// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IAdminable } from "../interfaces/IAdminable.sol";
import { Errors } from "../libraries/Errors.sol";
/// @title Adminable
/// @notice See the documentation in {IAdminable}.
abstract contract Adminable is IAdminable {
/*//////////////////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc IAdminable
address public override admin;
/*//////////////////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Reverts if called by any account other than the admin.
modifier onlyAdmin() {
if (admin != msg.sender) {
revert Errors.CallerNotAdmin({ admin: admin, caller: msg.sender });
}
_;
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc IAdminable
function transferAdmin(address newAdmin) public virtual override onlyAdmin {
// Effects: update the admin.
admin = newAdmin;
// Log the transfer of the admin.
emit IAdminable.TransferAdmin({ oldAdmin: msg.sender, newAdmin: newAdmin });
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";
/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}
/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
}
result = UD2x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
}
result = uint256(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
}
result = uint128(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
}
if (xInt > int64(uint64(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
}
result = uint40(uint64(xInt));
}
/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
result = SD1x18.unwrap(x);
}
/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD2x18.
uint256 constant uUNIT = 1e18;
UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_SD59x18, uMIN_SD59x18, uUNIT } from "./Constants.sol";
import { PRBMath_SD59x18_Convert_Overflow, PRBMath_SD59x18_Convert_Underflow } from "./Errors.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Converts a simple integer to SD59x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be greater than or equal to `MIN_SD59x18 / UNIT`.
/// - x must be less than or equal to `MAX_SD59x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to SD59x18.
function convert(int256 x) pure returns (SD59x18 result) {
if (x < uMIN_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Underflow(x);
}
if (x > uMAX_SD59x18 / uUNIT) {
revert PRBMath_SD59x18_Convert_Overflow(x);
}
unchecked {
result = SD59x18.wrap(x * uUNIT);
}
}
/// @notice Converts an SD59x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The SD59x18 number to convert.
/// @return result The same number as a simple integer.
function convert(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x) / uUNIT;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD2x18 } from "@prb/math/src/UD2x18.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";
// DataTypes.sol
//
// This file defines all structs used in V2 Core, most of which are organized under three namespaces:
//
// - Lockup
// - LockupDynamic
// - LockupLinear
//
// You will notice that some structs contain "slot" annotations - they are used to indicate the
// storage layout of the struct. It is more gas efficient to group small data types together so
// that they fit in a single 32-byte slot.
/// @notice Struct encapsulating the broker parameters passed to the create functions. Both can be set to zero.
/// @param account The address receiving the broker's fee.
/// @param fee The broker's percentage fee from the total amount, denoted as a fixed-point number where 1e18 is 100%.
struct Broker {
address account;
UD60x18 fee;
}
/// @notice Namespace for the structs used in both {SablierV2LockupLinear} and {SablierV2LockupDynamic}.
library Lockup {
/// @notice Struct encapsulating the deposit, withdrawn, and refunded amounts, all denoted in units
/// of the asset's decimals.
/// @dev Because the deposited and the withdrawn amount are often read together, declaring them in
/// the same slot saves gas.
/// @param deposited The initial amount deposited in the stream, net of fees.
/// @param withdrawn The cumulative amount withdrawn from the stream.
/// @param refunded The amount refunded to the sender. Unless the stream was canceled, this is always zero.
struct Amounts {
// slot 0
uint128 deposited;
uint128 withdrawn;
// slot 1
uint128 refunded;
}
/// @notice Struct encapsulating the deposit amount, the protocol fee amount, and the broker fee amount,
/// all denoted in units of the asset's decimals.
/// @param deposit The amount to deposit in the stream.
/// @param protocolFee The protocol fee amount.
/// @param brokerFee The broker fee amount.
struct CreateAmounts {
uint128 deposit;
uint128 protocolFee;
uint128 brokerFee;
}
/// @notice Enum representing the different statuses of a stream.
/// @custom:value PENDING Stream created but not started; assets are in a pending state.
/// @custom:value STREAMING Active stream where assets are currently being streamed.
/// @custom:value SETTLED All assets have been streamed; recipient is due to withdraw them.
/// @custom:value CANCELED Canceled stream; remaining assets await recipient's withdrawal.
/// @custom:value DEPLETED Depleted stream; all assets have been withdrawn and/or refunded.
enum Status {
PENDING, // value 0
STREAMING, // value 1
SETTLED, // value 2
CANCELED, // value 3
DEPLETED // value 4
}
}
/// @notice Namespace for the structs used in {SablierV2LockupDynamic}.
library LockupDynamic {
/// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithDeltas} function.
/// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
/// same as `msg.sender`.
/// @param recipient The address receiving the assets.
/// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
/// fees, all denoted in units of the asset's decimals.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param cancelable Indicates if the stream is cancelable.
/// @param transferable Indicates if the stream NFT is transferable.
/// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
/// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
/// @param segments Segments with deltas used to compose the custom streaming curve. Milestones are calculated by
/// starting from `block.timestamp` and adding each delta to the previous milestone.
struct CreateWithDeltas {
address sender;
bool cancelable;
bool transferable;
address recipient;
uint128 totalAmount;
IERC20 asset;
Broker broker;
SegmentWithDelta[] segments;
}
/// @notice Struct encapsulating the parameters for the {SablierV2LockupDynamic.createWithMilestones}
/// function.
/// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
/// same as `msg.sender`.
/// @param startTime The Unix timestamp indicating the stream's start.
/// @param cancelable Indicates if the stream is cancelable.
/// @param transferable Indicates if the stream NFT is transferable.
/// @param recipient The address receiving the assets.
/// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
/// fees, all denoted in units of the asset's decimals.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
/// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
/// @param segments Segments used to compose the custom streaming curve.
struct CreateWithMilestones {
address sender;
uint40 startTime;
bool cancelable;
bool transferable;
address recipient;
uint128 totalAmount;
IERC20 asset;
Broker broker;
Segment[] segments;
}
/// @notice Struct encapsulating the time range.
/// @param start The Unix timestamp indicating the stream's start.
/// @param end The Unix timestamp indicating the stream's end.
struct Range {
uint40 start;
uint40 end;
}
/// @notice Segment struct used in the Lockup Dynamic stream.
/// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
/// @param exponent The exponent of this segment, denoted as a fixed-point number.
/// @param milestone The Unix timestamp indicating this segment's end.
struct Segment {
// slot 0
uint128 amount;
UD2x18 exponent;
uint40 milestone;
}
/// @notice Segment struct used at runtime in {SablierV2LockupDynamic.createWithDeltas}.
/// @param amount The amount of assets to be streamed in this segment, denoted in units of the asset's decimals.
/// @param exponent The exponent of this segment, denoted as a fixed-point number.
/// @param delta The time difference in seconds between this segment and the previous one.
struct SegmentWithDelta {
uint128 amount;
UD2x18 exponent;
uint40 delta;
}
/// @notice Lockup Dynamic stream.
/// @dev The fields are arranged like this to save gas via tight variable packing.
/// @param sender The address streaming the assets, with the ability to cancel the stream.
/// @param startTime The Unix timestamp indicating the stream's start.
/// @param endTime The Unix timestamp indicating the stream's end.
/// @param isCancelable Boolean indicating if the stream is cancelable.
/// @param wasCanceled Boolean indicating if the stream was canceled.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param isDepleted Boolean indicating if the stream is depleted.
/// @param isStream Boolean indicating if the struct entity exists.
/// @param isTransferable Boolean indicating if the stream NFT is transferable.
/// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
/// asset's decimals.
/// @param segments Segments used to compose the custom streaming curve.
struct Stream {
// slot 0
address sender;
uint40 startTime;
uint40 endTime;
bool isCancelable;
bool wasCanceled;
// slot 1
IERC20 asset;
bool isDepleted;
bool isStream;
bool isTransferable;
// slot 2 and 3
Lockup.Amounts amounts;
// slots [4..n]
Segment[] segments;
}
}
/// @notice Namespace for the structs used in {SablierV2LockupLinear}.
library LockupLinear {
/// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithDurations} function.
/// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
/// same as `msg.sender`.
/// @param recipient The address receiving the assets.
/// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
/// fees, all denoted in units of the asset's decimals.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param cancelable Indicates if the stream is cancelable.
/// @param transferable Indicates if the stream NFT is transferable.
/// @param durations Struct containing (i) cliff period duration and (ii) total stream duration, both in seconds.
/// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
/// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
struct CreateWithDurations {
address sender;
address recipient;
uint128 totalAmount;
IERC20 asset;
bool cancelable;
bool transferable;
Durations durations;
Broker broker;
}
/// @notice Struct encapsulating the parameters for the {SablierV2LockupLinear.createWithRange} function.
/// @param sender The address streaming the assets, with the ability to cancel the stream. It doesn't have to be the
/// same as `msg.sender`.
/// @param recipient The address receiving the assets.
/// @param totalAmount The total amount of ERC-20 assets to be paid, including the stream deposit and any potential
/// fees, all denoted in units of the asset's decimals.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param cancelable Indicates if the stream is cancelable.
/// @param transferable Indicates if the stream NFT is transferable.
/// @param range Struct containing (i) the stream's start time, (ii) cliff time, and (iii) end time, all as Unix
/// timestamps.
/// @param broker Struct containing (i) the address of the broker assisting in creating the stream, and (ii) the
/// percentage fee paid to the broker from `totalAmount`, denoted as a fixed-point number. Both can be set to zero.
struct CreateWithRange {
address sender;
address recipient;
uint128 totalAmount;
IERC20 asset;
bool cancelable;
bool transferable;
Range range;
Broker broker;
}
/// @notice Struct encapsulating the cliff duration and the total duration.
/// @param cliff The cliff duration in seconds.
/// @param total The total duration in seconds.
struct Durations {
uint40 cliff;
uint40 total;
}
/// @notice Struct encapsulating the time range.
/// @param start The Unix timestamp for the stream's start.
/// @param cliff The Unix timestamp for the cliff period's end.
/// @param end The Unix timestamp for the stream's end.
struct Range {
uint40 start;
uint40 cliff;
uint40 end;
}
/// @notice Lockup Linear stream.
/// @dev The fields are arranged like this to save gas via tight variable packing.
/// @param sender The address streaming the assets, with the ability to cancel the stream.
/// @param startTime The Unix timestamp indicating the stream's start.
/// @param cliffTime The Unix timestamp indicating the cliff period's end.
/// @param isCancelable Boolean indicating if the stream is cancelable.
/// @param wasCanceled Boolean indicating if the stream was canceled.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param endTime The Unix timestamp indicating the stream's end.
/// @param isDepleted Boolean indicating if the stream is depleted.
/// @param isStream Boolean indicating if the struct entity exists.
/// @param isTransferable Boolean indicating if the stream NFT is transferable.
/// @param amounts Struct containing the deposit, withdrawn, and refunded amounts, all denoted in units of the
/// asset's decimals.
struct Stream {
// slot 0
address sender;
uint40 startTime;
uint40 cliffTime;
bool isCancelable;
bool wasCanceled;
// slot 1
IERC20 asset;
uint40 endTime;
bool isDepleted;
bool isStream;
bool isTransferable;
// slot 2 and 3
Lockup.Amounts amounts;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)
pragma solidity ^0.8.0;
import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension, which is available separately as
* {ERC721Enumerable}.
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: address zero is not a valid owner");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _ownerOf(tokenId);
require(owner != address(0), "ERC721: invalid token ID");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
_requireMinted(tokenId);
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not token owner or approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
_requireMinted(tokenId);
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
_safeTransfer(from, to, tokenId, data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
*/
function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
return _owners[tokenId];
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _ownerOf(tokenId) != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
_mint(to, tokenId);
require(
_checkOnERC721Received(address(0), to, tokenId, data),
"ERC721: transfer to non ERC721Receiver implementer"
);
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId, 1);
// Check that tokenId was not minted by `_beforeTokenTransfer` hook
require(!_exists(tokenId), "ERC721: token already minted");
unchecked {
// Will not overflow unless all 2**256 token ids are minted to the same owner.
// Given that tokens are minted one by one, it is impossible in practice that
// this ever happens. Might change if we allow batch minting.
// The ERC fails to describe this case.
