash) public view returns (string memory) {
string memory attributes = '"attributes": [';
string memory image = images[_imageId(hash)].name;
string memory grid = _bayerGrid(hash);
string memory comparison = _comparison(hash);
string memory palette = _paletteName(hash);
uint colorCorrect = (uint8(hash[4]) & 0x0f) % 10;
if (colorCorrect > 6) {
attributes = string(abi.encodePacked(
attributes,
'{"trait_type":"color correction","value":"true"},'
));
}
if (colorCorrect < 9) {
// bayer grid
attributes = string(abi.encodePacked(
attributes,
'{"trait_type":"grid","value":"',
grid,
'"},'
));
}
// image
attributes = string(abi.encodePacked(
attributes,
'{"trait_type":"source","value":"',
image,
'"},'
));
// palette
attributes = string(abi.encodePacked(
attributes,
'{"trait_type":"palette","value":"',
palette,
'"},'
));
// comparison
attributes = string(abi.encodePacked(
attributes,
'{"trait_type":"comparison","value":"',
comparison,
'"}'
));
return string(
abi.encodePacked(
attributes,
']'
)
);
}
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
bytes32 hash = getHash(tokenId);
return string(abi.encodePacked(
'data:application/json;utf8,{"name":"',
Strings.toString(tokenId),
'","image":"data:image/svg+xml;base64,',
Base64.encode(bytes(generate(hash))),
'",',
getProperties(hash),
'}'
));
}
/* end metadata */
/*
______ ______ __ ______ ______
/\ ___\/\ __ \/\ \ /\ __ \/\ == \
\ \ \___\ \ \/\ \ \ \___\ \ \/\ \ \ __<
\ \_____\ \_____\ \_____\ \_____\ \_\ \_\
\/_____/\/_____/\/_____/\/_____/\/_/ /_/
start color
*/
function _writeColorTable(bytes memory data, bytes1[3][] memory colorTable) private pure returns(bytes memory) {
for (uint i = 0; i < colorTable.length; i++) {
data[0x36 + i * 4] = colorTable[i][2];
data[0x36 + i * 4 + 1] = colorTable[i][1];
data[0x36 + i * 4 + 2] = colorTable[i][0];
}
return data;
}
function _writeFullColorTable(bytes memory data, bytes1[3][16] memory colorTable) private pure returns(bytes memory) {
for (uint i = 0; i < 16; i++) {
data[0x36 + i * 4] = colorTable[i][2];
data[0x36 + i * 4 + 1] = colorTable[i][1];
data[0x36 + i * 4 + 2] = colorTable[i][0];
}
return data;
}
function _extractColorTable(bytes memory data) private pure returns(bytes1[3][16] memory) {
bytes1[3][16] memory colorTable;
for (uint i = 0; i < 16; i++) {
colorTable[i][2] = data[0x36 + i * 4];
colorTable[i][1] = data[0x36 + i * 4 + 1];
colorTable[i][0] = data[0x36 + i * 4 + 2];
}
return colorTable;
}
function _diff(uint a, uint b) private pure returns(uint) {
uint d;
if (a > b) {
d = a - b;
} else {
d = b - a;
}
return d * d;
}
function _diffb(bytes1 a, bytes1 b) private pure returns(uint) {
return _diff(uint8(a), uint8(b));
}
function _distRGB(bytes1[3] memory a, bytes1[3] memory b) private pure returns(uint) {
return _diffb(a[0], b[0]) + _diffb(a[1], b[1]) + _diffb(a[2], b[2]);
}
function _distLightness(bytes1[3] memory a, bytes1[3] memory b) private pure returns(uint) {
uint b1 = _getBrightness(a);
uint b2 = _getBrightness(b);
return _diff(b1, b2);
}
function _distLuma(bytes1[3] memory x, bytes1[3] memory y) private pure returns(uint) {
uint lumadiff = _distLightness(x, y);
uint r = _diffb(x[0], y[0]);
uint g = _diffb(x[1], y[1]);
uint b = _diffb(x[2], y[2]);
return _getBrightnessInt(r, g, b) * 3 / 4 + lumadiff * lumadiff;
}
