// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)pragmasolidity ^0.8.1;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0// for contracts in construction, since the code is only stored at the end// of the constructor execution.return account.code.length>0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly/// @solidity memory-safe-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
Contract Source Code
File 2 of 22: Context.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)pragmasolidity ^0.8.0;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
}
Contract Source Code
File 3 of 22: ERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)pragmasolidity ^0.8.0;import"./IERC20.sol";
import"./extensions/IERC20Metadata.sol";
import"../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/contractERC20isContext, IERC20, IERC20Metadata{
mapping(address=>uint256) private _balances;
mapping(address=>mapping(address=>uint256)) private _allowances;
uint256private _totalSupply;
stringprivate _name;
stringprivate _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/constructor(stringmemory name_, stringmemory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/functionname() publicviewvirtualoverridereturns (stringmemory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/functionsymbol() publicviewvirtualoverridereturns (stringmemory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/functiondecimals() publicviewvirtualoverridereturns (uint8) {
return18;
}
/**
* @dev See {IERC20-totalSupply}.
*/functiontotalSupply() publicviewvirtualoverridereturns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/functionbalanceOf(address account) publicviewvirtualoverridereturns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/functiontransfer(address to, uint256 amount) publicvirtualoverridereturns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
returntrue;
}
/**
* @dev See {IERC20-allowance}.
*/functionallowance(address owner, address spender) publicviewvirtualoverridereturns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionapprove(address spender, uint256 amount) publicvirtualoverridereturns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
returntrue;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/functiontransferFrom(addressfrom,
address to,
uint256 amount
) publicvirtualoverridereturns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
returntrue;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionincreaseAllowance(address spender, uint256 addedValue) publicvirtualreturns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
returntrue;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/functiondecreaseAllowance(address spender, uint256 subtractedValue) publicvirtualreturns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
returntrue;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/function_transfer(addressfrom,
address to,
uint256 amount
) internalvirtual{
require(from!=address(0), "ERC20: transfer from the zero address");
require(to !=address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
}
_balances[to] += amount;
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/function_mint(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
_balances[account] += amount;
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/function_burn(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
}
_totalSupply -= amount;
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/function_approve(address owner,
address spender,
uint256 amount
) internalvirtual{
require(owner !=address(0), "ERC20: approve from the zero address");
require(spender !=address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/function_spendAllowance(address owner,
address spender,
uint256 amount
) internalvirtual{
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance !=type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_beforeTokenTransfer(addressfrom,
address to,
uint256 amount
) internalvirtual{}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_afterTokenTransfer(addressfrom,
address to,
uint256 amount
) internalvirtual{}
}
Contract Source Code
File 4 of 22: EnumerableSet.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)pragmasolidity ^0.8.0;/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
* ====
*/libraryEnumerableSet{
// To implement this library for multiple types with as little code// repetition as possible, we write it in terms of a generic Set type with// bytes32 values.// The Set implementation uses private functions, and user-facing// implementations (such as AddressSet) are just wrappers around the// underlying Set.// This means that we can only create new EnumerableSets for types that fit// in bytes32.structSet {
// Storage of set valuesbytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0// means a value is not in the set.mapping(bytes32=>uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/function_add(Set storage set, bytes32 value) privatereturns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
returntrue;
} else {
returnfalse;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/function_remove(Set storage set, bytes32 value) privatereturns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slotuint256 valueIndex = set._indexes[value];
if (valueIndex !=0) {
// Equivalent to contains(set, value)// To delete an element from the _values array in O(1), we swap the element to delete with the last one in// the array, and then remove the last element (sometimes called as 'swap and pop').// This modifies the order of the array, as noted in {at}.uint256 toDeleteIndex = valueIndex -1;
uint256 lastIndex = set._values.length-1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slotdelete set._indexes[value];
returntrue;
} else {
returnfalse;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/function_contains(Set storage set, bytes32 value) privateviewreturns (bool) {
return set._indexes[value] !=0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/function_length(Set storage set) privateviewreturns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/function_at(Set storage set, uint256 index) privateviewreturns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/function_values(Set storage set) privateviewreturns (bytes32[] memory) {
return set._values;
}
// Bytes32SetstructBytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(Bytes32Set storage set, bytes32 value) internalreturns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(Bytes32Set storage set, bytes32 value) internalreturns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(Bytes32Set storage set, bytes32 value) internalviewreturns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/functionlength(Bytes32Set storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(Bytes32Set storage set, uint256 index) internalviewreturns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/functionvalues(Bytes32Set storage set) internalviewreturns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSetstructAddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(AddressSet storage set, address value) internalreturns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(AddressSet storage set, address value) internalreturns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(AddressSet storage set, address value) internalviewreturns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/functionlength(AddressSet storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(AddressSet storage set, uint256 index) internalviewreturns (address) {
returnaddress(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/functionvalues(AddressSet storage set) internalviewreturns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assemblyassembly {
result := store
}
return result;
}
// UintSetstructUintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(UintSet storage set, uint256 value) internalreturns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(UintSet storage set, uint256 value) internalreturns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(UintSet storage set, uint256 value) internalviewreturns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/functionlength(UintSet storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(UintSet storage set, uint256 index) internalviewreturns (uint256) {
returnuint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/functionvalues(UintSet storage set) internalviewreturns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assemblyassembly {
result := store
}
return result;
}
}
Contract Source Code
File 5 of 22: IERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 amount
) externalreturns (bool);
}
Contract Source Code
File 6 of 22: IERC20Metadata.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)pragmasolidity ^0.8.0;import"../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/interfaceIERC20MetadataisIERC20{
/**
* @dev Returns the name of the token.