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId, 1);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
* This is an internal function that does not check if the sender is authorized to operate on the token.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId);
_beforeTokenTransfer(owner, address(0), tokenId, 1);
// Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
owner = ERC721.ownerOf(tokenId);
// Clear approvals
delete _tokenApprovals[tokenId];
unchecked {
// Cannot overflow, as that would require more tokens to be burned/transferred
// out than the owner initially received through minting and transferring in.
_balances[owner] -= 1;
}
delete _owners[tokenId];
emit Transfer(owner, address(0), tokenId);
_afterTokenTransfer(owner, address(0), tokenId, 1);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId, 1);
// Check that tokenId was not transferred by `_beforeTokenTransfer` hook
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
// Clear approvals from the previous owner
delete _tokenApprovals[tokenId];
unchecked {
// `_balances[from]` cannot overflow for the same reason as described in `_burn`:
// `from`'s balance is the number of token held, which is at least one before the current
// transfer.
// `_balances[to]` could overflow in the conditions described in `_mint`. That would require
// all 2**256 token ids to be minted, which in practice is impossible.
_balances[from] -= 1;
_balances[to] += 1;
}
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId, 1);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Reverts if the `tokenId` has not been minted yet.
*/
function _requireMinted(uint256 tokenId) internal view virtual {
require(_exists(tokenId), "ERC721: invalid token ID");
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
* - When `from` is zero, the tokens will be minted for `to`.
* - When `to` is zero, ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
/**
* @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
* used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
* - When `from` is zero, the tokens were minted for `to`.
* - When `to` is zero, ``from``'s tokens were burned.
* - `from` and `to` are never both zero.
* - `batchSize` is non-zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}
/**
* @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
*
* WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
* being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
* that `ownerOf(tokenId)` is `a`.
*/
// solhint-disable-next-line func-name-mixedcase
function __unsafe_increaseBalance(address account, uint256 amount) internal {
_balances[account] += amount;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
/// @title IAdminable
/// @notice Contract module that provides a basic access control mechanism, with an admin that can be
/// granted exclusive access to specific functions. The inheriting contract must set the initial admin
/// in the constructor.
interface IAdminable {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when the admin is transferred.
/// @param oldAdmin The address of the old admin.
/// @param newAdmin The address of the new admin.
event TransferAdmin(address indexed oldAdmin, address indexed newAdmin);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice The address of the admin account or contract.
function admin() external view returns (address);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Transfers the contract admin to a new address.
///
/// @dev Notes:
/// - Does not revert if the admin is the same.
/// - This function can potentially leave the contract without an admin, thereby removing any
/// functionality that is only available to the admin.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param newAdmin The address of the new admin.
function transferAdmin(address newAdmin) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4906.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
import "./IERC721.sol";
/// @title EIP-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";
import { IAdminable } from "./IAdminable.sol";
import { ISablierV2Comptroller } from "./ISablierV2Comptroller.sol";
/// @title ISablierV2Base
/// @notice Base logic for all Sablier V2 streaming contracts.
interface ISablierV2Base is IAdminable {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when the admin claims all protocol revenues accrued for a particular ERC-20 asset.
/// @param admin The address of the contract admin.
/// @param asset The contract address of the ERC-20 asset the protocol revenues have been claimed for.
/// @param protocolRevenues The amount of protocol revenues claimed, denoted in units of the asset's decimals.
event ClaimProtocolRevenues(address indexed admin, IERC20 indexed asset, uint128 protocolRevenues);
/// @notice Emitted when the admin sets a new comptroller contract.
/// @param admin The address of the contract admin.
/// @param oldComptroller The address of the old comptroller contract.
/// @param newComptroller The address of the new comptroller contract.
event SetComptroller(
address indexed admin, ISablierV2Comptroller oldComptroller, ISablierV2Comptroller newComptroller
);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Retrieves the maximum fee that can be charged by the protocol or a broker, denoted as a fixed-point
/// number where 1e18 is 100%.
/// @dev This value is hard coded as a constant.
function MAX_FEE() external view returns (UD60x18);
/// @notice Retrieves the address of the comptroller contract, responsible for the Sablier V2 protocol
/// configuration.
function comptroller() external view returns (ISablierV2Comptroller);
/// @notice Retrieves the protocol revenues accrued for the provided ERC-20 asset, in units of the asset's
/// decimals.
/// @param asset The contract address of the ERC-20 asset to query.
function protocolRevenues(IERC20 asset) external view returns (uint128 revenues);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Claims all accumulated protocol revenues for the provided ERC-20 asset.
///
/// @dev Emits a {ClaimProtocolRevenues} event.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param asset The contract address of the ERC-20 asset for which to claim protocol revenues.
function claimProtocolRevenues(IERC20 asset) external;
/// @notice Assigns a new comptroller contract responsible for the protocol configuration.
///
/// @dev Emits a {SetComptroller} event.
///
/// Notes:
/// - Does not revert if the comptroller is the same.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param newComptroller The address of the new comptroller contract.
function setComptroller(ISablierV2Comptroller newComptroller) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";
import { IAdminable } from "./IAdminable.sol";
/// @title ISablierV2Controller
/// @notice This contract is in charge of the Sablier V2 protocol configuration, handling such values as the
/// protocol fees.
interface ISablierV2Comptroller is IAdminable {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when the admin sets a new flash fee.
/// @param admin The address of the contract admin.
/// @param oldFlashFee The old flash fee, denoted as a fixed-point number.
/// @param newFlashFee The new flash fee, denoted as a fixed-point number.
event SetFlashFee(address indexed admin, UD60x18 oldFlashFee, UD60x18 newFlashFee);
/// @notice Emitted when the admin sets a new protocol fee for the provided ERC-20 asset.
/// @param admin The address of the contract admin.
/// @param asset The contract address of the ERC-20 asset the new protocol fee has been set for.
/// @param oldProtocolFee The old protocol fee, denoted as a fixed-point number.
/// @param newProtocolFee The new protocol fee, denoted as a fixed-point number.
event SetProtocolFee(address indexed admin, IERC20 indexed asset, UD60x18 oldProtocolFee, UD60x18 newProtocolFee);
/// @notice Emitted when the admin enables or disables an ERC-20 asset for flash loaning.
/// @param admin The address of the contract admin.
/// @param asset The contract address of the ERC-20 asset to toggle.
/// @param newFlag Whether the ERC-20 asset can be flash loaned.
event ToggleFlashAsset(address indexed admin, IERC20 indexed asset, bool newFlag);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Retrieves the global flash fee, denoted as a fixed-point number where 1e18 is 100%.
///
/// @dev Notes:
/// - This fee represents a percentage, not an amount. Do not confuse it with {IERC3156FlashLender.flashFee},
/// which calculates the fee amount for a specified flash loan amount.
/// - Unlike the protocol fee, this is a global fee applied to all flash loans, not a per-asset fee.
function flashFee() external view returns (UD60x18 fee);
/// @notice Retrieves a flag indicating whether the provided ERC-20 asset can be flash loaned.
/// @param token The contract address of the ERC-20 asset to check.
function isFlashAsset(IERC20 token) external view returns (bool result);
/// @notice Retrieves the protocol fee for all streams created with the provided ERC-20 asset.
/// @param asset The contract address of the ERC-20 asset to query.
/// @return fee The protocol fee denoted as a fixed-point number where 1e18 is 100%.
function protocolFees(IERC20 asset) external view returns (UD60x18 fee);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Updates the flash fee charged on all flash loans made with any ERC-20 asset.
///
/// @dev Emits a {SetFlashFee} event.
///
/// Notes:
/// - Does not revert if the fee is the same.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param newFlashFee The new flash fee to set, denoted as a fixed-point number where 1e18 is 100%.
function setFlashFee(UD60x18 newFlashFee) external;
/// @notice Sets a new protocol fee that will be charged on all streams created with the provided ERC-20 asset.
///
/// @dev Emits a {SetProtocolFee} event.
///
/// Notes:
/// - The fee is not denoted in units of the asset's decimals; it is a fixed-point number. Refer to the
/// PRBMath documentation for more detail on the logic of UD60x18.
/// - Does not revert if the fee is the same.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param asset The contract address of the ERC-20 asset to update the fee for.
/// @param newProtocolFee The new protocol fee, denoted as a fixed-point number where 1e18 is 100%.
function setProtocolFee(IERC20 asset, UD60x18 newProtocolFee) external;
/// @notice Toggles the flash loanability of an ERC-20 asset.
///
/// @dev Emits a {ToggleFlashAsset} event.
///
/// Requirements:
/// - `msg.sender` must be the admin.
///
/// @param asset The address of the ERC-20 asset to toggle.
function toggleFlashAsset(IERC20 asset) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
import { Lockup } from "../types/DataTypes.sol";
import { ISablierV2Base } from "./ISablierV2Base.sol";
import { ISablierV2NFTDescriptor } from "./ISablierV2NFTDescriptor.sol";
/// @title ISablierV2Lockup
/// @notice Common logic between all Sablier V2 Lockup streaming contracts.
interface ISablierV2Lockup is
ISablierV2Base, // 1 inherited component
IERC721Metadata // 2 inherited components
{
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when a stream is canceled.
/// @param streamId The id of the stream.
/// @param sender The address of the stream's sender.
/// @param recipient The address of the stream's recipient.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's
/// decimals.
/// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of the
/// asset's decimals.
event CancelLockupStream(
uint256 streamId,
address indexed sender,
address indexed recipient,
IERC20 indexed asset,
uint128 senderAmount,
uint128 recipientAmount
);
/// @notice Emitted when a sender gives up the right to cancel a stream.
/// @param streamId The id of the stream.
event RenounceLockupStream(uint256 indexed streamId);
/// @notice Emitted when the admin sets a new NFT descriptor contract.
/// @param admin The address of the current contract admin.
/// @param oldNFTDescriptor The address of the old NFT descriptor contract.
/// @param newNFTDescriptor The address of the new NFT descriptor contract.
event SetNFTDescriptor(
address indexed admin, ISablierV2NFTDescriptor oldNFTDescriptor, ISablierV2NFTDescriptor newNFTDescriptor
);
/// @notice Emitted when assets are withdrawn from a stream.
/// @param streamId The id of the stream.
/// @param to The address that has received the withdrawn assets.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals.
event WithdrawFromLockupStream(uint256 indexed streamId, address indexed to, IERC20 indexed asset, uint128 amount);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Retrieves the address of the ERC-20 asset used for streaming.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getAsset(uint256 streamId) external view returns (IERC20 asset);
/// @notice Retrieves the amount deposited in the stream, denoted in units of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getDepositedAmount(uint256 streamId) external view returns (uint128 depositedAmount);
/// @notice Retrieves the stream's end time, which is a Unix timestamp.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getEndTime(uint256 streamId) external view returns (uint40 endTime);
/// @notice Retrieves the stream's recipient.
/// @dev Reverts if the NFT has been burned.
/// @param streamId The stream id for the query.
function getRecipient(uint256 streamId) external view returns (address recipient);
/// @notice Retrieves the amount refunded to the sender after a cancellation, denoted in units of the asset's
/// decimals. This amount is always zero unless the stream was canceled.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getRefundedAmount(uint256 streamId) external view returns (uint128 refundedAmount);
/// @notice Retrieves the stream's sender.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getSender(uint256 streamId) external view returns (address sender);
/// @notice Retrieves the stream's start time, which is a Unix timestamp.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getStartTime(uint256 streamId) external view returns (uint40 startTime);
/// @notice Retrieves the amount withdrawn from the stream, denoted in units of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getWithdrawnAmount(uint256 streamId) external view returns (uint128 withdrawnAmount);
/// @notice Retrieves a flag indicating whether the stream can be canceled. When the stream is cold, this
/// flag is always `false`.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function isCancelable(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream is cold, i.e. settled, canceled, or depleted.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function isCold(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream is depleted.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function isDepleted(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream exists.