function _dist(bytes1[3] memory a, bytes1[3] memory b, uint alg) private pure returns (uint) {
if (alg == 0) {
return _distRGB(a, b);
} else if (alg == 1) {
return _distLuma(a, b);
} else {
return _distLightness(a, b);
}
}
function _getBrightnessInt(uint r, uint g, uint b) private pure returns (uint) {
uint bright = 299 * r + 587 * g + 114 * b;
return bright / 1000;
}
function _getBrightness(bytes1[3] memory color) private pure returns(uint) {
return _getBrightnessInt(uint(uint8(color[0])), uint(uint8(color[1])), uint(uint8(color[2])));
}
function _getNormalizedPalette(bytes1[3][16] memory colorTable, uint len) private pure returns(bytes1[3][] memory) {
uint[16] memory brightnesses;
bytes1[3][] memory returnVal = new bytes1[3][](len);
for (uint i = 0; i < 16; i++) {
brightnesses[i] = 0;
}
for (uint i = 0; i < 16; i++) {
uint brightness = _getBrightness(colorTable[i]);
brightnesses[i] = brightness;
for (uint j = 0; j < i; j++) {
if (brightnesses[j] >= brightness) {
if (j < 15) {
brightnesses[j + 1] = brightnesses[j];
}
brightnesses[j] = brightness;
break;
}
}
}
for (uint i = 0; i < len; i++) {
uint j = i * 15 / (len - 1);
uint b = brightnesses[j];
if (i == 0 && b > 0) b--;
else if (i == len - 1 && b < 255) b++;
returnVal[i] = [
abi.encodePacked(b)[0],
abi.encodePacked(b)[0],
abi.encodePacked(b)[0]
];
}
return returnVal;
}
/* end color */
/*
_____ __ ______ __ __ ______ ______
/\ __-./\ \/\__ _\/\ \_\ \/\ ___\/\ == \
\ \ \/\ \ \ \/_/\ \/\ \ __ \ \ __\\ \ __<
\ \____-\ \_\ \ \_\ \ \_\ \_\ \_____\ \_\ \_\
\/____/ \/_/ \/_/ \/_/\/_/\/_____/\/_/ /_/
start dithering
*/
function _getBayerColor(bytes1 color, uint i, uint gridIndex) private view returns (bytes1) {
uint[16] memory grid = bayerGrids[gridIndex].grid;
uint offset = 180 / (bayerGrids[gridIndex].length);
uint adjustment = 90;
uint modifiedColor = uint(uint8(color)) + offset * grid[i];
if (modifiedColor < adjustment) modifiedColor = adjustment;
modifiedColor -= adjustment;
return abi.encodePacked(uint8(modifiedColor & 0xFF))[0];
}
function _getBayerReplacements(uint len, bytes1[3][16] memory colorTable, bytes1[3][] memory palette, uint gridIndex, uint distAlg) private view returns(uint8[16][16] memory) {
uint8[16][16] memory replacements;
for (uint i = 0; i < len; i++) {
for (uint j = 0; j < 16; j++) {
bytes1[3] memory tempTable;
tempTable[0] = _getBayerColor(colorTable[j][0], i, gridIndex);
tempTable[1] = _getBayerColor(colorTable[j][1], i, gridIndex);
tempTable[2] = _getBayerColor(colorTable[j][2], i, gridIndex);
uint8 replacement;
uint minDist = 3 * 256 * 256 + 1;
for (uint8 c = 0; c < palette.length; c++) {
uint dist = _dist(tempTable, palette[c], distAlg);
if (dist < minDist) {
replacement = c;
minDist = dist;
}
}
replacements[i][j] = replacement;
}
}
return replacements;
}
function _bayer(bytes1[3][16] memory colorTable, bytes1[3][] memory palette, bytes memory data, uint width, uint height, uint gridIndex, uint distAlg) private view {
uint len = bayerGrids[gridIndex].length;
uint8[16][16] memory replacements = _getBayerReplacements(len, colorTable, palette, gridIndex, distAlg);
uint w = len == 4 ? 2 : 4;
for (uint y = 0; y < height; y++) {
for (uint x = 0; x < width / 2; x++) {
uint i = 0x76 + (y * width) / 2 + x;
uint8 p0 = uint8(data[i]) >> 4;
uint8 p1 = uint8(data[i]) & 0x0F;
uint j = w * (y % w) + (w / 2) * (x % (w / 2));