*/functionname() externalviewreturns (stringmemory);
/**
* @dev Returns the symbol of the token.
*/functionsymbol() externalviewreturns (stringmemory);
/**
* @dev Returns the decimals places of the token.
*/functiondecimals() externalviewreturns (uint8);
}
// SPDX-License-Identifier: MITpragmasolidity =0.8.14;/*
░██╗░░░░░░░██╗░█████╗░░█████╗░░░░░░░███████╗██╗
░██║░░██╗░░██║██╔══██╗██╔══██╗░░░░░░██╔════╝██║
░╚██╗████╗██╔╝██║░░██║██║░░██║█████╗█████╗░░██║
░░████╔═████║░██║░░██║██║░░██║╚════╝██╔══╝░░██║
░░╚██╔╝░╚██╔╝░╚█████╔╝╚█████╔╝░░░░░░██║░░░░░██║
░░░╚═╝░░░╚═╝░░░╚════╝░░╚════╝░░░░░░░╚═╝░░░░░╚═╝
*
* MIT License
* ===========
*
* Copyright (c) 2020 WooTrade
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/interfaceIStrategy{
functionvault() externalviewreturns (address);
functionwant() externalviewreturns (address);
functionbeforeDeposit() external;
functionbeforeWithdraw() external;
functiondeposit() external;
functionwithdraw(uint256) external;
functionbalanceOf() externalviewreturns (uint256);
functionbalanceOfWant() externalviewreturns (uint256);
functionbalanceOfPool() externalviewreturns (uint256);
functionharvest() external;
functionretireStrat() external;
functionemergencyExit() external;
functionpaused() externalviewreturns (bool);
functioninCaseTokensGetStuck(address stuckToken) external;
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/// @title Wrapped ETH.interfaceIWETH{
/// @dev Deposit ETH into WETHfunctiondeposit() externalpayable;
/// @dev Transfer WETH to receiver/// @param to address of WETH receiver/// @param value amount of WETH to transfer/// @return get true when succeed, else falsefunctiontransfer(address to, uint256 value) externalreturns (bool);
/// @dev Withdraw WETH to ETHfunctionwithdraw(uint256) external;
}
Contract Source Code
File 12 of 22: IWooAccessManager.sol
// SPDX-License-Identifier: MITpragmasolidity =0.8.14;/*
░██╗░░░░░░░██╗░█████╗░░█████╗░░░░░░░███████╗██╗
░██║░░██╗░░██║██╔══██╗██╔══██╗░░░░░░██╔════╝██║
░╚██╗████╗██╔╝██║░░██║██║░░██║█████╗█████╗░░██║
░░████╔═████║░██║░░██║██║░░██║╚════╝██╔══╝░░██║
░░╚██╔╝░╚██╔╝░╚█████╔╝╚█████╔╝░░░░░░██║░░░░░██║
░░░╚═╝░░░╚═╝░░░╚════╝░░╚════╝░░░░░░░╚═╝░░░░░╚═╝
*
* MIT License
* ===========
*
* Copyright (c) 2020 WooTrade
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*//// @title Reward manager interface for WooFi Swap./// @notice this is for swap rebate or potential incentive programinterfaceIWooAccessManager{
/* ----- Events ----- */eventFeeAdminUpdated(addressindexed feeAdmin, bool flag);
eventVaultAdminUpdated(addressindexed vaultAdmin, bool flag);
eventRebateAdminUpdated(addressindexed rebateAdmin, bool flag);
eventZeroFeeVaultUpdated(addressindexed vault, bool flag);
/* ----- External Functions ----- */functionisFeeAdmin(address feeAdmin) externalreturns (bool);
functionisVaultAdmin(address vaultAdmin) externalreturns (bool);
functionisRebateAdmin(address rebateAdmin) externalreturns (bool);
functionisZeroFeeVault(address vault) externalreturns (bool);
/* ----- Admin Functions ----- *//// @notice Sets feeAdminfunctionsetFeeAdmin(address feeAdmin, bool flag) external;
/// @notice Sets vaultAdminfunctionsetVaultAdmin(address vaultAdmin, bool flag) external;
/// @notice Sets rebateAdminfunctionsetRebateAdmin(address rebateAdmin, bool flag) external;
/// @notice Sets zeroFeeVaultfunctionsetZeroFeeVault(address vault, bool flag) external;
}
Contract Source Code
File 13 of 22: IWooPPV2.sol
// SPDX-License-Identifier: MITpragmasolidity =0.8.14;/*
░██╗░░░░░░░██╗░█████╗░░█████╗░░░░░░░███████╗██╗
