// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)pragmasolidity ^0.8.1;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0// for contracts in construction, since the code is only stored at the end// of the constructor execution.return account.code.length>0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
Contract Source Code
File 2 of 10: EnumerableSet.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol)pragmasolidity ^0.8.0;/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/libraryEnumerableSet{
// To implement this library for multiple types with as little code// repetition as possible, we write it in terms of a generic Set type with// bytes32 values.// The Set implementation uses private functions, and user-facing// implementations (such as AddressSet) are just wrappers around the// underlying Set.// This means that we can only create new EnumerableSets for types that fit// in bytes32.structSet {
// Storage of set valuesbytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0// means a value is not in the set.mapping(bytes32=>uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/function_add(Set storage set, bytes32 value) privatereturns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
returntrue;
} else {
returnfalse;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/function_remove(Set storage set, bytes32 value) privatereturns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slotuint256 valueIndex = set._indexes[value];
if (valueIndex !=0) {
// Equivalent to contains(set, value)// To delete an element from the _values array in O(1), we swap the element to delete with the last one in// the array, and then remove the last element (sometimes called as 'swap and pop').// This modifies the order of the array, as noted in {at}.uint256 toDeleteIndex = valueIndex -1;
uint256 lastIndex = set._values.length-1;
if (lastIndex != toDeleteIndex) {
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slotdelete set._indexes[value];
returntrue;
} else {
returnfalse;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/function_contains(Set storage set, bytes32 value) privateviewreturns (bool) {
return set._indexes[value] !=0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/function_length(Set storage set) privateviewreturns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/function_at(Set storage set, uint256 index) privateviewreturns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/function_values(Set storage set) privateviewreturns (bytes32[] memory) {
return set._values;
}
// Bytes32SetstructBytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(Bytes32Set storage set, bytes32 value) internalreturns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(Bytes32Set storage set, bytes32 value) internalreturns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(Bytes32Set storage set, bytes32 value) internalviewreturns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/functionlength(Bytes32Set storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(Bytes32Set storage set, uint256 index) internalviewreturns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/functionvalues(Bytes32Set storage set) internalviewreturns (bytes32[] memory) {
return _values(set._inner);
}
// AddressSetstructAddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(AddressSet storage set, address value) internalreturns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(AddressSet storage set, address value) internalreturns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(AddressSet storage set, address value) internalviewreturns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/functionlength(AddressSet storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(AddressSet storage set, uint256 index) internalviewreturns (address) {
returnaddress(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/functionvalues(AddressSet storage set) internalviewreturns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
// UintSetstructUintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(UintSet storage set, uint256 value) internalreturns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(UintSet storage set, uint256 value) internalreturns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(UintSet storage set, uint256 value) internalviewreturns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/functionlength(UintSet storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(UintSet storage set, uint256 index) internalviewreturns (uint256) {
returnuint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/functionvalues(UintSet storage set) internalviewreturns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
Contract Source Code
File 3 of 10: FullMath.sol
// SPDX-License-Identifier: MITpragmasolidity >=0.4.0;/// @title Contains 512-bit math functions/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bitslibraryFullMath{
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0/// @param a The multiplicand/// @param b The multiplier/// @param denominator The divisor/// @return result The 256-bit result/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldivfunctionmulDiv(uint256 a,
uint256 b,
uint256 denominator
) internalpurereturns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b// Compute the product mod 2**256 and mod 2**256 - 1// then use the Chinese Remainder Theorem to reconstruct// the 512 bit result. The result is stored in two 256// variables such that product = prod1 * 2**256 + prod0uint256 prod0; // Least significant 256 bits of the productuint256 prod1; // Most significant 256 bits of the productassembly {
let mm :=mulmod(a, b, not(0))
prod0 :=mul(a, b)
prod1 :=sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 divisionif (prod1 ==0) {
require(denominator >0);
assembly {
result :=div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.// Also prevents denominator == 0require(denominator > prod1);
///////////////////////////////////////////////// 512 by 256 division.///////////////////////////////////////////////// Make division exact by subtracting the remainder from [prod1 prod0]// Compute remainder using mulmoduint256 remainder;
assembly {
remainder :=mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit numberassembly {
prod1 :=sub(prod1, gt(remainder, prod0))
prod0 :=sub(prod0, remainder)
}
// Factor powers of two out of denominator// Compute largest power of two divisor of denominator.// Always >= 1.unchecked {
uint256 twos = (type(uint256).max- denominator +1) & denominator;
// Divide denominator by power of twoassembly {
denominator :=div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of twoassembly {
prod0 :=div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need// to flip `twos` such that it is 2**256 / twos.// If twos is zero, then it becomes oneassembly {
twos :=add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256// Now that denominator is an odd number, it has an inverse// modulo 2**256 such that denominator * inv = 1 mod 2**256.// Compute the inverse by starting with a seed that is correct// correct for four bits. That is, denominator * inv = 1 mod 2**4uint256 inv = (3* denominator) ^2;
// Now use Newton-Raphson iteration to improve the precision.// Thanks to Hensel's lifting lemma, this also works in modular// arithmetic, doubling the correct bits in each step.