data[i] = abi.encodePacked(
(replacements[j][p0] << 4) + replacements[j + 1][p1]
)[0];
}
}
}
/* end dither */
/*
______ ______ ______ ______ ______ ______ ______
/\ ___\/\ __ \/\ == \/\ == \/\ ___\/\ ___\/\__ _\
\ \ \___\ \ \/\ \ \ __<\ \ __<\ \ __\\ \ \___\/_/\ \/
\ \_____\ \_____\ \_\ \_\ \_\ \_\ \_____\ \_____\ \ \_\
\/_____/\/_____/\/_/ /_/\/_/ /_/\/_____/\/_____/ \/_/
start color correction
*/
function _getHSV(bytes1[3] memory color) private pure returns (int[3] memory) {
int r = int(uint(uint8(color[0])));
int g = int(uint(uint8(color[1])));
int b = int(uint(uint8(color[2])));
int v = _max([r, g, b]);
int c = v - _min([r, g, b]);
int h = 0;
if (c == 0) {
h = c;
} else if (v == r) {
h = (256 * (g - b)) / c;
} else if (v == g) {
h = 512 + (256 * (b - r)) / c;
} else {
h = 1024 + (256 * (r - g)) / c;
}
// sat = c / v
return [
(h < 0 ? h + 1536 : h) / 6,
v != 0 ? (256 * c) / v : v,
v
];
}
function _getRGBComponent(int n, int[3] memory color) private pure returns(bytes1) {
int h = color[0];
int s = color[1];
int v = color[2];
int k = (n * 256 + h * 6) % (6 * 256);
int l = _min([k, 1024 - k, 256]);
int m = l > 0 ? l : int(0);
return abi.encodePacked(uint((v * (256 - (s * m) / 256)) / 256))[31];
}
function _getRGB(int[3] memory color) private pure returns (bytes1[3] memory) {
return [
_getRGBComponent(5, color),
_getRGBComponent(3, color),
_getRGBComponent(1, color)
];
}
function _shift(int val, int amount) private pure returns (int) {
if (amount != 0) {
val += amount;
if (val < 0) val = 0;
else if (val > 255) val = 255;
}
return val;
}
function _norm(uint n, int v, int val, int min, int max) private pure returns (int) {
if (n == 0) return v;
int offset = (8 * ((v * v) / 256 - v + 64)) / int(n);
if (v > 128) {
val -= offset;
if (val < min) val = min;
} else {
val += offset;
if (val > max) val = max;
}
return val;
}
function _hueShift(uint maxShift, uint targetHue, int h) private pure returns (int) {
if (maxShift == 0) return h;
uint dist;
int change;
if (int(targetHue) > h) {
int c1 = int(targetHue) - h;
int c2 = 255 - h + int(targetHue);
if (c1 > c2) {
dist = uint(c2);
change = -c2;
} else {
dist = uint(c1);
change = c2;
}
} else {
int c1 = h - int(targetHue);
int c2 = 255 - int(targetHue) + h;
if (c1 < c2) {
dist = uint(c1);
change = -c1;
} else {
dist = uint(c2);
change = c2;
}
}
if (dist < maxShift) h = int(targetHue);
else {
h += change;
if (h < 0) h = 256 + h;
else if (h > 255) h = h - 256;
}
return h;
}
// start at random[5]
function _colorCorrect(bytes1[3][16] memory colorTable, bytes32 random) private pure {
int[3][16] memory hueTable;
for (uint i = 0; i < 16; i++) {
hueTable[i] = _getHSV(colorTable[i]);
}
/*
satShift --> 5
brightShift --> 6
muddle --> 7
satNorm --> 8
hueNorm --> 9
hueShift --> 10
targetHue --> 11
probably want to normalize these more
*/
// simply move saturation up or down, -64 to 64 --> 6 bit
int satShift = int(uint(uint8(random[5]) % 128)) - 64;
// ignore brightness shift, use sat shift alongside it
// to increase moodiness
bool muddle = uint8(random[7]) % 2 > 0;
// simply move brightness up or down, -64 to 64 --> 7 bit
int brightShift = muddle ? satShift / 2 : int(uint(uint8(random[6]) % 128)) - 64;
// increase saturation in dark colors, decrease in bright, 0 to 15
uint satNorm = uint(uint8(random[8]) % 16);