/// @dev Does not revert if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function isStream(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream NFT can be transferred.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function isTransferable(uint256 streamId) external view returns (bool result);
/// @notice Retrieves a flag indicating whether the stream is warm, i.e. either pending or streaming.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function isWarm(uint256 streamId) external view returns (bool result);
/// @notice Counter for stream ids, used in the create functions.
function nextStreamId() external view returns (uint256);
/// @notice Calculates the amount that the sender would be refunded if the stream were canceled, denoted in units
/// of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function refundableAmountOf(uint256 streamId) external view returns (uint128 refundableAmount);
/// @notice Retrieves the stream's status.
/// @param streamId The stream id for the query.
function statusOf(uint256 streamId) external view returns (Lockup.Status status);
/// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);
/// @notice Retrieves a flag indicating whether the stream was canceled.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function wasCanceled(uint256 streamId) external view returns (bool result);
/// @notice Calculates the amount that the recipient can withdraw from the stream, denoted in units of the asset's
/// decimals.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function withdrawableAmountOf(uint256 streamId) external view returns (uint128 withdrawableAmount);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Burns the NFT associated with the stream.
///
/// @dev Emits a {Transfer} event.
///
/// Requirements:
/// - Must not be delegate called.
/// - `streamId` must reference a depleted stream.
/// - The NFT must exist.
/// - `msg.sender` must be either the NFT owner or an approved third party.
///
/// @param streamId The id of the stream NFT to burn.
function burn(uint256 streamId) external;
/// @notice Cancels the stream and refunds any remaining assets to the sender.
///
/// @dev Emits a {Transfer}, {CancelLockupStream}, and {MetadataUpdate} event.
///
/// Notes:
/// - If there any assets left for the recipient to withdraw, the stream is marked as canceled. Otherwise, the
/// stream is marked as depleted.
/// - This function attempts to invoke a hook on the recipient, if the resolved address is a contract.
///
/// Requirements:
/// - Must not be delegate called.
/// - The stream must be warm and cancelable.
/// - `msg.sender` must be the stream's sender.
///
/// @param streamId The id of the stream to cancel.
function cancel(uint256 streamId) external;
/// @notice Cancels multiple streams and refunds any remaining assets to the sender.
///
/// @dev Emits multiple {Transfer}, {CancelLockupStream}, and {MetadataUpdate} events.
///
/// Notes:
/// - Refer to the notes in {cancel}.
///
/// Requirements:
/// - All requirements from {cancel} must be met for each stream.
///
/// @param streamIds The ids of the streams to cancel.
function cancelMultiple(uint256[] calldata streamIds) external;
/// @notice Removes the right of the stream's sender to cancel the stream.
///
/// @dev Emits a {RenounceLockupStream} and {MetadataUpdate} event.
///
/// Notes:
/// - This is an irreversible operation.
/// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract.
///
/// Requirements:
/// - Must not be delegate called.
/// - `streamId` must reference a warm stream.
/// - `msg.sender` must be the stream's sender.
/// - The stream must be cancelable.
///
/// @param streamId The id of the stream to renounce.
function renounce(uint256 streamId) external;
/// @notice Sets a new NFT descriptor contract, which produces the URI describing the Sablier stream NFTs.
///
/// @dev Emits a {SetNFTDescriptor} and {BatchMetadataUpdate} event.
///
/// Notes:
/// - Does not revert if the NFT descriptor is the same.
///
/// Requirements:
/// - `msg.sender` must be the contract admin.
///
/// @param newNFTDescriptor The address of the new NFT descriptor contract.
function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external;
/// @notice Withdraws the provided amount of assets from the stream to the `to` address.
///
/// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
///
/// Notes:
/// - This function attempts to invoke a hook on the stream's recipient, provided that the recipient is a contract
/// and `msg.sender` is either the sender or an approved operator.
///
/// Requirements:
/// - Must not be delegate called.
/// - `streamId` must not reference a null or depleted stream.
/// - `msg.sender` must be the stream's sender, the stream's recipient or an approved third party.
/// - `to` must be the recipient if `msg.sender` is the stream's sender.
/// - `to` must not be the zero address.
/// - `amount` must be greater than zero and must not exceed the withdrawable amount.
///
/// @param streamId The id of the stream to withdraw from.
/// @param to The address receiving the withdrawn assets.
/// @param amount The amount to withdraw, denoted in units of the asset's decimals.
function withdraw(uint256 streamId, address to, uint128 amount) external;
/// @notice Withdraws the maximum withdrawable amount from the stream to the provided address `to`.
///
/// @dev Emits a {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} event.
///
/// Notes:
/// - Refer to the notes in {withdraw}.
///
/// Requirements:
/// - Refer to the requirements in {withdraw}.
///
/// @param streamId The id of the stream to withdraw from.
/// @param to The address receiving the withdrawn assets.
function withdrawMax(uint256 streamId, address to) external;
/// @notice Withdraws the maximum withdrawable amount from the stream to the current recipient, and transfers the
/// NFT to `newRecipient`.
///
/// @dev Emits a {WithdrawFromLockupStream} and a {Transfer} event.
///
/// Notes:
/// - If the withdrawable amount is zero, the withdrawal is skipped.
/// - Refer to the notes in {withdraw}.
///
/// Requirements:
/// - `msg.sender` must be the stream's recipient.
/// - Refer to the requirements in {withdraw}.
/// - Refer to the requirements in {IERC721.transferFrom}.
///
/// @param streamId The id of the stream NFT to transfer.
/// @param newRecipient The address of the new owner of the stream NFT.
function withdrawMaxAndTransfer(uint256 streamId, address newRecipient) external;
/// @notice Withdraws assets from streams to the provided address `to`.
///
/// @dev Emits multiple {Transfer}, {WithdrawFromLockupStream}, and {MetadataUpdate} events.
///
/// Notes:
/// - This function attempts to call a hook on the recipient of each stream, unless `msg.sender` is the recipient.
///
/// Requirements:
/// - All requirements from {withdraw} must be met for each stream.
/// - There must be an equal number of `streamIds` and `amounts`.
///
/// @param streamIds The ids of the streams to withdraw from.
/// @param to The address receiving the withdrawn assets.
/// @param amounts The amounts to withdraw, denoted in units of the asset's decimals.
function withdrawMultiple(uint256[] calldata streamIds, address to, uint128[] calldata amounts) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Lockup, LockupDynamic } from "../types/DataTypes.sol";
import { ISablierV2Lockup } from "./ISablierV2Lockup.sol";
/// @title ISablierV2LockupDynamic
/// @notice Creates and manages Lockup streams with dynamic streaming functions.
interface ISablierV2LockupDynamic is ISablierV2Lockup {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Emitted when a stream is created.
/// @param streamId The id of the newly created stream.
/// @param funder The address which has funded the stream.
/// @param sender The address from which to stream the assets, who will have the ability to cancel the stream.
/// @param recipient The address toward which to stream the assets.
/// @param amounts Struct containing (i) the deposit amount, (ii) the protocol fee amount, and (iii) the
/// broker fee amount, all denoted in units of the asset's decimals.
/// @param asset The contract address of the ERC-20 asset used for streaming.
/// @param cancelable Boolean indicating whether the stream will be cancelable or not.
/// @param transferable Boolean indicating whether the stream NFT is transferable or not.
/// @param segments The segments the protocol uses to compose the custom streaming curve.
/// @param range Struct containing (i) the stream's start time and (ii) end time, both as Unix timestamps.
/// @param broker The address of the broker who has helped create the stream, e.g. a front-end website.
event CreateLockupDynamicStream(
uint256 streamId,
address funder,
address indexed sender,
address indexed recipient,
Lockup.CreateAmounts amounts,
IERC20 indexed asset,
bool cancelable,
bool transferable,
LockupDynamic.Segment[] segments,
LockupDynamic.Range range,
address broker
);
/*//////////////////////////////////////////////////////////////////////////
CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice The maximum number of segments allowed in a stream.
/// @dev This is initialized at construction time and cannot be changed later.
function MAX_SEGMENT_COUNT() external view returns (uint256);
/// @notice Retrieves the stream's range, which is a struct containing (i) the stream's start time and (ii) end
/// time, both as Unix timestamps.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getRange(uint256 streamId) external view returns (LockupDynamic.Range memory range);
/// @notice Retrieves the segments the protocol uses to compose the custom streaming curve.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getSegments(uint256 streamId) external view returns (LockupDynamic.Segment[] memory segments);
/// @notice Retrieves the stream entity.
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function getStream(uint256 streamId) external view returns (LockupDynamic.Stream memory stream);
/// @notice Calculates the amount streamed to the recipient, denoted in units of the asset's decimals.
///
/// When the stream is warm, the streaming function is:
///
/// $$
/// f(x) = x^{exp} * csa + \Sigma(esa)
/// $$
///
/// Where:
///
/// - $x$ is the elapsed time divided by the total time in the current segment.
/// - $exp$ is the current segment exponent.
/// - $csa$ is the current segment amount.
/// - $\Sigma(esa)$ is the sum of all elapsed segments' amounts.
///
/// Upon cancellation of the stream, the amount streamed is calculated as the difference between the deposited
/// amount and the refunded amount. Ultimately, when the stream becomes depleted, the streamed amount is equivalent
/// to the total amount withdrawn.
///
/// @dev Reverts if `streamId` references a null stream.
/// @param streamId The stream id for the query.
function streamedAmountOf(uint256 streamId) external view returns (uint128 streamedAmount);
/*//////////////////////////////////////////////////////////////////////////
NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Creates a stream by setting the start time to `block.timestamp`, and the end time to the sum of
/// `block.timestamp` and all specified time deltas. The segment milestones are derived from these
/// deltas. The stream is funded by `msg.sender` and is wrapped in an ERC-721 NFT.
///
/// @dev Emits a {Transfer} and {CreateLockupDynamicStream} event.
///
/// Requirements:
/// - All requirements in {createWithMilestones} must be met for the calculated parameters.
///
/// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
/// @return streamId The id of the newly created stream.
function createWithDeltas(LockupDynamic.CreateWithDeltas calldata params) external returns (uint256 streamId);
/// @notice Creates a stream with the provided segment milestones, implying the end time from the last milestone.
/// The stream is funded by `msg.sender` and is wrapped in an ERC-721 NFT.
///
/// @dev Emits a {Transfer} and {CreateLockupDynamicStream} event.
///
/// Notes:
/// - As long as the segment milestones are arranged in ascending order, it is not an error for some
/// of them to be in the past.
///
/// Requirements:
/// - Must not be delegate called.
/// - `params.totalAmount` must be greater than zero.
/// - If set, `params.broker.fee` must not be greater than `MAX_FEE`.
/// - `params.segments` must have at least one segment, but not more than `MAX_SEGMENT_COUNT`.
/// - `params.startTime` must be less than the first segment's milestone.
/// - The segment milestones must be arranged in ascending order.
/// - The last segment milestone (i.e. the stream's end time) must be in the future.
/// - The sum of the segment amounts must equal the deposit amount.
/// - `params.recipient` must not be the zero address.
/// - `msg.sender` must have allowed this contract to spend at least `params.totalAmount` assets.
///
/// @param params Struct encapsulating the function parameters, which are documented in {DataTypes}.
/// @return streamId The id of the newly created stream.
function createWithMilestones(LockupDynamic.CreateWithMilestones calldata params)
external
returns (uint256 streamId);
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
/// @title ISablierV2LockupRecipient
/// @notice Interface for recipient contracts capable of reacting to cancellations, renouncements, and withdrawals.
/// @dev Implementation of this interface is optional. If a recipient contract doesn't implement this
/// interface or implements it partially, function execution will not revert.
interface ISablierV2LockupRecipient {
/// @notice Responds to sender-triggered cancellations.
///
/// @dev Notes:
/// - This function may revert, but the Sablier contract will ignore the revert.
///
/// @param streamId The id of the canceled stream.
/// @param sender The stream's sender, who canceled the stream.
/// @param senderAmount The amount of assets refunded to the stream's sender, denoted in units of the asset's
/// decimals.
/// @param recipientAmount The amount of assets left for the stream's recipient to withdraw, denoted in units of
/// the asset's decimals.
function onStreamCanceled(
uint256 streamId,
address sender,
uint128 senderAmount,
uint128 recipientAmount
)
external;
/// @notice Responds to renouncements.
///
/// @dev Notes:
/// - This function may revert, but the Sablier contract will ignore the revert.
