Accounts
0x87...9817
0x87...9817

0x87...9817

$500
This contract's source code is verified!
Contract Metadata
Compiler
0.8.24+commit.e11b9ed9
Language
Solidity
Contract Source Code
File 1 of 6: IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
Contract Source Code
File 2 of 6: INEWToken.sol
/// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

import { IERC20 } from "@oz/token/ERC20/IERC20.sol";

/**
 * @title INEWToken
 * @notice NEW token was deployed on ETH Sepolia testnet at `0xC25E6638eb2B8A428d3982fdD4d7b10A2e8465C9`.
 */
interface INEWToken is IERC20 {
    function mint(address to, uint256 amount) external;
    function MAX_SUPPLY() external view returns (uint256);
    // function register() external;
    // function setBurnAddress(address _burnAddress) external;
    // function owner() external view returns (address);
}
Contract Source Code
File 3 of 6: INOIAToken.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

import { IERC20 } from "@oz/token/ERC20/IERC20.sol";

/**
 * @title INOIAToken
 * @notice NOIA token was deployed on ETH mainnet at `0xa8c8CfB141A3bB59FEA1E2ea6B79b5ECBCD7b6ca`.
 */
interface INOIAToken is IERC20 {
    function register() external;
    function burn(uint256 value) external;
    function setBurnAddress(address _burnAddress) external;
    function owner() external view returns (address);
}
Contract Source Code
File 4 of 6: ITokenReceiver.sol
/// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

/**
 * @title ITokenReceiver
 * @notice Interface for the token receiver contract, specific for NOIA token.
 */
interface ITokenReceiver {
    /// @notice Hook function that is called in NOIA contract upon receiving tokens.
    function tokensReceived(address from, address to, uint256 amount) external;
}
Contract Source Code
File 5 of 6: Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
Contract Source Code
File 6 of 6: Migrator.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.24;

import { Math } from "@oz/utils/math/Math.sol";
import { INOIAToken } from "src/interfaces/INOIAToken.sol";
import { INEWToken } from "src/interfaces/INEWToken.sol";
import { ITokenReceiver } from "src/interfaces/ITokenReceiver.sol";
// import { Token } from "src/Token.sol";

/**
 * @title Migrator
 * @notice Migration contract for INOIAToken to the new Token.
 * Requires MINTING_ROLE on the new token. And burn permissions on the old token.
 */
contract Migrator is ITokenReceiver {
    using Math for uint256;

    /// @notice The token to be migrated from.
    INOIAToken public immutable source;
    /// @notice The token to be migrated to.
    INEWToken public immutable destination;
    /// @notice The rate in 18 decimals at which the tokens will be migrated, e.g. 1e18 for 1 on 1 swaps.
    uint256 public immutable migrationRate;
    /// @notice The deadline timestamp for the migration.
    uint256 public immutable migrationDeadline;

    /// @notice Emitted when a user migrates tokens from the source to the destination.
    /// @param user The user who migrated the tokens.
    /// @param burnedAmount The amount of source tokens burned from the user.
    /// @param mintedAmount The amount of destination tokens minted to the user.
    event Migrated(address indexed user, uint256 burnedAmount, uint256 mintedAmount);

    error ZeroAddress();
    error ZeroMigrationRate();
    error DeadlineMustBeInFuture();
    error MigrationEnded();
    error CallerIsNotSource();
    error DestinationMaxSupplyExceeded();

    /// @notice Constructs the migrator with the given source and destination tokens and migration rate.
    /// @param source_ The token to be migrated from.
    /// @param destination_ The token to be migrated to.
    /// @param migrationRate_ The rate at which the tokens will be migrated.
    /// @param migrationDeadline_ The deadline timestamp for the migration.
    constructor(INOIAToken source_, INEWToken destination_, uint256 migrationRate_, uint256 migrationDeadline_) {
        if (migrationRate_ == 0) revert ZeroMigrationRate();
        if (migrationDeadline_ <= block.timestamp) revert DeadlineMustBeInFuture();
        if (address(source_) == address(0) || address(destination_) == address(0)) {
            revert ZeroAddress();
        }
        if (source_.totalSupply().mulDiv(migrationRate_, 1e18) > destination_.MAX_SUPPLY()) {
            revert DestinationMaxSupplyExceeded();
        }

        source = source_;
        destination = destination_;
        migrationRate = migrationRate_;
        migrationDeadline = migrationDeadline_;

        source_.register();
    }

    /// @notice Hook function that is called upon receiving source tokens.
    /// @dev Callable only by the source token.
    /// @param user The user who sent the tokens.
    /// @param sourceAmount The amount of tokens received.
    function tokensReceived(address user, address, uint256 sourceAmount) external {
        if (block.timestamp > migrationDeadline) revert MigrationEnded();
        if (msg.sender != address(source)) revert CallerIsNotSource();

        uint256 destinationAmount = sourceAmount.mulDiv(migrationRate, 1e18);

        emit Migrated(user, sourceAmount, destinationAmount);
        source.burn(sourceAmount);
        destination.mint(user, destinationAmount);
    }
}
Settings
{
  "compilationTarget": {
    "src/Migrator.sol": "Migrator"
  },
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "none"
  },
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "remappings": [
    ":@forge/std/=lib/forge-std/src/",
    ":@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    ":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    ":@oz/=lib/openzeppelin-contracts/contracts/",
    ":@ozu/=lib/openzeppelin-contracts-upgradeable/contracts/",
    ":ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
    ":erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    ":eth-gas-reporter/=node_modules/eth-gas-reporter/",
    ":forge-std/=lib/forge-std/src/",
    ":hardhat/=node_modules/hardhat/",
    ":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    ":openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ]
}
ABI
[{"inputs":[{"internalType":"contract INOIAToken","name":"source_","type":"address"},{"internalType":"contract Token","name":"destination_","type":"address"},{"internalType":"uint256","name":"migrationRate_","type":"uint256"},{"internalType":"uint256","name":"migrationDeadline_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CallerIsNotSource","type":"error"},{"inputs":[],"name":"DeadlineMustBeInFuture","type":"error"},{"inputs":[],"name":"DestinationMaxSupplyExceeded","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"MigrationEnded","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroMigrationRate","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"burnedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"mintedAmount","type":"uint256"}],"name":"Migrated","type":"event"},{"inputs":[],"name":"destination","outputs":[{"internalType":"contract Token","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"migrationDeadline","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"migrationRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"source","outputs":[{"internalType":"contract INOIAToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"sourceAmount","type":"uint256"}],"name":"tokensReceived","outputs":[],"stateMutability":"nonpayable","type":"function"}]