// warm colors in bright colors, cool in dark, 0 to 15
uint hueNorm = uint(uint8(random[9]) % 16);
// shift towards the target hue, 2 * hueShift is the max shift. 128 is a good max
// target hue from 0 to 255
uint hueShift = uint(uint8(random[10]) / 2);
if (uint(uint8(random[11])) % 4 > 0) hueShift = 0;
uint targetHue = uint(uint8(random[12]));
for (uint i = 0; i < 16; i++) {
int h = hueTable[i][0];
int s = hueTable[i][1];
int v = hueTable[i][2];
s = _shift(s, satShift);
v = _shift(v, brightShift);
s = _norm(satNorm, v, s, 0, 255);
h = _norm(hueNorm, v, s, 35, 200);
h = _hueShift(hueShift, targetHue, h);
hueTable[i] = [h, s, v];
}
for (uint i = 0; i < 16; i++) {
colorTable[i] = _getRGB(hueTable[i]);
}
}
/* end color correction */
/*
______ ______ __ __ ______ ______ ______ ______ ______
/\ ___\/\ ___\/\ "-.\ \/\ ___\/\ == \/\ __ \/\__ _\/\ ___\
\ \ \__ \ \ __\\ \ \-. \ \ __\\ \ __<\ \ __ \/_/\ \/\ \ __\
\ \_____\ \_____\ \_\\"\_\ \_____\ \_\ \_\ \_\ \_\ \ \_\ \ \_____\
\/_____/\/_____/\/_/ \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/ \/_____/
start generator
*/
function render(bytes memory data, bytes1[3][] memory palette, uint8 alg, bool normalize, uint bayerIndex, uint distAlg, uint colorCorrect, bytes32 random) public view returns(string memory) {
uint w = _getDouble(data[0x13], data[0x12]);
uint h = _getDouble(data[0x17], data[0x16]);
w = (w * 4 + 31) / 32;
w = w * 8;
bytes1[3][16] memory colorTable = _extractColorTable(data);
if (colorCorrect < 9) {
if (alg == 0) bayerIndex = bayerIndex % 4;
if (normalize) {
_bayer(colorTable, _getNormalizedPalette(colorTable, palette.length), data, w, h, bayerIndex, distAlg);
} else {
_bayer(colorTable, palette, data, w, h, bayerIndex, distAlg);
}
_writeColorTable(data, palette);
}
if (colorCorrect > 6) {
// gotta re-extract the palette
if (colorCorrect < 9) colorTable = _extractColorTable(data);
_colorCorrect(colorTable, random);
_writeFullColorTable(data, colorTable);
}
return _wrap(Base64.encode(data), w, h);
}
function generate(bytes32 hash) public view returns(string memory) {
uint imageId = _imageId(hash);
bytes1[3][] memory palette = _initialPalette(hash);
bytes memory data = _loadRawImage(imageId);
return render(data, palette, (uint8(hash[2]) % 8 > 0) ? 1 : 0, (uint8(hash[2]) << 4) % 2 == 1, (uint8(hash[3]) & 0x0f) % bayerGrids.length, (uint8(hash[3]) >> 4) % 3, (uint8(hash[4]) & 0x0f) % 10, hash);
}
/* end generator */
/*
__ __ __ __ __ ______
/\ "-./ \/\ \/\ "-.\ \/\__ _\
\ \ \-./\ \ \ \ \ \-. \/_/\ \/
\ \_\ \ \_\ \_\ \_\\"\_\ \ \_\
\/_/ \/_/\/_/\/_/ \/_/ \/_/
start mint
*/
function _publicSaleActive() internal view returns (bool) {
return block.timestamp >= publicStartTime && publicStartTime != 0;
}
function _allowlistSaleActive() internal view returns (bool) {
return block.timestamp >= allowlistStartTime && allowlistStartTime != 0;
}
function allowlistSaleActive() public view returns (bool) {
return _allowlistSaleActive() && !_publicSaleActive();
}
function saleActive() public view returns (bool) {
return _allowlistSaleActive() || _publicSaleActive();
}
function remainingAdminSupply() public view returns (uint) {
return MAX_SUPPLY - _nextTokenId() + 1;
}
function remainingSupply() public view returns (uint) {
return remainingAdminSupply() - RESERVED;
}