░██║░░██╗░░██║██╔══██╗██╔══██╗░░░░░░██╔════╝██║
░╚██╗████╗██╔╝██║░░██║██║░░██║█████╗█████╗░░██║
░░████╔═████║░██║░░██║██║░░██║╚════╝██╔══╝░░██║
░░╚██╔╝░╚██╔╝░╚█████╔╝╚█████╔╝░░░░░░██║░░░░░██║
░░░╚═╝░░░╚═╝░░░╚════╝░░╚════╝░░░░░░░╚═╝░░░░░╚═╝
*
* MIT License
* ===========
*
* Copyright (c) 2020 WooTrade
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*//// @title Woo private pool for swap./// @notice Use this contract to directly interfact with woo's synthetic proactive/// marketing making pool./// @author woo.networkinterfaceIWooPPV2{
/* ----- Events ----- */eventDeposit(addressindexed token, addressindexed sender, uint256 amount);
eventWithdraw(addressindexed token, addressindexed receiver, uint256 amount);
eventMigrate(addressindexed token, addressindexed receiver, uint256 amount);
eventAdminUpdated(addressindexed addr, bool flag);
eventFeeAddrUpdated(addressindexed newFeeAddr);
eventWooracleUpdated(addressindexed newWooracle);
eventWooSwap(addressindexed fromToken,
addressindexed toToken,
uint256 fromAmount,
uint256 toAmount,
addressfrom,
addressindexed to,
address rebateTo,
uint256 swapVol,
uint256 swapFee
);
/* ----- External Functions ----- *//// @notice The quote token address (immutable)./// @return address of quote tokenfunctionquoteToken() externalviewreturns (address);
/// @notice Gets the pool size of the specified token (swap liquidity)./// @param token the token address/// @return the pool sizefunctionpoolSize(address token) externalviewreturns (uint256);
/// @notice Query the amount to swap `fromToken` to `toToken`, without checking the pool reserve balance./// @param fromToken the from token/// @param toToken the to token/// @param fromAmount the amount of `fromToken` to swap/// @return toAmount the swapped amount of `toToken`functiontryQuery(address fromToken,
address toToken,
uint256 fromAmount
) externalviewreturns (uint256 toAmount);
/// @notice Query the amount to swap `fromToken` to `toToken`, with checking the pool reserve balance./// @dev tx reverts when 'toToken' balance is insufficient./// @param fromToken the from token/// @param toToken the to token/// @param fromAmount the amount of `fromToken` to swap/// @return toAmount the swapped amount of `toToken`functionquery(address fromToken,
address toToken,
uint256 fromAmount
) externalviewreturns (uint256 toAmount);
/// @notice Swap `fromToken` to `toToken`./// @param fromToken the from token/// @param toToken the to token/// @param fromAmount the amount of `fromToken` to swap/// @param minToAmount the minimum amount of `toToken` to receive/// @param to the destination address/// @param rebateTo the rebate address (optional, can be address ZERO)/// @return realToAmount the amount of toToken to receivefunctionswap(address fromToken,
address toToken,
uint256 fromAmount,
uint256 minToAmount,
address to,
address rebateTo
) externalreturns (uint256 realToAmount);
/// @notice Deposit the specified token into the liquidity pool of WooPPV2./// @param token the token to deposit/// @param amount the deposit amountfunctiondeposit(address token, uint256 amount) external;
}
Contract Source Code
File 14 of 22: Ownable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)pragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Contract Source Code
File 15 of 22: Pausable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)pragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/abstractcontractPausableisContext{
/**
* @dev Emitted when the pause is triggered by `account`.