///
/// @param streamId The id of the renounced stream.
function onStreamRenounced(uint256 streamId) external;
/// @notice Responds to withdrawals triggered by either the stream's sender or an approved third party.
///
/// @dev Notes:
/// - This function may revert, but the Sablier contract will ignore the revert.
///
/// @param streamId The id of the stream being withdrawn from.
/// @param caller The original `msg.sender` address that triggered the withdrawal.
/// @param to The address receiving the withdrawn assets.
/// @param amount The amount of assets withdrawn, denoted in units of the asset's decimals.
function onStreamWithdrawn(uint256 streamId, address caller, address to, uint128 amount) external;
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
/// @title ISablierV2NFTDescriptor
/// @notice This contract generates the URI describing the Sablier V2 stream NFTs.
/// @dev Inspired by Uniswap V3 Positions NFTs.
interface ISablierV2NFTDescriptor {
/// @notice Produces the URI describing a particular stream NFT.
/// @dev This is a data URI with the JSON contents directly inlined.
/// @param sablier The address of the Sablier contract the stream was created in.
/// @param streamId The id of the stream for which to produce a description.
/// @return uri The URI of the ERC721-compliant metadata.
function tokenURI(IERC721Metadata sablier, uint256 streamId) external view returns (string memory uri);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_UD60x18,
uMAX_WHOLE_UD60x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
unchecked {
result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint > uMAX_WHOLE_UD60x18) {
revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
}
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `UNIT - remainder`.
let delta := sub(uUNIT, remainder)
// Equivalent to `x + remainder > 0 ? delta : 0`.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xUint > uEXP_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
uint256 doubleUnitProduct = xUint * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xUint > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
}
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = (xUint << 64) / uUNIT;
// Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
result = wrap(Common.exp2(x_192x64));
}
/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `x - remainder > 0 ? remainder : 0)`.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
result := mod(x, uUNIT)
}
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
if (xUint == 0 || yUint == 0) {
return ZERO;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xyUint = xUint * yUint;
if (xyUint / xUint != yUint) {
revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
result = wrap(Common.sqrt(xyUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~196_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
default { result := uMAX_UD60x18 }
}
if (result.unwrap() == uMAX_UD60x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(xUint / uUNIT);
// This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
// n is at most 255 and UNIT is 1e18.
uint256 resultUint = n * uUNIT;
// Calculate $y = x * 2^{-n}$.
uint256 y = xUint >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultUint);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
uint256 DOUBLE_UNIT = 2e18;
for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultUint += delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
result = wrap(resultUint);
}
}
/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}
/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xUint == 0) {
return yUint == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xUint == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yUint == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yUint == uUNIT) {
return x;
}
// If x is greater than `UNIT`, use the standard formula.
if (xUint > uUNIT) {
result = exp2(mul(log2(x), y));
}
// Conversely, if x is less than `UNIT`, use the equivalent formula.
else {
UD60x18 i = wrap(uUNIT_SQUARED / xUint);
UD60x18 w = exp2(mul(log2(i), y));
result = wrap(uUNIT_SQUARED / w.unwrap());
}
}
/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
// Calculate the first iteration of the loop in advance.
uint256 xUint = x.unwrap();
uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
for (y >>= 1; y > 0; y >>= 1) {
xUint = Common.mulDiv18(xUint, xUint);
// Equivalent to `y % 2 == 1`.
if (y & 1 > 0) {
resultUint = Common.mulDiv18(resultUint, xUint);
}
}
result = wrap(resultUint);
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
unchecked {
if (xUint > uMAX_UD60x18 / uUNIT) {
revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
}
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
// In this case, the two numbers are both the square root.
result = wrap(Common.sqrt(xUint * uUNIT));
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.19;
import { Errors } from "../libraries/Errors.sol";
/// @title NoDelegateCall
/// @notice This contract implements logic to prevent delegate calls.
abstract contract NoDelegateCall {
/// @dev The address of the original contract that was deployed.
address private immutable ORIGINAL;
/// @dev Sets the original contract address.
constructor() {
ORIGINAL = address(this);
}
/// @notice Prevents delegate calls.
modifier noDelegateCall() {
_preventDelegateCall();
_;
}
/// @dev This function checks whether the current call is a delegate call, and reverts if it is.
///
/// - A private function is used instead of inlining this logic in a modifier because Solidity copies modifiers into
/// every function that uses them. The `ORIGINAL` address would get copied in every place the modifier is used,
/// which would increase the contract size. By using a function instead, we can avoid this duplication of code
/// and reduce the overall size of the contract.
function _preventDelegateCall() private view {
if (address(this) != ORIGINAL) {
revert Errors.DelegateCall();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
/*
██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║
██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║
╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝
███████╗██████╗ ███████╗ █████╗ ██╗ ██╗ ██╗ █████╗
██╔════╝██╔══██╗██╔════╝██╔══██╗╚██╗██╔╝███║██╔══██╗
███████╗██║ ██║███████╗╚██████║ ╚███╔╝ ╚██║╚█████╔╝
╚════██║██║ ██║╚════██║ ╚═══██║ ██╔██╗ ██║██╔══██╗
███████║██████╔╝███████║ █████╔╝██╔╝ ██╗ ██║╚█████╔╝
╚══════╝╚═════╝ ╚══════╝ ╚════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝
*/
import "./sd59x18/Casting.sol";
import "./sd59x18/Constants.sol";
import "./sd59x18/Conversions.sol";
import "./sd59x18/Errors.sol";
import "./sd59x18/Helpers.sol";
import "./sd59x18/Math.sol";
import "./sd59x18/ValueType.sol";
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";
import { IAdminable } from "../interfaces/IAdminable.sol";
import { ISablierV2Base } from "../interfaces/ISablierV2Base.sol";
import { ISablierV2Comptroller } from "../interfaces/ISablierV2Comptroller.sol";
import { Errors } from "../libraries/Errors.sol";
import { Adminable } from "./Adminable.sol";
import { NoDelegateCall } from "./NoDelegateCall.sol";
/// @title SablierV2Base
/// @notice See the documentation in {ISablierV2Base}.
abstract contract SablierV2Base is
NoDelegateCall, // 0 inherited components
ISablierV2Base, // 1 inherited component
Adminable // 1 inherited component
{
using SafeERC20 for IERC20;
/*//////////////////////////////////////////////////////////////////////////
PUBLIC CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Base
UD60x18 public constant override MAX_FEE = UD60x18.wrap(0.1e18);
/*//////////////////////////////////////////////////////////////////////////
PUBLIC STORAGE
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Base
ISablierV2Comptroller public override comptroller;
/// @inheritdoc ISablierV2Base
mapping(IERC20 asset => uint128 revenues) public override protocolRevenues;
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @dev Emits a {TransferAdmin} event.
/// @param initialAdmin The address of the initial contract admin.
/// @param initialComptroller The address of the initial comptroller.
constructor(address initialAdmin, ISablierV2Comptroller initialComptroller) {
admin = initialAdmin;
comptroller = initialComptroller;
emit IAdminable.TransferAdmin({ oldAdmin: address(0), newAdmin: initialAdmin });
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Base
function claimProtocolRevenues(IERC20 asset) external override onlyAdmin {
// Checks: the protocol revenues are not zero.
uint128 revenues = protocolRevenues[asset];
if (revenues == 0) {
revert Errors.SablierV2Base_NoProtocolRevenues(asset);
}
// Effects: set the protocol revenues to zero.
protocolRevenues[asset] = 0;
// Interactions: perform the ERC-20 transfer to pay the protocol revenues.
asset.safeTransfer({ to: msg.sender, value: revenues });
// Log the claim of the protocol revenues.
emit ISablierV2Base.ClaimProtocolRevenues({ admin: msg.sender, asset: asset, protocolRevenues: revenues });
}
/// @inheritdoc ISablierV2Base
function setComptroller(ISablierV2Comptroller newComptroller) external override onlyAdmin {
// Effects: set the new comptroller.
ISablierV2Comptroller oldComptroller = comptroller;
comptroller = newComptroller;
// Log the change of the comptroller.
emit ISablierV2Base.SetComptroller({
admin: msg.sender,
oldComptroller: oldComptroller,
newComptroller: newComptroller
});
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.19;
import { IERC4906 } from "@openzeppelin/contracts/interfaces/IERC4906.sol";
import { ERC721 } from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import { IERC721Metadata } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol";
import { ISablierV2Comptroller } from "../interfaces/ISablierV2Comptroller.sol";
import { ISablierV2Lockup } from "../interfaces/ISablierV2Lockup.sol";
import { ISablierV2NFTDescriptor } from "../interfaces/ISablierV2NFTDescriptor.sol";
import { ISablierV2LockupRecipient } from "../interfaces/hooks/ISablierV2LockupRecipient.sol";
import { Errors } from "../libraries/Errors.sol";
import { Lockup } from "../types/DataTypes.sol";
import { SablierV2Base } from "./SablierV2Base.sol";
/// @title SablierV2Lockup
/// @notice See the documentation in {ISablierV2Lockup}.
abstract contract SablierV2Lockup is
IERC4906, // 2 inherited components
SablierV2Base, // 4 inherited components
ISablierV2Lockup, // 4 inherited components
ERC721 // 6 inherited components
{
/*//////////////////////////////////////////////////////////////////////////
USER-FACING STORAGE
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Lockup
uint256 public override nextStreamId;
/*//////////////////////////////////////////////////////////////////////////
INTERNAL STORAGE
//////////////////////////////////////////////////////////////////////////*/
/// @dev Contract that generates the non-fungible token URI.
ISablierV2NFTDescriptor internal _nftDescriptor;
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @param initialAdmin The address of the initial contract admin.
/// @param initialComptroller The address of the initial comptroller.
/// @param initialNFTDescriptor The address of the initial NFT descriptor.
constructor(
address initialAdmin,
ISablierV2Comptroller initialComptroller,
ISablierV2NFTDescriptor initialNFTDescriptor
)
SablierV2Base(initialAdmin, initialComptroller)
{
_nftDescriptor = initialNFTDescriptor;
}
/*//////////////////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////////////////*/
/// @dev Checks that `streamId` does not reference a null stream.
modifier notNull(uint256 streamId) {
if (!isStream(streamId)) {
revert Errors.SablierV2Lockup_Null(streamId);
}
_;
}
/// @dev Emits an ERC-4906 event to trigger an update of the NFT metadata.
modifier updateMetadata(uint256 streamId) {
_;
emit MetadataUpdate({ _tokenId: streamId });
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Lockup
function getRecipient(uint256 streamId) external view override returns (address recipient) {
// Checks: the stream NFT exists.
_requireMinted({ tokenId: streamId });
// The NFT owner is the stream's recipient.
recipient = _ownerOf(streamId);
}
/// @inheritdoc ISablierV2Lockup
function isCold(uint256 streamId) external view override notNull(streamId) returns (bool result) {
Lockup.Status status = _statusOf(streamId);
result = status == Lockup.Status.SETTLED || status == Lockup.Status.CANCELED || status == Lockup.Status.DEPLETED;
}
/// @inheritdoc ISablierV2Lockup
function isDepleted(uint256 streamId) public view virtual override returns (bool result);
/// @inheritdoc ISablierV2Lockup
function isStream(uint256 streamId) public view virtual override returns (bool result);
/// @inheritdoc ISablierV2Lockup
function isWarm(uint256 streamId) external view override notNull(streamId) returns (bool result) {
Lockup.Status status = _statusOf(streamId);
result = status == Lockup.Status.PENDING || status == Lockup.Status.STREAMING;
}
/// @inheritdoc ERC721
function tokenURI(uint256 streamId) public view override(IERC721Metadata, ERC721) returns (string memory uri) {
// Checks: the stream NFT exists.