modifier isNotSoldOut(uint count) {
require(remainingSupply() >= count, 'sold out!');
_;
}
modifier isNotMintedOut(uint count) {
require(remainingAdminSupply() >= count, 'minted out');
_;
}
modifier hasPaid(uint count) {
require(msg.value == price * count, 'you gotta pay to play');
_;
}
modifier saleIsActive() {
require(saleActive(), 'sale is not live');
_;
}
modifier publicSaleIsActive() {
require(_publicSaleActive(), 'sale is allowlist only');
_;
}
function _mintTokenWithHash(bytes32 hash, address to) private {
hashes[_nextTokenId()] = hash;
_mint(to, 1);
}
function mint() public payable hasPaid(1) saleIsActive publicSaleIsActive isNotSoldOut(1) {
_mintTokenWithHash(_getNewHash(), msg.sender);
}
function mintAllowlist(bytes32[] calldata proof, uint count) public payable hasPaid(count) saleIsActive isNotSoldOut(count) {
require(
MerkleProof.verifyCalldata(
proof,
root,
keccak256(abi.encodePacked(msg.sender))
),
'not on allowlist');
require(minted[msg.sender] + count <= 3, 'already minted');
minted[msg.sender] += count;
for (uint i = 0; i < count; i++) {
_mintTokenWithHash(_getNewHash(), msg.sender);
}
}
function adminMint(bytes32[] calldata hashesToMint, address to, uint count) public onlyOwner isNotMintedOut(count) {
for (uint i = 0; i < count; i++) {
bytes32 hash = ZERO_HASH;
if (hashesToMint.length > i) {
hash = hashesToMint[i];
}
if (hash == ZERO_HASH) {
hash = _getNewHash();
}
_mintTokenWithHash(hash, to);
}
}
/* end mint */
/*
______ _____ __ __ __ __ __
/\ __ \/\ __-./\ "-./ \/\ \/\ "-.\ \
\ \ __ \ \ \/\ \ \ \-./\ \ \ \ \ \-. \
\ \_\ \_\ \____-\ \_\ \ \_\ \_\ \_\\"\_\
\/_/\/_/\/____/ \/_/ \/_/\/_/\/_/ \/_/
begin admin
*/
/**
* @notice sets the merkle root for allowlist checking
*
* @param _root the new root to set
*/
function setRoot(bytes32 _root) external onlyOwner {
root = _root;
}
/**
* @notice immediately starts the public sale (no allowlist)
*/
function startPublicSale() external onlyOwner {
publicStartTime = block.timestamp;
allowlistStartTime = block.timestamp;
}
/**
* @notice starts the allowlist sale (signed AL spot required)
*/
function startAllowlistSale() external onlyOwner {
publicStartTime = 0;
allowlistStartTime = block.timestamp;
}
/**
* @notice sets the start time for public sale
*
* @param start the start time
*/
function setPublicStartTime(uint start) external onlyOwner {
publicStartTime = start;
}
/**
* @notice sets the start time for allowlist sale
*
* @param start the start time
*/
function setAllowlistStartTime(uint start) external onlyOwner {
allowlistStartTime = start;
}
/**
* @notice sets a new per-piece price
*
* @param _price the new price to set
*/
function setPrice(uint _price) external onlyOwner {
price = _price;
}
/**
* @notice withdraw to the owner
*/
function withdraw() external onlyOwner {
(bool s,) = owner().call{value: (address(this).balance)}("");
require(s, "Withdraw failed.");
}
/* end admin */
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solady (https://github.com/vectorized/solmady/blob/main/src/utils/SSTORE2.sol)
/// @author Saw-mon-and-Natalie (https://github.com/Saw-mon-and-Natalie)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
library SSTORE2 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev We skip the first byte as it's a STOP opcode,
/// which ensures the contract can't be called.