*/eventPaused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/eventUnpaused(address account);
boolprivate _paused;
/**
* @dev Initializes the contract in unpaused state.
*/constructor() {
_paused =false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/modifierwhenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/modifierwhenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/functionpaused() publicviewvirtualreturns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/function_requireNotPaused() internalviewvirtual{
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/function_requirePaused() internalviewvirtual{
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/function_pause() internalvirtualwhenNotPaused{
_paused =true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/function_unpause() internalvirtualwhenPaused{
_paused =false;
emit Unpaused(_msgSender());
}
}
Contract Source Code
File 16 of 22: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol)pragmasolidity ^0.8.0;/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/abstractcontractReentrancyGuard{
// Booleans are more expensive than uint256 or any type that takes up a full// word because each write operation emits an extra SLOAD to first read the// slot's contents, replace the bits taken up by the boolean, and then write// back. This is the compiler's defense against contract upgrades and// pointer aliasing, and it cannot be disabled.// The values being non-zero value makes deployment a bit more expensive,// but in exchange the refund on every call to nonReentrant will be lower in// amount. Since refunds are capped to a percentage of the total// transaction's gas, it is best to keep them low in cases like this one, to// increase the likelihood of the full refund coming into effect.uint256privateconstant _NOT_ENTERED =1;
uint256privateconstant _ENTERED =2;
uint256private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/modifiernonReentrant() {
// On the first call to nonReentrant, _notEntered will be truerequire(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
Contract Source Code
File 17 of 22: SafeERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)pragmasolidity ^0.8.0;import"../IERC20.sol";
import"../extensions/draft-IERC20Permit.sol";
import"../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/librarySafeERC20{
usingAddressforaddress;
functionsafeTransfer(
IERC20 token,
address to,
uint256 value
) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
functionsafeTransferFrom(
IERC20 token,
addressfrom,
address to,
uint256 value
) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/functionsafeApprove(
IERC20 token,
address spender,
uint256 value
) internal{
// safeApprove should only be called when setting an initial allowance,// or when resetting it to zero. To increase and decrease it, use// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'require(
(value ==0) || (token.allowance(address(this), spender) ==0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
functionsafeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal{
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
functionsafeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal{
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
functionsafePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal{
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore +1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/function_callOptionalReturn(IERC20 token, bytesmemory data) private{
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that// the target address contains contract code and also asserts for success in the low-level call.bytesmemory returndata =address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length>0) {
// Return data is optionalrequire(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
Contract Source Code
File 18 of 22: TransferHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-laterpragmasolidity ^0.8.0;// helper methods for interacting with ERC20 tokens and sending ETH that do not consistently return true/falselibraryTransferHelper{