inv *=2- denominator * inv; // inverse mod 2**8
inv *=2- denominator * inv; // inverse mod 2**16
inv *=2- denominator * inv; // inverse mod 2**32
inv *=2- denominator * inv; // inverse mod 2**64
inv *=2- denominator * inv; // inverse mod 2**128
inv *=2- denominator * inv; // inverse mod 2**256// Because the division is now exact we can divide by multiplying// with the modular inverse of denominator. This will give us the// correct result modulo 2**256. Since the precoditions guarantee// that the outcome is less than 2**256, this is the final result.// We don't need to compute the high bits of the result and prod1// is no longer required.
result = prod0 * inv;
return result;
}
}
}
Contract Source Code
File 4 of 10: IERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 amount
) externalreturns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
}
// SPDX-License-Identifier: MITpragmasolidity =0.8.4;import"@openzeppelin/contracts/utils/Address.sol";
import"@openzeppelin/contracts/token/ERC20/IERC20.sol";
import"@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import"@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import"./IPinkLock.sol";
import"./IUniswapV2Router02.sol";
import"./IUniswapV2Pair.sol";
import"./IUniswapV2Factory.sol";
import"./FullMath.sol";
contractPinkLock02isIPinkLock{
usingAddressforaddresspayable;
usingEnumerableSetforEnumerableSet.AddressSet;
usingEnumerableSetforEnumerableSet.UintSet;
usingSafeERC20forIERC20;
structLock {
uint256 id;
address token;
address owner;
uint256 amount;
uint256 lockDate;
uint256 tgeDate; // TGE date for vesting locks, unlock date for normal locksuint256 tgeBps; // In bips. Is 0 for normal locksuint256 cycle; // Is 0 for normal locksuint256 cycleBps; // In bips. Is 0 for normal locksuint256 unlockedAmount;
string description;
}
structCumulativeLockInfo {
address token;
address factory;
uint256 amount;
}
// ID padding from PinkLock v1, as there is a lack of a pausing mechanism// as of now the lastest id from v1 is about 22K, so this is probably a safe padding value.uint256privateconstant ID_PADDING =1_000_000;
Lock[] private _locks;
mapping(address=> EnumerableSet.UintSet) private _userLpLockIds;
mapping(address=> EnumerableSet.UintSet) private _userNormalLockIds;
EnumerableSet.AddressSet private _lpLockedTokens;
EnumerableSet.AddressSet private _normalLockedTokens;
mapping(address=> CumulativeLockInfo) public cumulativeLockInfo;
mapping(address=> EnumerableSet.UintSet) private _tokenToLockIds;
eventLockAdded(uint256indexed id,
address token,
address owner,
uint256 amount,
uint256 unlockDate
);
eventLockUpdated(uint256indexed id,
address token,
address owner,
uint256 newAmount,
uint256 newUnlockDate
);
eventLockRemoved(uint256indexed id,
address token,
address owner,
uint256 amount,
uint256 unlockedAt
);
eventLockVested(uint256indexed id,
address token,
address owner,
uint256 amount,
uint256 remaining,
uint256 timestamp
);
eventLockDescriptionChanged(uint256 lockId);
eventLockOwnerChanged(uint256 lockId, address owner, address newOwner);
modifiervalidLock(uint256 lockId) {
_getActualIndex(lockId);
_;
}
functionlock(address owner,
address token,
bool isLpToken,
uint256 amount,
uint256 unlockDate,