uint256 internal constant DATA_OFFSET = 1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Unable to deploy the storage contract.
error DeploymentFailed();
/// @dev The storage contract address is invalid.
error InvalidPointer();
/// @dev Attempt to read outside of the storage contract's bytecode bounds.
error ReadOutOfBounds();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* WRITE LOGIC */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Writes `data` into the bytecode of a storage contract and returns its address.
function write(bytes memory data) internal returns (address pointer) {
/// @solidity memory-safe-assembly
assembly {
let originalDataLength := mload(data)
// Add 1 to data size since we are prefixing it with a STOP opcode.
let dataSize := add(originalDataLength, DATA_OFFSET)
/**
* ------------------------------------------------------------------------------+
* Opcode | Mnemonic | Stack | Memory |
* ------------------------------------------------------------------------------|
* 61 dataSize | PUSH2 dataSize | dataSize | |
* 80 | DUP1 | dataSize dataSize | |
* 60 0xa | PUSH1 0xa | 0xa dataSize dataSize | |
* 3D | RETURNDATASIZE | 0 0xa dataSize dataSize | |
* 39 | CODECOPY | dataSize | [0..dataSize): code |
* 3D | RETURNDATASIZE | 0 dataSize | [0..dataSize): code |
* F3 | RETURN | | [0..dataSize): code |
* 00 | STOP | | |
* ------------------------------------------------------------------------------+
* @dev Prefix the bytecode with a STOP opcode to ensure it cannot be called.
* Also PUSH2 is used since max contract size cap is 24,576 bytes which is less than 2 ** 16.
*/
mstore(
// Do a out-of-gas revert if `dataSize` is more than 2 bytes.
// The actual EVM limit may be smaller and may change over time.
add(data, gt(dataSize, 0xffff)),
// Left shift `dataSize` by 64 so that it lines up with the 0000 after PUSH2.
or(0xfd61000080600a3d393df300, shl(0x40, dataSize))
)
// Deploy a new contract with the generated creation code.
pointer := create(0, add(data, 0x15), add(dataSize, 0xa))
// If `pointer` is zero, revert.
if iszero(pointer) {
// Store the function selector of `DeploymentFailed()`.
mstore(0x00, 0x30116425)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore original length of the variable size `data`.
mstore(data, originalDataLength)
}
}
/// @dev Writes `data` into the bytecode of a storage contract with `salt`
/// and returns its deterministic address.
function writeDeterministic(bytes memory data, bytes32 salt)
internal
returns (address pointer)
{
/// @solidity memory-safe-assembly
assembly {
let originalDataLength := mload(data)
let dataSize := add(originalDataLength, DATA_OFFSET)
mstore(
// Do a out-of-gas revert if `dataSize` is more than 2 bytes.