functionsafeApprove(address token,
address to,
uint256 value
) internal{
// bytes4(keccak256(bytes('approve(address,uint256)')));
(bool success, bytesmemory data) = token.call(abi.encodeWithSelector(0x095ea7b3, to, value));
require(
success && (data.length==0||abi.decode(data, (bool))),
"TransferHelper::safeApprove: approve failed"
);
}
functionsafeTransfer(address token,
address to,
uint256 value
) internal{
// bytes4(keccak256(bytes('transfer(address,uint256)')));
(bool success, bytesmemory data) = token.call(abi.encodeWithSelector(0xa9059cbb, to, value));
require(
success && (data.length==0||abi.decode(data, (bool))),
"TransferHelper::safeTransfer: transfer failed"
);
}
functionsafeTransferFrom(address token,
addressfrom,
address to,
uint256 value
) internal{
// bytes4(keccak256(bytes('transferFrom(address,address,uint256)')));
(bool success, bytesmemory data) = token.call(abi.encodeWithSelector(0x23b872dd, from, to, value));
require(
success && (data.length==0||abi.decode(data, (bool))),
"TransferHelper::transferFrom: transferFrom failed"
);
}
functionsafeTransferETH(address to, uint256 value) internal{
(bool success, ) = to.call{value: value}(newbytes(0));
require(success, "TransferHelper::safeTransferETH: ETH transfer failed");
}
}
Contract Source Code
File 19 of 22: WooLendingManager.sol
// SPDX-License-Identifier: MITpragmasolidity =0.8.14;/*
░██╗░░░░░░░██╗░█████╗░░█████╗░░░░░░░███████╗██╗
░██║░░██╗░░██║██╔══██╗██╔══██╗░░░░░░██╔════╝██║
░╚██╗████╗██╔╝██║░░██║██║░░██║█████╗█████╗░░██║
░░████╔═████║░██║░░██║██║░░██║╚════╝██╔══╝░░██║
░░╚██╔╝░╚██╔╝░╚█████╔╝╚█████╔╝░░░░░░██║░░░░░██║
░░░╚═╝░░░╚═╝░░░╚════╝░░╚════╝░░░░░░░╚═╝░░░░░╚═╝
*
* MIT License
* ===========
*
* Copyright (c) 2020 WooTrade
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/import"./WooSuperChargerVaultV2.sol";
import"../interfaces/IWETH.sol";
import"../interfaces/IWooAccessManager.sol";
import"../interfaces/IWooPPV2.sol";
import"../libraries/TransferHelper.sol";
import {Ownable} from"@openzeppelin/contracts/access/Ownable.sol";
import {ReentrancyGuard} from"@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {IERC20, SafeERC20} from"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
contractWooLendingManagerisOwnable, ReentrancyGuard{
eventBorrow(addressindexed user, uint256 assets);
eventRepay(addressindexed user, uint256 assets, uint256 perfFee);
eventInterestRateUpdated(addressindexed user, uint256 oldInterest, uint256 newInterest);
addresspublic weth;
addresspublic want;
addresspublic accessManager;
addresspublic wooPP;
WooSuperChargerVaultV2 public superChargerVault;
uint256public borrowedPrincipal;
uint256public borrowedInterest;
uint256public perfRate =1000; // 1 in 10000th. 1000 = 10%addresspublic treasury;
uint256public interestRate; // 1 in 10000th. 1 = 0.01% (1 bp), 10 = 0.1% (10 bps)uint256public lastAccuredTs; // Timestamp of last accured interestsmapping(address=>bool) public isBorrower;
addressconstant ETH_PLACEHOLDER_ADDR =0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
constructor() {}
functioninit(address _weth,
address _want,
address _accessManager,
address _wooPP,
addresspayable _superChargerVault
) externalonlyOwner{
weth = _weth;
want = _want;
accessManager = _accessManager;
wooPP = _wooPP;
superChargerVault = WooSuperChargerVaultV2(_superChargerVault);
lastAccuredTs =block.timestamp;
treasury =0x4094D7A17a387795838c7aba4687387B0d32BCf3;
}
modifieronlyAdmin() {
require(
owner() ==msg.sender|| IWooAccessManager(accessManager).isVaultAdmin(msg.sender),
"WooLendingManager: !ADMIN"
);
_;
}
modifieronlyBorrower() {
require(isBorrower[msg.sender], "WooLendingManager: !borrower");
_;
}
modifieronlySuperChargerVault() {
require(msg.sender==address(superChargerVault), "WooLendingManager: !superChargerVault");
_;
}
functionsetSuperChargerVault(addresspayable _wooSuperCharger) externalonlyOwner{
superChargerVault = WooSuperChargerVaultV2(_wooSuperCharger);
}
functionsetWooPP(address _wooPP) externalonlyOwner{
wooPP = _wooPP;
}
functionsetBorrower(address _borrower, bool _isBorrower) externalonlyOwner{