_requireMinted({ tokenId: streamId });
// Generate the URI describing the stream NFT.
uri = _nftDescriptor.tokenURI({ sablier: this, streamId: streamId });
}
/// @inheritdoc ISablierV2Lockup
function wasCanceled(uint256 streamId) public view virtual override returns (bool result);
/// @inheritdoc ISablierV2Lockup
function withdrawableAmountOf(uint256 streamId)
external
view
override
notNull(streamId)
returns (uint128 withdrawableAmount)
{
withdrawableAmount = _withdrawableAmountOf(streamId);
}
/// @inheritdoc ISablierV2Lockup
function isTransferable(uint256 streamId) public view virtual returns (bool);
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Lockup
function burn(uint256 streamId) external override noDelegateCall {
// Checks: only depleted streams can be burned. This also checks that the stream is not null.
if (!isDepleted(streamId)) {
revert Errors.SablierV2Lockup_StreamNotDepleted(streamId);
}
// Checks:
// 1. NFT exists (see {IERC721.getApproved}).
// 2. `msg.sender` is either the owner of the NFT or an approved third party.
if (!_isCallerStreamRecipientOrApproved(streamId)) {
revert Errors.SablierV2Lockup_Unauthorized(streamId, msg.sender);
}
// Effects: burn the NFT.
_burn({ tokenId: streamId });
}
/// @inheritdoc ISablierV2Lockup
function cancel(uint256 streamId) public override noDelegateCall {
// Checks: the stream is neither depleted nor canceled. This also checks that the stream is not null.
if (isDepleted(streamId)) {
revert Errors.SablierV2Lockup_StreamDepleted(streamId);
} else if (wasCanceled(streamId)) {
revert Errors.SablierV2Lockup_StreamCanceled(streamId);
}
// Checks: `msg.sender` is the stream's sender.
if (!_isCallerStreamSender(streamId)) {
revert Errors.SablierV2Lockup_Unauthorized(streamId, msg.sender);
}
// Checks, Effects and Interactions: cancel the stream.
_cancel(streamId);
}
/// @inheritdoc ISablierV2Lockup
function cancelMultiple(uint256[] calldata streamIds) external override noDelegateCall {
// Iterate over the provided array of stream ids and cancel each stream.
uint256 count = streamIds.length;
for (uint256 i = 0; i < count;) {
// Effects and Interactions: cancel the stream.
cancel(streamIds[i]);
// Increment the loop iterator.
unchecked {
i += 1;
}
}
}
/// @inheritdoc ISablierV2Lockup
function renounce(uint256 streamId) external override noDelegateCall notNull(streamId) updateMetadata(streamId) {
// Checks: the stream is not cold.
Lockup.Status status = _statusOf(streamId);
if (status == Lockup.Status.DEPLETED) {
revert Errors.SablierV2Lockup_StreamDepleted(streamId);
} else if (status == Lockup.Status.CANCELED) {
revert Errors.SablierV2Lockup_StreamCanceled(streamId);
} else if (status == Lockup.Status.SETTLED) {
revert Errors.SablierV2Lockup_StreamSettled(streamId);
}
// Checks: `msg.sender` is the stream's sender.
if (!_isCallerStreamSender(streamId)) {
revert Errors.SablierV2Lockup_Unauthorized(streamId, msg.sender);
}
// Checks and Effects: renounce the stream.
_renounce(streamId);
// Log the renouncement.
emit ISablierV2Lockup.RenounceLockupStream(streamId);
// Interactions: if the recipient is a contract, try to invoke the renounce hook on the recipient without
// reverting if the hook is not implemented, and also without bubbling up any potential revert.
address recipient = _ownerOf(streamId);
if (recipient.code.length > 0) {
try ISablierV2LockupRecipient(recipient).onStreamRenounced(streamId) { } catch { }
}
}
/// @inheritdoc ISablierV2Lockup
function setNFTDescriptor(ISablierV2NFTDescriptor newNFTDescriptor) external override onlyAdmin {
// Effects: set the NFT descriptor.
ISablierV2NFTDescriptor oldNftDescriptor = _nftDescriptor;
_nftDescriptor = newNFTDescriptor;
// Log the change of the NFT descriptor.
emit ISablierV2Lockup.SetNFTDescriptor({
admin: msg.sender,
oldNFTDescriptor: oldNftDescriptor,
newNFTDescriptor: newNFTDescriptor
});
// Refresh the NFT metadata for all streams.
emit BatchMetadataUpdate({ _fromTokenId: 1, _toTokenId: nextStreamId - 1 });
}
/// @inheritdoc ISablierV2Lockup
function withdraw(
uint256 streamId,
address to,
uint128 amount
)
public
override
noDelegateCall
updateMetadata(streamId)
{
// Checks: the stream is not depleted. This also checks that the stream is not null.
if (isDepleted(streamId)) {
revert Errors.SablierV2Lockup_StreamDepleted(streamId);
}
bool isCallerStreamSender = _isCallerStreamSender(streamId);
// Checks: `msg.sender` is the stream's sender, the stream's recipient, or an approved third party.
if (!isCallerStreamSender && !_isCallerStreamRecipientOrApproved(streamId)) {
revert Errors.SablierV2Lockup_Unauthorized(streamId, msg.sender);
}
// Retrieve the recipient from storage.
address recipient = _ownerOf(streamId);
// Checks: if `msg.sender` is the stream's sender, the withdrawal address must be the recipient.
if (isCallerStreamSender && to != recipient) {
revert Errors.SablierV2Lockup_InvalidSenderWithdrawal(streamId, msg.sender, to);
}
// Checks: the withdrawal address is not zero.
if (to == address(0)) {
revert Errors.SablierV2Lockup_WithdrawToZeroAddress();
}
// Checks: the withdraw amount is not zero.
if (amount == 0) {
revert Errors.SablierV2Lockup_WithdrawAmountZero(streamId);
}
// Checks: the withdraw amount is not greater than the withdrawable amount.
uint128 withdrawableAmount = _withdrawableAmountOf(streamId);
if (amount > withdrawableAmount) {
revert Errors.SablierV2Lockup_Overdraw(streamId, amount, withdrawableAmount);
}
// Effects and Interactions: make the withdrawal.
_withdraw(streamId, to, amount);
// Interactions: if `msg.sender` is not the recipient and the recipient is a contract, try to invoke the
// withdraw hook on it without reverting if the hook is not implemented, and also without bubbling up
// any potential revert.
if (msg.sender != recipient && recipient.code.length > 0) {
try ISablierV2LockupRecipient(recipient).onStreamWithdrawn({
streamId: streamId,
caller: msg.sender,
to: to,
amount: amount
}) { } catch { }
}
}
/// @inheritdoc ISablierV2Lockup
function withdrawMax(uint256 streamId, address to) external override {
withdraw({ streamId: streamId, to: to, amount: _withdrawableAmountOf(streamId) });
}
/// @inheritdoc ISablierV2Lockup
function withdrawMaxAndTransfer(
uint256 streamId,
address newRecipient
)
external
override
noDelegateCall
notNull(streamId)
{
// Checks: the caller is the current recipient. This also checks that the NFT was not burned.
address currentRecipient = _ownerOf(streamId);
if (msg.sender != currentRecipient) {
revert Errors.SablierV2Lockup_Unauthorized(streamId, msg.sender);
}
// Skip the withdrawal if the withdrawable amount is zero.
uint128 withdrawableAmount = _withdrawableAmountOf(streamId);
if (withdrawableAmount > 0) {
withdraw({ streamId: streamId, to: currentRecipient, amount: withdrawableAmount });
}
// Checks and Effects: transfer the NFT.
_transfer({ from: currentRecipient, to: newRecipient, tokenId: streamId });
}
/// @inheritdoc ISablierV2Lockup
function withdrawMultiple(
uint256[] calldata streamIds,
address to,
uint128[] calldata amounts
)
external
override
noDelegateCall
{
// Checks: there is an equal number of `streamIds` and `amounts`.
uint256 streamIdsCount = streamIds.length;
uint256 amountsCount = amounts.length;
if (streamIdsCount != amountsCount) {
revert Errors.SablierV2Lockup_WithdrawArrayCountsNotEqual(streamIdsCount, amountsCount);
}
// Iterate over the provided array of stream ids and withdraw from each stream.
for (uint256 i = 0; i < streamIdsCount;) {
// Checks, Effects and Interactions: check the parameters and make the withdrawal.
withdraw(streamIds[i], to, amounts[i]);
// Increment the loop iterator.
unchecked {
i += 1;
}
}
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Overrides the internal ERC-721 transfer function to emit an ERC-4906 event upon transfer. The goal is to
/// refresh the NFT metadata on external platforms.
/// @dev This event is also emitted when the NFT is minted or burned.
function _afterTokenTransfer(
address, /* from */
address, /* to */
uint256 streamId,
uint256 /* batchSize */
)
internal
override
updateMetadata(streamId)
{ }
/// @notice Overrides the internal ERC-721 transfer function to check that the stream is transferable.
/// @dev There are two cases when the transferable flag is ignored:
/// - If `from` is 0, then the transfer is a mint and is allowed.
/// - If `to` is 0, then the transfer is a burn and is also allowed.
function _beforeTokenTransfer(
address from,
address to,
uint256 streamId,
uint256 /* batchSize */
)
internal
view
override
{
if (!isTransferable(streamId) && to != address(0) && from != address(0)) {
revert Errors.SablierV2Lockup_NotTransferable(streamId);
}
}
/// @notice Checks whether `msg.sender` is the stream's recipient or an approved third party.
/// @param streamId The stream id for the query.
function _isCallerStreamRecipientOrApproved(uint256 streamId) internal view returns (bool) {
address recipient = _ownerOf(streamId);
return msg.sender == recipient || isApprovedForAll({ owner: recipient, operator: msg.sender })
|| getApproved(streamId) == msg.sender;
}
/// @notice Checks whether `msg.sender` is the stream's sender.
/// @param streamId The stream id for the query.
function _isCallerStreamSender(uint256 streamId) internal view virtual returns (bool);
/// @dev Retrieves the stream's status without performing a null check.
function _statusOf(uint256 streamId) internal view virtual returns (Lockup.Status);
/// @dev See the documentation for the user-facing functions that call this internal function.
function _withdrawableAmountOf(uint256 streamId) internal view virtual returns (uint128);
/*//////////////////////////////////////////////////////////////////////////
INTERNAL NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @dev See the documentation for the user-facing functions that call this internal function.
function _cancel(uint256 tokenId) internal virtual;
/// @dev See the documentation for the user-facing functions that call this internal function.
function _renounce(uint256 streamId) internal virtual;
/// @dev See the documentation for the user-facing functions that call this internal function.
function _withdraw(uint256 streamId, address to, uint128 amount) internal virtual;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.8.19;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ERC721 } from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import { PRBMathCastingUint128 as CastingUint128 } from "@prb/math/src/casting/Uint128.sol";
import { PRBMathCastingUint40 as CastingUint40 } from "@prb/math/src/casting/Uint40.sol";
import { SD59x18 } from "@prb/math/src/SD59x18.sol";
import { UD60x18 } from "@prb/math/src/UD60x18.sol";
import { SablierV2Lockup } from "./abstracts/SablierV2Lockup.sol";
import { ISablierV2Comptroller } from "./interfaces/ISablierV2Comptroller.sol";
import { ISablierV2Lockup } from "./interfaces/ISablierV2Lockup.sol";
import { ISablierV2LockupDynamic } from "./interfaces/ISablierV2LockupDynamic.sol";
import { ISablierV2LockupRecipient } from "./interfaces/hooks/ISablierV2LockupRecipient.sol";
import { ISablierV2NFTDescriptor } from "./interfaces/ISablierV2NFTDescriptor.sol";
import { Errors } from "./libraries/Errors.sol";
import { Helpers } from "./libraries/Helpers.sol";
import { Lockup, LockupDynamic } from "./types/DataTypes.sol";
/*
███████╗ █████╗ ██████╗ ██╗ ██╗███████╗██████╗ ██╗ ██╗██████╗
██╔════╝██╔══██╗██╔══██╗██║ ██║██╔════╝██╔══██╗ ██║ ██║╚════██╗
███████╗███████║██████╔╝██║ ██║█████╗ ██████╔╝ ██║ ██║ █████╔╝
╚════██║██╔══██║██╔══██╗██║ ██║██╔══╝ ██╔══██╗ ╚██╗ ██╔╝██╔═══╝
███████║██║ ██║██████╔╝███████╗██║███████╗██║ ██║ ╚████╔╝ ███████╗
╚══════╝╚═╝ ╚═╝╚═════╝ ╚══════╝╚═╝╚══════╝╚═╝ ╚═╝ ╚═══╝ ╚══════╝
██╗ ██████╗ ██████╗██╗ ██╗██╗ ██╗██████╗ ██████╗ ██╗ ██╗███╗ ██╗ █████╗ ███╗ ███╗██╗ ██████╗
██║ ██╔═══██╗██╔════╝██║ ██╔╝██║ ██║██╔══██╗ ██╔══██╗╚██╗ ██╔╝████╗ ██║██╔══██╗████╗ ████║██║██╔════╝
██║ ██║ ██║██║ █████╔╝ ██║ ██║██████╔╝ ██║ ██║ ╚████╔╝ ██╔██╗ ██║███████║██╔████╔██║██║██║
██║ ██║ ██║██║ ██╔═██╗ ██║ ██║██╔═══╝ ██║ ██║ ╚██╔╝ ██║╚██╗██║██╔══██║██║╚██╔╝██║██║██║
███████╗╚██████╔╝╚██████╗██║ ██╗╚██████╔╝██║ ██████╔╝ ██║ ██║ ╚████║██║ ██║██║ ╚═╝ ██║██║╚██████╗
╚══════╝ ╚═════╝ ╚═════╝╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝ ╚═══╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═════╝
*/
/// @title SablierV2LockupDynamic
/// @notice See the documentation in {ISablierV2LockupDynamic}.