// The actual EVM limit may be smaller and may change over time.
add(data, gt(dataSize, 0xffff)),
// Left shift `dataSize` by 64 so that it lines up with the 0000 after PUSH2.
or(0xfd61000080600a3d393df300, shl(0x40, dataSize))
)
// Deploy a new contract with the generated creation code.
pointer := create2(0, add(data, 0x15), add(dataSize, 0xa), salt)
// If `pointer` is zero, revert.
if iszero(pointer) {
// Store the function selector of `DeploymentFailed()`.
mstore(0x00, 0x30116425)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore original length of the variable size `data`.
mstore(data, originalDataLength)
}
}
/// @dev Returns the initialization code hash of the storage contract for `data`.
/// Used for mining vanity addresses with create2crunch.
function initCodeHash(bytes memory data) internal pure returns (bytes32 hash) {
/// @solidity memory-safe-assembly
assembly {
let originalDataLength := mload(data)
let dataSize := add(originalDataLength, DATA_OFFSET)
// Do a out-of-gas revert if `dataSize` is more than 2 bytes.
// The actual EVM limit may be smaller and may change over time.
returndatacopy(returndatasize(), returndatasize(), shr(16, dataSize))
mstore(data, or(0x61000080600a3d393df300, shl(0x40, dataSize)))
hash := keccak256(add(data, 0x15), add(dataSize, 0xa))
// Restore original length of the variable size `data`.
mstore(data, originalDataLength)
}
}
/// @dev Returns the address of the storage contract for `data`
/// deployed with `salt` by `deployer`.
/// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
function predictDeterministicAddress(bytes memory data, bytes32 salt, address deployer)
internal
pure
returns (address predicted)
{
bytes32 hash = initCodeHash(data);
/// @solidity memory-safe-assembly
assembly {
// Compute and store the bytecode hash.
mstore8(0x00, 0xff) // Write the prefix.
mstore(0x35, hash)
mstore(0x01, shl(96, deployer))
mstore(0x15, salt)
predicted := keccak256(0x00, 0x55)
// Restore the part of the free memory pointer that has been overwritten.
mstore(0x35, 0)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* READ LOGIC */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns all the `data` from the bytecode of the storage contract at `pointer`.
function read(address pointer) internal view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
let pointerCodesize := extcodesize(pointer)
if iszero(pointerCodesize) {
// Store the function selector of `InvalidPointer()`.
mstore(0x00, 0x11052bb4)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Offset all indices by 1 to skip the STOP opcode.
let size := sub(pointerCodesize, DATA_OFFSET)
// Get the pointer to the free memory and allocate
// enough 32-byte words for the data and the length of the data,
// then copy the code to the allocated memory.
// Masking with 0xffe0 will suffice, since contract size is less than 16 bits.
data := mload(0x40)
mstore(0x40, add(data, and(add(size, 0x3f), 0xffe0)))
mstore(data, size)
mstore(add(add(data, 0x20), size), 0) // Zeroize the last slot.
extcodecopy(pointer, add(data, 0x20), DATA_OFFSET, size)
}
}
/// @dev Returns the `data` from the bytecode of the storage contract at `pointer`,
/// from the byte at `start`, to the end of the data stored.
function read(address pointer, uint256 start) internal view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
let pointerCodesize := extcodesize(pointer)
if iszero(pointerCodesize) {
// Store the function selector of `InvalidPointer()`.
mstore(0x00, 0x11052bb4)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// If `!(pointer.code.size > start)`, reverts.
// This also handles the case where `start + DATA_OFFSET` overflows.
if iszero(gt(pointerCodesize, start)) {
// Store the function selector of `ReadOutOfBounds()`.
mstore(0x00, 0x84eb0dd1)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
let size := sub(pointerCodesize, add(start, DATA_OFFSET))
// Get the pointer to the free memory and allocate
// enough 32-byte words for the data and the length of the data,
// then copy the code to the allocated memory.