isBorrower[_borrower] = _isBorrower;
}
functionsetPerfRate(uint256 _rate) externalonlyAdmin{
require(_rate <10000);
perfRate = _rate;
}
functiondebt() publicviewreturns (uint256 assets) {
return borrowedPrincipal + borrowedInterest;
}
functiondebtAfterPerfFee() publicviewreturns (uint256 assets) {
return debt();
}
functionborrowState()
externalviewreturns (uint256 total,
uint256 principal,
uint256 interest,
uint256 borrowable
)
{
total = debt();
principal = borrowedPrincipal;
interest = borrowedInterest;
borrowable = superChargerVault.maxBorrowableAmount();
}
functionaccureInterest() public{
uint256 currentTs =block.timestamp;
// CAUTION: block.timestamp may be out of orderif (currentTs <= lastAccuredTs) {
return;
}
uint256 duration = currentTs - lastAccuredTs;
// interestRate is in 10000th.// 31536000 = 365 * 24 * 3600 (1 year of seconds)uint256 interest = (borrowedPrincipal * interestRate * duration) /31536000/10000;
borrowedInterest = borrowedInterest + interest;
lastAccuredTs = currentTs;
}
functionsetInterestRate(uint256 _rate) externalonlyAdmin{
require(_rate <=50000, "RATE_INVALID"); // NOTE: rate < 500%
accureInterest();
uint256 oldInterest = interestRate;
interestRate = _rate;
emit InterestRateUpdated(msg.sender, oldInterest, _rate);
}
functionsetTreasury(address _treasury) externalonlyAdmin{
require(_treasury !=address(0), "WooLendingManager: !_treasury");
treasury = _treasury;
}
functionmaxBorrowableAmount() externalviewreturns (uint256) {
return superChargerVault.maxBorrowableAmount();
}
/// @dev Borrow the fund from super charger and then deposit directly into WooPP./// @param amount the borrowing amountfunctionborrow(uint256 amount) externalonlyBorrower{
require(amount >0, "!AMOUNT");
accureInterest();
borrowedPrincipal = borrowedPrincipal + amount;
uint256 preBalance = IERC20(want).balanceOf(address(this));
superChargerVault.borrowFromLendingManager(amount, address(this));
uint256 afterBalance = IERC20(want).balanceOf(address(this));
require(afterBalance - preBalance == amount, "WooLendingManager: BORROW_AMOUNT_ERROR");
TransferHelper.safeApprove(want, wooPP, amount);
IWooPPV2(wooPP).deposit(want, amount);
emit Borrow(msg.sender, amount);
}
// NOTE: this is the view function;// Remember to call the accureInterest to ensure the latest repayment state.functionweeklyRepayment() publicviewreturns (uint256 repayAmount) {
(repayAmount, , , ) = weeklyRepaymentBreakdown();
}
functionweeklyRepaymentBreakdown()
publicviewreturns (uint256 repayAmount,
uint256 principal,
uint256 interest,
uint256 perfFee
)
{
uint256 neededAmount = superChargerVault.weeklyNeededAmountForWithdraw();
if (neededAmount ==0) {
return (0, 0, 0, 0);
}
if (neededAmount <= borrowedInterest) {
interest = neededAmount;
principal =0;
} else {
interest = borrowedInterest;
principal = neededAmount - borrowedInterest;
}
perfFee = (interest * perfRate) /10000;
repayAmount = principal + interest + perfFee;
}
functionrepayWeekly() externalonlyBorrowerreturns (uint256 repaidAmount) {
accureInterest();
uint256 _principal;
uint256 _interest;
(, _principal, _interest, ) = weeklyRepaymentBreakdown();
return _repay(_principal, _interest);
}
functionrepayAll() externalonlyBorrowerreturns (uint256 repaidAmount) {
accureInterest();
return _repay(borrowedPrincipal, borrowedInterest);
}
// NOTE: repay the specified principal amount with all the borrowed interestfunctionrepayPrincipal(uint256 _principal) externalonlyBorrowerreturns (uint256 repaidAmount) {
accureInterest();
return _repay(_principal, borrowedInterest);
}
function_repay(uint256 _principal, uint256 _interest) privatereturns (uint256 repaidAmount) {
if (_principal ==0&& _interest ==0) {
emit Repay(msg.sender, 0, 0);
return0;
}
uint256 _perfFee = (_interest * perfRate) /10000;
uint256 _totalAmount = _principal + _interest + _perfFee;
TransferHelper.safeTransferFrom(want, msg.sender, address(this), _totalAmount);
borrowedInterest -= _interest;
borrowedPrincipal -= _principal;
TransferHelper.safeTransfer(want, treasury, _perfFee);
TransferHelper.safeApprove(want, address(superChargerVault), _principal + _interest);