contract SablierV2LockupDynamic is
ISablierV2LockupDynamic, // 1 inherited component
SablierV2Lockup // 14 inherited components
{
using CastingUint128 for uint128;
using CastingUint40 for uint40;
using SafeERC20 for IERC20;
/*//////////////////////////////////////////////////////////////////////////
PUBLIC CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2LockupDynamic
uint256 public immutable override MAX_SEGMENT_COUNT;
/*//////////////////////////////////////////////////////////////////////////
PRIVATE STORAGE
//////////////////////////////////////////////////////////////////////////*/
/// @dev Sablier V2 Lockup Dynamic streams mapped by unsigned integer ids.
mapping(uint256 id => LockupDynamic.Stream stream) private _streams;
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/// @dev Emits a {TransferAdmin} event.
/// @param initialAdmin The address of the initial contract admin.
/// @param initialComptroller The address of the initial comptroller.
/// @param initialNFTDescriptor The address of the NFT descriptor contract.
/// @param maxSegmentCount The maximum number of segments allowed in a stream.
constructor(
address initialAdmin,
ISablierV2Comptroller initialComptroller,
ISablierV2NFTDescriptor initialNFTDescriptor,
uint256 maxSegmentCount
)
ERC721("Sablier V2 Lockup Dynamic NFT", "SAB-V2-LOCKUP-DYN")
SablierV2Lockup(initialAdmin, initialComptroller, initialNFTDescriptor)
{
MAX_SEGMENT_COUNT = maxSegmentCount;
nextStreamId = 1;
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2Lockup
function getAsset(uint256 streamId) external view override notNull(streamId) returns (IERC20 asset) {
asset = _streams[streamId].asset;
}
/// @inheritdoc ISablierV2Lockup
function getDepositedAmount(uint256 streamId)
external
view
override
notNull(streamId)
returns (uint128 depositedAmount)
{
depositedAmount = _streams[streamId].amounts.deposited;
}
/// @inheritdoc ISablierV2Lockup
function getEndTime(uint256 streamId) external view override notNull(streamId) returns (uint40 endTime) {
endTime = _streams[streamId].endTime;
}
/// @inheritdoc ISablierV2LockupDynamic
function getRange(uint256 streamId)
external
view
override
notNull(streamId)
returns (LockupDynamic.Range memory range)
{
range = LockupDynamic.Range({ start: _streams[streamId].startTime, end: _streams[streamId].endTime });
}
/// @inheritdoc ISablierV2Lockup
function getRefundedAmount(uint256 streamId)
external
view
override
notNull(streamId)
returns (uint128 refundedAmount)
{
refundedAmount = _streams[streamId].amounts.refunded;
}
/// @inheritdoc ISablierV2LockupDynamic
function getSegments(uint256 streamId)
external
view
override
notNull(streamId)
returns (LockupDynamic.Segment[] memory segments)
{
segments = _streams[streamId].segments;
}
/// @inheritdoc ISablierV2Lockup
function getSender(uint256 streamId) external view override notNull(streamId) returns (address sender) {
sender = _streams[streamId].sender;
}
/// @inheritdoc ISablierV2Lockup
function getStartTime(uint256 streamId) external view override notNull(streamId) returns (uint40 startTime) {
startTime = _streams[streamId].startTime;
}
/// @inheritdoc ISablierV2LockupDynamic
function getStream(uint256 streamId)
external
view
override
notNull(streamId)
returns (LockupDynamic.Stream memory stream)
{
stream = _streams[streamId];
// Settled streams cannot be canceled.
if (_statusOf(streamId) == Lockup.Status.SETTLED) {
stream.isCancelable = false;
}
}
/// @inheritdoc ISablierV2Lockup
function getWithdrawnAmount(uint256 streamId)
external
view
override
notNull(streamId)
returns (uint128 withdrawnAmount)
{
withdrawnAmount = _streams[streamId].amounts.withdrawn;
}
/// @inheritdoc ISablierV2Lockup
function isCancelable(uint256 streamId) external view override notNull(streamId) returns (bool result) {
if (_statusOf(streamId) != Lockup.Status.SETTLED) {
result = _streams[streamId].isCancelable;
}
}
/// @inheritdoc SablierV2Lockup
function isTransferable(uint256 streamId)
public
view
override(ISablierV2Lockup, SablierV2Lockup)
notNull(streamId)
returns (bool result)
{
result = _streams[streamId].isTransferable;
}
/// @inheritdoc ISablierV2Lockup
function isDepleted(uint256 streamId)
public
view
override(ISablierV2Lockup, SablierV2Lockup)
notNull(streamId)
returns (bool result)
{
result = _streams[streamId].isDepleted;
}
/// @inheritdoc ISablierV2Lockup
function isStream(uint256 streamId) public view override(ISablierV2Lockup, SablierV2Lockup) returns (bool result) {
result = _streams[streamId].isStream;
}
/// @inheritdoc ISablierV2Lockup
function refundableAmountOf(uint256 streamId)
external
view
override
notNull(streamId)
returns (uint128 refundableAmount)
{
// These checks are needed because {_calculateStreamedAmount} does not look up the stream's status. Note that
// checking for `isCancelable` also checks if the stream `wasCanceled` thanks to the protocol invariant that
// canceled streams are not cancelable anymore.
if (_streams[streamId].isCancelable && !_streams[streamId].isDepleted) {
refundableAmount = _streams[streamId].amounts.deposited - _calculateStreamedAmount(streamId);
}
// Otherwise, the result is implicitly zero.
}
/// @inheritdoc ISablierV2Lockup
function statusOf(uint256 streamId) external view override notNull(streamId) returns (Lockup.Status status) {
status = _statusOf(streamId);
}
/// @inheritdoc ISablierV2LockupDynamic
function streamedAmountOf(uint256 streamId)
public
view
override(ISablierV2Lockup, ISablierV2LockupDynamic)
notNull(streamId)
returns (uint128 streamedAmount)
{
streamedAmount = _streamedAmountOf(streamId);
}
/// @inheritdoc ISablierV2Lockup
function wasCanceled(uint256 streamId)
public
view
override(ISablierV2Lockup, SablierV2Lockup)
notNull(streamId)
returns (bool result)
{
result = _streams[streamId].wasCanceled;
}
/*//////////////////////////////////////////////////////////////////////////
USER-FACING NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @inheritdoc ISablierV2LockupDynamic
function createWithDeltas(LockupDynamic.CreateWithDeltas calldata params)
external
override
noDelegateCall
returns (uint256 streamId)
{
// Checks: check the deltas and generate the canonical segments.
LockupDynamic.Segment[] memory segments = Helpers.checkDeltasAndCalculateMilestones(params.segments);
// Checks, Effects and Interactions: create the stream.
streamId = _createWithMilestones(
LockupDynamic.CreateWithMilestones({
asset: params.asset,
broker: params.broker,
cancelable: params.cancelable,
transferable: params.transferable,
recipient: params.recipient,
segments: segments,
sender: params.sender,
startTime: uint40(block.timestamp),
totalAmount: params.totalAmount
})
);
}
/// @inheritdoc ISablierV2LockupDynamic
function createWithMilestones(LockupDynamic.CreateWithMilestones calldata params)
external
override
noDelegateCall
returns (uint256 streamId)
{
// Checks, Effects and Interactions: create the stream.
streamId = _createWithMilestones(params);
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @dev Calculates the streamed amount without looking up the stream's status.
function _calculateStreamedAmount(uint256 streamId) internal view returns (uint128) {
// If the start time is in the future, return zero.
uint40 currentTime = uint40(block.timestamp);
if (_streams[streamId].startTime >= currentTime) {
return 0;
}
// If the end time is not in the future, return the deposited amount.
uint40 endTime = _streams[streamId].endTime;
if (endTime <= currentTime) {
return _streams[streamId].amounts.deposited;
}
if (_streams[streamId].segments.length > 1) {
// If there is more than one segment, it may be necessary to iterate over all of them.
return _calculateStreamedAmountForMultipleSegments(streamId);
} else {
// Otherwise, there is only one segment, and the calculation is simpler.
return _calculateStreamedAmountForOneSegment(streamId);
}
}
/// @dev Calculates the streamed amount for a stream with multiple segments.
///
/// Notes:
///
/// 1. Normalization to 18 decimals is not needed because there is no mix of amounts with different decimals.
/// 2. The stream's start time must be in the past so that the calculations below do not overflow.
/// 3. The stream's end time must be in the future so that the loop below does not panic with an "index out of
/// bounds" error.
function _calculateStreamedAmountForMultipleSegments(uint256 streamId) internal view returns (uint128) {
unchecked {
uint40 currentTime = uint40(block.timestamp);
LockupDynamic.Stream memory stream = _streams[streamId];
// Sum the amounts in all segments that precede the current time.
uint128 previousSegmentAmounts;
uint40 currentSegmentMilestone = stream.segments[0].milestone;
uint256 index = 0;
while (currentSegmentMilestone < currentTime) {
previousSegmentAmounts += stream.segments[index].amount;
index += 1;
currentSegmentMilestone = stream.segments[index].milestone;
}
// After exiting the loop, the current segment is at `index`.
SD59x18 currentSegmentAmount = stream.segments[index].amount.intoSD59x18();
SD59x18 currentSegmentExponent = stream.segments[index].exponent.intoSD59x18();
currentSegmentMilestone = stream.segments[index].milestone;
uint40 previousMilestone;
if (index > 0) {
// When the current segment's index is greater than or equal to 1, it implies that the segment is not
// the first. In this case, use the previous segment's milestone.
previousMilestone = stream.segments[index - 1].milestone;
} else {
// Otherwise, the current segment is the first, so use the start time as the previous milestone.
previousMilestone = stream.startTime;
}
// Calculate how much time has passed since the segment started, and the total time of the segment.
SD59x18 elapsedSegmentTime = (currentTime - previousMilestone).intoSD59x18();
SD59x18 totalSegmentTime = (currentSegmentMilestone - previousMilestone).intoSD59x18();
// Divide the elapsed segment time by the total duration of the segment.
SD59x18 elapsedSegmentTimePercentage = elapsedSegmentTime.div(totalSegmentTime);
// Calculate the streamed amount using the special formula.