// Masking with 0xffe0 will suffice, since contract size is less than 16 bits.
data := mload(0x40)
mstore(0x40, add(data, and(add(size, 0x3f), 0xffe0)))
mstore(data, size)
mstore(add(add(data, 0x20), size), 0) // Zeroize the last slot.
extcodecopy(pointer, add(data, 0x20), add(start, DATA_OFFSET), size)
}
}
/// @dev Returns the `data` from the bytecode of the storage contract at `pointer`,
/// from the byte at `start`, to the byte at `end` (exclusive) of the data stored.
function read(address pointer, uint256 start, uint256 end)
internal
view
returns (bytes memory data)
{
/// @solidity memory-safe-assembly
assembly {
let pointerCodesize := extcodesize(pointer)
if iszero(pointerCodesize) {
// Store the function selector of `InvalidPointer()`.
mstore(0x00, 0x11052bb4)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// If `!(pointer.code.size > end) || (start > end)`, revert.
// This also handles the cases where
// `end + DATA_OFFSET` or `start + DATA_OFFSET` overflows.
if iszero(
and(
gt(pointerCodesize, end), // Within bounds.
iszero(gt(start, end)) // Valid range.
)
) {
// Store the function selector of `ReadOutOfBounds()`.
mstore(0x00, 0x84eb0dd1)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
let size := sub(end, start)
// Get the pointer to the free memory and allocate
// enough 32-byte words for the data and the length of the data,
// then copy the code to the allocated memory.
// Masking with 0xffe0 will suffice, since contract size is less than 16 bits.
data := mload(0x40)
mstore(0x40, add(data, and(add(size, 0x3f), 0xffe0)))
mstore(data, size)
mstore(add(add(data, 0x20), size), 0) // Zeroize the last slot.
extcodecopy(pointer, add(data, 0x20), add(start, DATA_OFFSET), size)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"contracts/MachineInTheGhost.sol": "MachineInTheGhost"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"inflate","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"NotCompatibleWithSpotMints","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"SequentialMintExceedsLimit","type":"error"},{"inputs":[],"name":"SequentialUpToTooSmall","type":"error"},{"inputs":[],"name":"SpotMintTokenIdTooSmall","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"bytes32[]","name":"hashesToMint","type":"bytes32[]"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"adminMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"allowlistSaleActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"allowlistStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"bayerGrids","outputs":[{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"string","name":"name","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"}],"name":"generate","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"}],"name":"getProperties","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"images","outputs":[{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"string","name":"name","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockContract","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"mintAllowlist","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"minted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"palettes","outputs":[{"internalType":"string","name":"name","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"publicStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"remainingAdminSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"remainingSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes1[3][]","name":"palette","type":"bytes1[3][]"},{"internalType":"uint8","name":"alg","type":"uint8"},{"internalType":"bool","name":"normalize","type":"bool"},{"internalType":"uint256","name":"bayerIndex","type":"uint256"},{"internalType":"uint256","name":"distAlg","type":"uint256"},{"internalType":"uint256","name":"colorCorrect","type":"uint256"},{"internalType":"bytes32","name":"random","type":"bytes32"}],"name":"render","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"root","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"saleActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"start","type":"uint256"}],"name":"setAllowlistStartTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256[16]","name":"grid","type":"uint256[16]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"string","name":"name","type":"string"}],"internalType":"struct MachineInTheGhost.BayerGrid[]","name":"grids","type":"tuple[]"}],"name":"setBayerGrids","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address[]","name":"pointers","type":"address[]"},{"internalType":"uint256","name":"length","type":"uint256"},{"internalType":"string","name":"name","type":"string"}],"internalType":"struct MachineInTheGhost.Image[]","name":"_images","type":"tuple[]"}],"name":"setImages","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"bytes1[3][]","name":"colors","type":"bytes1[3][]"}],"internalType":"struct MachineInTheGhost.Palette[]","name":"_palettes","type":"tuple[]"}],"name":"setPalettes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"physical","type":"bytes32"},{"internalType":"uint256","name":"i","type":"uint256"}],"name":"setPhysical","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_physicals","type":"bytes32[]"}],"name":"setPhysicals","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_price","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"start","type":"uint256"}],"name":"setPublicStartTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_root","type":"bytes32"}],"name":"setRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startAllowlistSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startPublicSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]