stringmemory description
) externaloverridereturns (uint256 id) {
require(token !=address(0), "Invalid token");
require(amount >0, "Amount should be greater than 0");
require(
unlockDate >block.timestamp,
"Unlock date should be in the future"
);
id = _createLock(
owner,
token,
isLpToken,
amount,
unlockDate,
0,
0,
0,
description
);
_safeTransferFromEnsureExactAmount(
token,
msg.sender,
address(this),
amount
);
emit LockAdded(id, token, owner, amount, unlockDate);
return id;
}
functionvestingLock(address owner,
address token,
bool isLpToken,
uint256 amount,
uint256 tgeDate,
uint256 tgeBps,
uint256 cycle,
uint256 cycleBps,
stringmemory description
) externaloverridereturns (uint256 id) {
require(token !=address(0), "Invalid token");
require(amount >0, "Amount should be greater than 0");
require(tgeDate >block.timestamp, "TGE date should be in the future");
require(cycle >0, "Invalid cycle");
require(tgeBps >0&& tgeBps <10_000, "Invalid bips for TGE");
require(cycleBps >0&& cycleBps <10_000, "Invalid bips for cycle");
require(
tgeBps + cycleBps <=10_000,
"Sum of TGE bps and cycle should be less than 10000"
);
id = _createLock(
owner,
token,
isLpToken,
amount,
tgeDate,
tgeBps,
cycle,
cycleBps,
description
);
_safeTransferFromEnsureExactAmount(
token,
msg.sender,
address(this),
amount
);
emit LockAdded(id, token, owner, amount, tgeDate);
return id;
}
functionmultipleVestingLock(address[] calldata owners,
uint256[] calldata amounts,
address token,
bool isLpToken,
uint256 tgeDate,
uint256 tgeBps,
uint256 cycle,
uint256 cycleBps,
stringmemory description
) externaloverridereturns (uint256[] memory) {
require(token !=address(0), "Invalid token");
require(owners.length== amounts.length, "Length mismatched");
require(tgeDate >block.timestamp, "TGE date should be in the future");
require(cycle >0, "Invalid cycle");
require(tgeBps >0&& tgeBps <10_000, "Invalid bips for TGE");
require(cycleBps >0&& cycleBps <10_000, "Invalid bips for cycle");
require(
tgeBps + cycleBps <=10_000,
"Sum of TGE bps and cycle should be less than 10000"
);
return
_multipleVestingLock(
owners,
amounts,
token,
isLpToken,
[tgeDate, tgeBps, cycle, cycleBps],
description
);
}
function_multipleVestingLock(address[] calldata owners,
uint256[] calldata amounts,
address token,
bool isLpToken,
uint256[4] memory vestingSettings, // avoid stack too deepstringmemory description
) internalreturns (uint256[] memory) {
require(token !=address(0), "Invalid token");
uint256 sumAmount = _sumAmount(amounts);
uint256 count = owners.length;
uint256[] memory ids =newuint256[](count);
for (uint256 i =0; i < count; i++) {
ids[i] = _createLock(
owners[i],
token,
isLpToken,
amounts[i],
vestingSettings[0], // TGE date
vestingSettings[1], // TGE bps
vestingSettings[2], // cycle
vestingSettings[3], // cycle bps
description
);
emit LockAdded(
ids[i],
token,
owners[i],
amounts[i],
vestingSettings[0] // TGE date
);
}
_safeTransferFromEnsureExactAmount(
token,
msg.sender,
address(this),
sumAmount
);
return ids;
}
function_sumAmount(uint256[] calldata amounts)
internalpurereturns (uint256)
{
uint256 sum =0;
for (uint256 i =0; i < amounts.length; i++) {
if (amounts[i] ==0) {
revert("Amount cant be zero");
}
sum += amounts[i];
}