SD59x18 multiplier = elapsedSegmentTimePercentage.pow(currentSegmentExponent);
SD59x18 segmentStreamedAmount = multiplier.mul(currentSegmentAmount);
// Although the segment streamed amount should never exceed the total segment amount, this condition is
// checked without asserting to avoid locking funds in case of a bug. If this situation occurs, the
// amount streamed in the segment is considered zero (except for past withdrawals), and the segment is
// effectively voided.
if (segmentStreamedAmount.gt(currentSegmentAmount)) {
return previousSegmentAmounts > stream.amounts.withdrawn
? previousSegmentAmounts
: stream.amounts.withdrawn;
}
// Calculate the total streamed amount by adding the previous segment amounts and the amount streamed in
// the current segment. Casting to uint128 is safe due to the if statement above.
return previousSegmentAmounts + uint128(segmentStreamedAmount.intoUint256());
}
}
/// @dev Calculates the streamed amount for a a stream with one segment. Normalization to 18 decimals is not
/// needed because there is no mix of amounts with different decimals.
function _calculateStreamedAmountForOneSegment(uint256 streamId) internal view returns (uint128) {
unchecked {
// Calculate how much time has passed since the stream started, and the stream's total duration.
SD59x18 elapsedTime = (uint40(block.timestamp) - _streams[streamId].startTime).intoSD59x18();
SD59x18 totalTime = (_streams[streamId].endTime - _streams[streamId].startTime).intoSD59x18();
// Divide the elapsed time by the stream's total duration.
SD59x18 elapsedTimePercentage = elapsedTime.div(totalTime);
// Cast the stream parameters to SD59x18.
SD59x18 exponent = _streams[streamId].segments[0].exponent.intoSD59x18();
SD59x18 depositedAmount = _streams[streamId].amounts.deposited.intoSD59x18();
// Calculate the streamed amount using the special formula.
SD59x18 multiplier = elapsedTimePercentage.pow(exponent);
SD59x18 streamedAmount = multiplier.mul(depositedAmount);
// Although the streamed amount should never exceed the deposited amount, this condition is checked
// without asserting to avoid locking funds in case of a bug. If this situation occurs, the withdrawn
// amount is considered to be the streamed amount, and the stream is effectively frozen.
if (streamedAmount.gt(depositedAmount)) {
return _streams[streamId].amounts.withdrawn;
}
// Cast the streamed amount to uint128. This is safe due to the check above.
return uint128(streamedAmount.intoUint256());
}
}
/// @inheritdoc SablierV2Lockup
function _isCallerStreamSender(uint256 streamId) internal view override returns (bool) {
return msg.sender == _streams[streamId].sender;
}
/// @inheritdoc SablierV2Lockup
function _statusOf(uint256 streamId) internal view override returns (Lockup.Status) {
if (_streams[streamId].isDepleted) {
return Lockup.Status.DEPLETED;
} else if (_streams[streamId].wasCanceled) {
return Lockup.Status.CANCELED;
}
if (block.timestamp < _streams[streamId].startTime) {
return Lockup.Status.PENDING;
}
if (_calculateStreamedAmount(streamId) < _streams[streamId].amounts.deposited) {
return Lockup.Status.STREAMING;
} else {
return Lockup.Status.SETTLED;
}
}
/// @dev See the documentation for the user-facing functions that call this internal function.
function _streamedAmountOf(uint256 streamId) internal view returns (uint128) {
Lockup.Amounts memory amounts = _streams[streamId].amounts;
if (_streams[streamId].isDepleted) {
return amounts.withdrawn;
} else if (_streams[streamId].wasCanceled) {
return amounts.deposited - amounts.refunded;
}
return _calculateStreamedAmount(streamId);
}
/// @dev See the documentation for the user-facing functions that call this internal function.
function _withdrawableAmountOf(uint256 streamId) internal view override returns (uint128) {
return _streamedAmountOf(streamId) - _streams[streamId].amounts.withdrawn;
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL NON-CONSTANT FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @dev See the documentation for the user-facing functions that call this internal function.
function _cancel(uint256 streamId) internal override {
// Calculate the streamed amount.
uint128 streamedAmount = _calculateStreamedAmount(streamId);
// Retrieve the amounts from storage.
Lockup.Amounts memory amounts = _streams[streamId].amounts;
// Checks: the stream is not settled.
if (streamedAmount >= amounts.deposited) {
revert Errors.SablierV2Lockup_StreamSettled(streamId);
}
// Checks: the stream is cancelable.
if (!_streams[streamId].isCancelable) {
revert Errors.SablierV2Lockup_StreamNotCancelable(streamId);
}
// Calculate the sender's and the recipient's amount.
uint128 senderAmount = amounts.deposited - streamedAmount;
uint128 recipientAmount = streamedAmount - amounts.withdrawn;
// Effects: mark the stream as canceled.
_streams[streamId].wasCanceled = true;
// Effects: make the stream not cancelable anymore, because a stream can only be canceled once.
_streams[streamId].isCancelable = false;
// Effects: If there are no assets left for the recipient to withdraw, mark the stream as depleted.
if (recipientAmount == 0) {
_streams[streamId].isDepleted = true;
}
// Effects: set the refunded amount.
_streams[streamId].amounts.refunded = senderAmount;
// Retrieve the sender and the recipient from storage.
address sender = _streams[streamId].sender;
address recipient = _ownerOf(streamId);
// Retrieve the ERC-20 asset from storage.
IERC20 asset = _streams[streamId].asset;
// Interactions: refund the sender.
asset.safeTransfer({ to: sender, value: senderAmount });
// Log the cancellation.
emit ISablierV2Lockup.CancelLockupStream(streamId, sender, recipient, asset, senderAmount, recipientAmount);
// Emits an ERC-4906 event to trigger an update of the NFT metadata.
emit MetadataUpdate({ _tokenId: streamId });
// Interactions: if the recipient is a contract, try to invoke the cancel hook on the recipient without
// reverting if the hook is not implemented, and without bubbling up any potential revert.
if (recipient.code.length > 0) {
try ISablierV2LockupRecipient(recipient).onStreamCanceled({
streamId: streamId,
sender: sender,
senderAmount: senderAmount,
recipientAmount: recipientAmount
}) { } catch { }
}
}
/// @dev See the documentation for the user-facing functions that call this internal function.
function _createWithMilestones(LockupDynamic.CreateWithMilestones memory params)
internal
returns (uint256 streamId)
{
// Safe Interactions: query the protocol fee. This is safe because it's a known Sablier contract that does
// not call other unknown contracts.
UD60x18 protocolFee = comptroller.protocolFees(params.asset);
// Checks: check the fees and calculate the fee amounts.
Lockup.CreateAmounts memory createAmounts =
Helpers.checkAndCalculateFees(params.totalAmount, protocolFee, params.broker.fee, MAX_FEE);
// Checks: validate the user-provided parameters.
Helpers.checkCreateWithMilestones(createAmounts.deposit, params.segments, MAX_SEGMENT_COUNT, params.startTime);
// Load the stream id in a variable.
streamId = nextStreamId;
// Effects: create the stream.
LockupDynamic.Stream storage stream = _streams[streamId];
stream.amounts.deposited = createAmounts.deposit;
stream.asset = params.asset;
stream.isCancelable = params.cancelable;
stream.isTransferable = params.transferable;
stream.isStream = true;
stream.sender = params.sender;
unchecked {
// The segment count cannot be zero at this point.
uint256 segmentCount = params.segments.length;
stream.endTime = params.segments[segmentCount - 1].milestone;
stream.startTime = params.startTime;
// Effects: store the segments. Since Solidity lacks a syntax for copying arrays directly from
// memory to storage, a manual approach is necessary. See https://github.com/ethereum/solidity/issues/12783.
for (uint256 i = 0; i < segmentCount; ++i) {
stream.segments.push(params.segments[i]);
}
// Effects: bump the next stream id and record the protocol fee.
// Using unchecked arithmetic because these calculations cannot realistically overflow, ever.
nextStreamId = streamId + 1;
protocolRevenues[params.asset] = protocolRevenues[params.asset] + createAmounts.protocolFee;
}
// Effects: mint the NFT to the recipient.
_mint({ to: params.recipient, tokenId: streamId });
// Interactions: transfer the deposit and the protocol fee.
// Using unchecked arithmetic because the deposit and the protocol fee are bounded by the total amount.
unchecked {
params.asset.safeTransferFrom({
from: msg.sender,
to: address(this),
value: createAmounts.deposit + createAmounts.protocolFee
});
}
// Interactions: pay the broker fee, if not zero.
if (createAmounts.brokerFee > 0) {
params.asset.safeTransferFrom({ from: msg.sender, to: params.broker.account, value: createAmounts.brokerFee });
}
// Log the newly created stream.
emit ISablierV2LockupDynamic.CreateLockupDynamicStream({
streamId: streamId,
funder: msg.sender,
sender: params.sender,
recipient: params.recipient,
amounts: createAmounts,
asset: params.asset,
cancelable: params.cancelable,
transferable: params.transferable,
segments: params.segments,
range: LockupDynamic.Range({ start: stream.startTime, end: stream.endTime }),
broker: params.broker.account
});
}
/// @dev See the documentation for the user-facing functions that call this internal function.
function _renounce(uint256 streamId) internal override {
// Checks: the stream is cancelable.
if (!_streams[streamId].isCancelable) {
revert Errors.SablierV2Lockup_StreamNotCancelable(streamId);
}
// Effects: renounce the stream by making it not cancelable.
_streams[streamId].isCancelable = false;
}
/// @dev See the documentation for the user-facing functions that call this internal function.
function _withdraw(uint256 streamId, address to, uint128 amount) internal override {
// Effects: update the withdrawn amount.
_streams[streamId].amounts.withdrawn = _streams[streamId].amounts.withdrawn + amount;
// Retrieve the amounts from storage.
Lockup.Amounts memory amounts = _streams[streamId].amounts;
// Using ">=" instead of "==" for additional safety reasons. In the event of an unforeseen increase in the
// withdrawn amount, the stream will still be marked as depleted.
if (amounts.withdrawn >= amounts.deposited - amounts.refunded) {
// Effects: mark the stream as depleted.
_streams[streamId].isDepleted = true;
// Effects: make the stream not cancelable anymore, because a depleted stream cannot be canceled.
_streams[streamId].isCancelable = false;
}
// Retrieve the ERC-20 asset from storage.
IERC20 asset = _streams[streamId].asset;
// Interactions: perform the ERC-20 transfer.
asset.safeTransfer({ to: to, value: amount });
// Log the withdrawal.
emit ISablierV2Lockup.WithdrawFromLockupStream(streamId, to, asset, amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
/*
██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║
██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║
╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝
██╗ ██╗██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗
██║ ██║██╔══██╗╚════██╗╚██╗██╔╝███║██╔══██╗
██║ ██║██║ ██║ █████╔╝ ╚███╔╝ ╚██║╚█████╔╝
██║ ██║██║ ██║██╔═══╝ ██╔██╗ ██║██╔══██╗
╚██████╔╝██████╔╝███████╗██╔╝ ██╗ ██║╚█████╔╝
╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ╚════╝
*/
import "./ud2x18/Casting.sol";
import "./ud2x18/Constants.sol";
import "./ud2x18/Errors.sol";
import "./ud2x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
/*
██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║
██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║
╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝
██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗
██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗
╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝
*/
import "./ud60x18/Casting.sol";
import "./ud60x18/Constants.sol";
import "./ud60x18/Conversions.sol";
import "./ud60x18/Errors.sol";
import "./ud60x18/Helpers.sol";
import "./ud60x18/Math.sol";
import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
/// @notice Thrown when trying to cast a uint128 that doesn't fit in SD1x18.
error PRBMath_IntoSD1x18_Overflow(uint128 x);
/// @notice Thrown when trying to cast a uint128 that doesn't fit in UD2x18.
error PRBMath_IntoUD2x18_Overflow(uint128 x);
/// @title PRBMathCastingUint128
/// @notice Casting utilities for uint128.
library PRBMathCastingUint128 {
/// @notice Casts a uint128 number to SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_SD1x18`.
function intoSD1x18(uint128 x) internal pure returns (SD1x18 result) {
if (x > uint256(int256(uMAX_SD1x18))) {
revert PRBMath_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(uint64(x)));
}
/// @notice Casts a uint128 number to SD59x18.
/// @dev There is no overflow check because the domain of uint128 is a subset of SD59x18.
function intoSD59x18(uint128 x) internal pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(x)));
}
/// @notice Casts a uint128 number to UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_SD1x18`.
function intoUD2x18(uint128 x) internal pure returns (UD2x18 result) {
if (x > uint64(uMAX_UD2x18)) {
revert PRBMath_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(x));
}
/// @notice Casts a uint128 number to UD60x18.