superChargerVault.repayFromLendingManager(_principal + _interest);
emit Repay(msg.sender, _totalAmount, _perfFee);
return _totalAmount;
}
functioninCaseTokenGotStuck(address stuckToken) externalonlyOwner{
if (stuckToken == ETH_PLACEHOLDER_ADDR) {
TransferHelper.safeTransferETH(msg.sender, address(this).balance);
} else {
uint256 amount = IERC20(stuckToken).balanceOf(address(this));
TransferHelper.safeTransfer(stuckToken, msg.sender, amount);
}
}
}
// SPDX-License-Identifier: MITpragmasolidity =0.8.14;/*
░██╗░░░░░░░██╗░█████╗░░█████╗░░░░░░░███████╗██╗
░██║░░██╗░░██║██╔══██╗██╔══██╗░░░░░░██╔════╝██║
░╚██╗████╗██╔╝██║░░██║██║░░██║█████╗█████╗░░██║
░░████╔═████║░██║░░██║██║░░██║╚════╝██╔══╝░░██║
░░╚██╔╝░╚██╔╝░╚█████╔╝╚█████╔╝░░░░░░██║░░░░░██║
░░░╚═╝░░░╚═╝░░░╚════╝░░╚════╝░░░░░░░╚═╝░░░░░╚═╝
*
* MIT License
* ===========
*
* Copyright (c) 2020 WooTrade
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/import"../interfaces/IWETH.sol";
import"../interfaces/IWooAccessManager.sol";
import"../libraries/TransferHelper.sol";
import {Ownable} from"@openzeppelin/contracts/access/Ownable.sol";
import {ReentrancyGuard} from"@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {IERC20} from"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {EnumerableSet} from"@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
contractWooWithdrawManagerV2isOwnable, ReentrancyGuard{
// addedAmount: added withdrawal amount for this user// totalAmount: total withdrawal amount for this usereventWithdrawAdded(addressindexed user, uint256 addedAmount, uint256 totalAmount);
eventWithdraw(addressindexed user, uint256 amount);
addresspublic want;
addresspublic weth;
addresspublic accessManager;
addresspublic superChargerVault;
mapping(address=>uint256) public withdrawAmount;
addressconstant ETH_PLACEHOLDER_ADDR =0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
constructor() {}
functioninit(address _weth,
address _want,
address _accessManager,
address _superChargerVault
) externalonlyOwner{
weth = _weth;
want = _want;
accessManager = _accessManager;
superChargerVault = _superChargerVault;
}
modifieronlyAdmin() {
require(
owner() ==msg.sender|| IWooAccessManager(accessManager).isVaultAdmin(msg.sender),
"WooWithdrawManager: !owner"
);
_;
}
modifieronlySuperChargerVault() {
require(superChargerVault ==msg.sender, "WooWithdrawManager: !superChargerVault");
_;
}
functionsetSuperChargerVault(address _superChargerVault) externalonlyAdmin{
superChargerVault = _superChargerVault;
}
functionaddWithdrawAmount(address user, uint256 amount) externalonlySuperChargerVault{
// NOTE: in V2, granular token transfer is avoided to save the gas consumption;// Do remember batch transfer the total amount of `want` tokens after calling this method.// TransferHelper.safeTransferFrom(want, msg.sender, address(this), amount);
withdrawAmount[user] = withdrawAmount[user] + amount;
emit WithdrawAdded(user, amount, withdrawAmount[user]);
}
functionwithdraw() externalnonReentrant{
uint256 amount = withdrawAmount[msg.sender];
if (amount ==0) {
return;
}
withdrawAmount[msg.sender] =0;
if (want == weth) {
IWETH(weth).withdraw(amount);
TransferHelper.safeTransferETH(msg.sender, amount);
} else {
TransferHelper.safeTransfer(want, msg.sender, amount);
}
emit Withdraw(msg.sender, amount);
}
functioninCaseTokenGotStuck(address stuckToken) externalonlyOwner{
require(stuckToken != want);
if (stuckToken == ETH_PLACEHOLDER_ADDR) {
TransferHelper.safeTransferETH(msg.sender, address(this).balance);
} else {
uint256 amount = IERC20(stuckToken).balanceOf(address(this));
TransferHelper.safeTransfer(stuckToken, msg.sender, amount);
}
}
receive() externalpayable{}
}
Contract Source Code
File 22 of 22: draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/interfaceIERC20Permit{
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/functionpermit(address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/functionnonces(address owner) externalviewreturns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/// solhint-disable-next-line func-name-mixedcasefunctionDOMAIN_SEPARATOR() externalviewreturns (bytes32);
}