/// @dev There is no overflow check because the domain of uint128 is a subset of UD60x18.
function intoUD60x18(uint128 x) internal pure returns (UD60x18 result) {
result = UD60x18.wrap(uint256(x));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
/// @title PRBMathCastingUint40
/// @notice Casting utilities for uint40.
library PRBMathCastingUint40 {
/// @notice Casts a uint40 number into SD1x18.
/// @dev There is no overflow check because the domain of uint40 is a subset of SD1x18.
function intoSD1x18(uint40 x) internal pure returns (SD1x18 result) {
result = SD1x18.wrap(int64(uint64(x)));
}
/// @notice Casts a uint40 number into SD59x18.
/// @dev There is no overflow check because the domain of uint40 is a subset of SD59x18.
function intoSD59x18(uint40 x) internal pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(x)));
}
/// @notice Casts a uint40 number into UD2x18.
/// @dev There is no overflow check because the domain of uint40 is a subset of UD2x18.
function intoUD2x18(uint40 x) internal pure returns (UD2x18 result) {
result = UD2x18.wrap(uint64(x));
}
/// @notice Casts a uint40 number into UD60x18.
/// @dev There is no overflow check because the domain of uint40 is a subset of UD60x18.
function intoUD60x18(uint40 x) internal pure returns (UD60x18 result) {
result = UD60x18.wrap(uint256(x));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for UD2x18 global;
{
"compilationTarget": {
"src/SablierV2LockupDynamic.sol": "SablierV2LockupDynamic"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 1000
},
"remappings": [
":@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
":@prb/math/=node_modules/@prb/math/",
":@prb/test/=node_modules/@prb/test/",
":forge-std/=node_modules/forge-std/",
":solady/=node_modules/solady/",
":solarray/=node_modules/solarray/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"initialAdmin","type":"address"},{"internalType":"contract ISablierV2Comptroller","name":"initialComptroller","type":"address"},{"internalType":"contract ISablierV2NFTDescriptor","name":"initialNFTDescriptor","type":"address"},{"internalType":"uint256","name":"maxSegmentCount","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"caller","type":"address"}],"name":"CallerNotAdmin","type":"error"},{"inputs":[],"name":"DelegateCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[],"name":"PRBMath_SD59x18_Div_InputTooSmall","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"},{"internalType":"SD59x18","name":"y","type":"int256"}],"name":"PRBMath_SD59x18_Div_Overflow","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"}],"name":"PRBMath_SD59x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"}],"name":"PRBMath_SD59x18_IntoUint256_Underflow","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"}],"name":"PRBMath_SD59x18_Log_InputTooSmall","type":"error"},{"inputs":[],"name":"PRBMath_SD59x18_Mul_InputTooSmall","type":"error"},{"inputs":[{"internalType":"SD59x18","name":"x","type":"int256"},{"internalType":"SD59x18","name":"y","type":"int256"}],"name":"PRBMath_SD59x18_Mul_Overflow","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"asset","type":"address"}],"name":"SablierV2Base_NoProtocolRevenues","type":"error"},{"inputs":[{"internalType":"uint128","name":"depositAmount","type":"uint128"},{"internalType":"uint128","name":"segmentAmountsSum","type":"uint128"}],"name":"SablierV2LockupDynamic_DepositAmountNotEqualToSegmentAmountsSum","type":"error"},{"inputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"name":"SablierV2LockupDynamic_SegmentCountTooHigh","type":"error"},{"inputs":[],"name":"SablierV2LockupDynamic_SegmentCountZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint40","name":"previousMilestone","type":"uint40"},{"internalType":"uint40","name":"currentMilestone","type":"uint40"}],"name":"SablierV2LockupDynamic_SegmentMilestonesNotOrdered","type":"error"},{"inputs":[{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"firstSegmentMilestone","type":"uint40"}],"name":"SablierV2LockupDynamic_StartTimeNotLessThanFirstSegmentMilestone","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"brokerFee","type":"uint256"},{"internalType":"UD60x18","name":"maxFee","type":"uint256"}],"name":"SablierV2Lockup_BrokerFeeTooHigh","type":"error"},{"inputs":[],"name":"SablierV2Lockup_DepositAmountZero","type":"error"},{"inputs":[{"internalType":"uint40","name":"currentTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"}],"name":"SablierV2Lockup_EndTimeNotInTheFuture","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"SablierV2Lockup_InvalidSenderWithdrawal","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"SablierV2Lockup_NotTransferable","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_Null","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"withdrawableAmount","type":"uint128"}],"name":"SablierV2Lockup_Overdraw","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"protocolFee","type":"uint256"},{"internalType":"UD60x18","name":"maxFee","type":"uint256"}],"name":"SablierV2Lockup_ProtocolFeeTooHigh","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_StreamCanceled","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_StreamDepleted","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_StreamNotCancelable","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_StreamNotDepleted","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_StreamSettled","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"},{"internalType":"address","name":"caller","type":"address"}],"name":"SablierV2Lockup_Unauthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"SablierV2Lockup_WithdrawAmountZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"streamIdsCount","type":"uint256"},{"internalType":"uint256","name":"amountsCount","type":"uint256"}],"name":"SablierV2Lockup_WithdrawArrayCountsNotEqual","type":"error"},{"inputs":[],"name":"SablierV2Lockup_WithdrawToZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_toTokenId","type":"uint256"}],"name":"BatchMetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"streamId","type":"uint256"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"asset","type":"address"},{"indexed":false,"internalType":"uint128","name":"senderAmount","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"recipientAmount","type":"uint128"}],"name":"CancelLockupStream","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"asset","type":"address"},{"indexed":false,"internalType":"uint128","name":"protocolRevenues","type":"uint128"}],"name":"ClaimProtocolRevenues","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"streamId","type":"uint256"},{"indexed":false,"internalType":"address","name":"funder","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"components":[{"internalType":"uint128","name":"deposit","type":"uint128"},{"internalType":"uint128","name":"protocolFee","type":"uint128"},{"internalType":"uint128","name":"brokerFee","type":"uint128"}],"indexed":false,"internalType":"struct Lockup.CreateAmounts","name":"amounts","type":"tuple"},{"indexed":true,"internalType":"contract IERC20","name":"asset","type":"address"},{"indexed":false,"internalType":"bool","name":"cancelable","type":"bool"},{"indexed":false,"internalType":"bool","name":"transferable","type":"bool"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"milestone","type":"uint40"}],"indexed":false,"internalType":"struct LockupDynamic.Segment[]","name":"segments","type":"tuple[]"},{"components":[{"internalType":"uint40","name":"start","type":"uint40"},{"internalType":"uint40","name":"end","type":"uint40"}],"indexed":false,"internalType":"struct LockupDynamic.Range","name":"range","type":"tuple"},{"indexed":false,"internalType":"address","name":"broker","type":"address"}],"name":"CreateLockupDynamicStream","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"MetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"RenounceLockupStream","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":false,"internalType":"contract ISablierV2Comptroller","name":"oldComptroller","type":"address"},{"indexed":false,"internalType":"contract ISablierV2Comptroller","name":"newComptroller","type":"address"}],"name":"SetComptroller","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":false,"internalType":"contract ISablierV2NFTDescriptor","name":"oldNFTDescriptor","type":"address"},{"indexed":false,"internalType":"contract ISablierV2NFTDescriptor","name":"newNFTDescriptor","type":"address"}],"name":"SetNFTDescriptor","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":true,"internalType":"address","name":"newAdmin","type":"address"}],"name":"TransferAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"streamId","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"asset","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"WithdrawFromLockupStream","type":"event"},{"inputs":[],"name":"MAX_FEE","outputs":[{"internalType":"UD60x18","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SEGMENT_COUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"cancel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"streamIds","type":"uint256[]"}],"name":"cancelMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"asset","type":"address"}],"name":"claimProtocolRevenues","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"comptroller","outputs":[{"internalType":"contract ISablierV2Comptroller","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"transferable","type":"bool"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"totalAmount","type":"uint128"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"UD60x18","name":"fee","type":"uint256"}],"internalType":"struct Broker","name":"broker","type":"tuple"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"delta","type":"uint40"}],"internalType":"struct LockupDynamic.SegmentWithDelta[]","name":"segments","type":"tuple[]"}],"internalType":"struct LockupDynamic.CreateWithDeltas","name":"params","type":"tuple"}],"name":"createWithDeltas","outputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"transferable","type":"bool"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"totalAmount","type":"uint128"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"components":[{"internalType":"address","name":"account","type":"address"},{"internalType":"UD60x18","name":"fee","type":"uint256"}],"internalType":"struct Broker","name":"broker","type":"tuple"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"milestone","type":"uint40"}],"internalType":"struct LockupDynamic.Segment[]","name":"segments","type":"tuple[]"}],"internalType":"struct LockupDynamic.CreateWithMilestones","name":"params","type":"tuple"}],"name":"createWithMilestones","outputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getAsset","outputs":[{"internalType":"contract IERC20","name":"asset","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getDepositedAmount","outputs":[{"internalType":"uint128","name":"depositedAmount","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getEndTime","outputs":[{"internalType":"uint40","name":"endTime","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getRange","outputs":[{"components":[{"internalType":"uint40","name":"start","type":"uint40"},{"internalType":"uint40","name":"end","type":"uint40"}],"internalType":"struct LockupDynamic.Range","name":"range","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getRecipient","outputs":[{"internalType":"address","name":"recipient","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getRefundedAmount","outputs":[{"internalType":"uint128","name":"refundedAmount","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getSegments","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"milestone","type":"uint40"}],"internalType":"struct LockupDynamic.Segment[]","name":"segments","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getSender","outputs":[{"internalType":"address","name":"sender","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getStartTime","outputs":[{"internalType":"uint40","name":"startTime","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getStream","outputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"bool","name":"isCancelable","type":"bool"},{"internalType":"bool","name":"wasCanceled","type":"bool"},{"internalType":"contract IERC20","name":"asset","type":"address"},{"internalType":"bool","name":"isDepleted","type":"bool"},{"internalType":"bool","name":"isStream","type":"bool"},{"internalType":"bool","name":"isTransferable","type":"bool"},{"components":[{"internalType":"uint128","name":"deposited","type":"uint128"},{"internalType":"uint128","name":"withdrawn","type":"uint128"},{"internalType":"uint128","name":"refunded","type":"uint128"}],"internalType":"struct Lockup.Amounts","name":"amounts","type":"tuple"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"UD2x18","name":"exponent","type":"uint64"},{"internalType":"uint40","name":"milestone","type":"uint40"}],"internalType":"struct LockupDynamic.Segment[]","name":"segments","type":"tuple[]"}],"internalType":"struct LockupDynamic.Stream","name":"stream","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"getWithdrawnAmount","outputs":[{"internalType":"uint128","name":"withdrawnAmount","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"isCancelable","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"isCold","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"isDepleted","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"isStream","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"isTransferable","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"isWarm","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextStreamId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"asset","type":"address"}],"name":"protocolRevenues","outputs":[{"internalType":"uint128","name":"revenues","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"refundableAmountOf","outputs":[{"internalType":"uint128","name":"refundableAmount","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"renounce","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISablierV2Comptroller","name":"newComptroller","type":"address"}],"name":"setComptroller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISablierV2NFTDescriptor","name":"newNFTDescriptor","type":"address"}],"name":"setNFTDescriptor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"statusOf","outputs":[{"internalType":"enum Lockup.Status","name":"status","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"streamedAmountOf","outputs":[{"internalType":"uint128","name":"streamedAmount","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"uri","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"transferAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"wasCanceled","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"withdrawMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"},{"internalType":"address","name":"newRecipient","type":"address"}],"name":"withdrawMaxAndTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"streamIds","type":"uint256[]"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint128[]","name":"amounts","type":"uint128[]"}],"name":"withdrawMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"streamId","type":"uint256"}],"name":"withdrawableAmountOf","outputs":[{"internalType":"uint128","name":"withdrawableAmount","type":"uint128"}],"stateMutability":"view","type":"function"}]