return sum;
}
function_createLock(address owner,
address token,
bool isLpToken,
uint256 amount,
uint256 tgeDate,
uint256 tgeBps,
uint256 cycle,
uint256 cycleBps,
stringmemory description
) internalreturns (uint256 id) {
if (isLpToken) {
address possibleFactoryAddress = _parseFactoryAddress(token);
id = _lockLpToken(
owner,
token,
possibleFactoryAddress,
amount,
tgeDate,
tgeBps,
cycle,
cycleBps,
description
);
} else {
id = _lockNormalToken(
owner,
token,
amount,
tgeDate,
tgeBps,
cycle,
cycleBps,
description
);
}
return id;
}
function_lockLpToken(address owner,
address token,
address factory,
uint256 amount,
uint256 tgeDate,
uint256 tgeBps,
uint256 cycle,
uint256 cycleBps,
stringmemory description
) privatereturns (uint256 id) {
id = _registerLock(
owner,
token,
amount,
tgeDate,
tgeBps,
cycle,
cycleBps,
description
);
_userLpLockIds[owner].add(id);
_lpLockedTokens.add(token);
CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[token];
if (tokenInfo.token ==address(0)) {
tokenInfo.token = token;
tokenInfo.factory = factory;
}
tokenInfo.amount = tokenInfo.amount + amount;
_tokenToLockIds[token].add(id);
}
function_lockNormalToken(address owner,
address token,
uint256 amount,
uint256 tgeDate,
uint256 tgeBps,
uint256 cycle,
uint256 cycleBps,
stringmemory description
) privatereturns (uint256 id) {
id = _registerLock(
owner,
token,
amount,
tgeDate,
tgeBps,
cycle,
cycleBps,
description
);
_userNormalLockIds[owner].add(id);
_normalLockedTokens.add(token);
CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[token];
if (tokenInfo.token ==address(0)) {
tokenInfo.token = token;
tokenInfo.factory =address(0);
}
tokenInfo.amount = tokenInfo.amount + amount;
_tokenToLockIds[token].add(id);
}
function_registerLock(address owner,
address token,
uint256 amount,
uint256 tgeDate,
uint256 tgeBps,
uint256 cycle,
uint256 cycleBps,
stringmemory description
) privatereturns (uint256 id) {
id = _locks.length+ ID_PADDING;
Lock memory newLock = Lock({
id: id,
token: token,
owner: owner,
amount: amount,
lockDate: block.timestamp,
tgeDate: tgeDate,
tgeBps: tgeBps,
cycle: cycle,
cycleBps: cycleBps,
unlockedAmount: 0,
description: description
});
_locks.push(newLock);
}
functionunlock(uint256 lockId) externaloverridevalidLock(lockId) {
Lock storage userLock = _locks[_getActualIndex(lockId)];
require(
userLock.owner ==msg.sender,
"You are not the owner of this lock"
);
if (userLock.tgeBps >0) {
_vestingUnlock(userLock);
} else {
_normalUnlock(userLock);
}
}
function_normalUnlock(Lock storage userLock) internal{
require(
block.timestamp>= userLock.tgeDate,
"It is not time to unlock"
);
require(userLock.unlockedAmount ==0, "Nothing to unlock");
CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[
userLock.token
];
bool isLpToken = tokenInfo.factory !=address(0);
if (isLpToken) {
_userLpLockIds[msg.sender].remove(userLock.id);
} else {
_userNormalLockIds[msg.sender].remove(userLock.id);
}
uint256 unlockAmount = userLock.amount;
if (tokenInfo.amount <= unlockAmount) {
tokenInfo.amount =0;
} else {
tokenInfo.amount = tokenInfo.amount - unlockAmount;
}
if (tokenInfo.amount ==0) {
if (isLpToken) {
_lpLockedTokens.remove(userLock.token);
} else {
_normalLockedTokens.remove(userLock.token);
}
}
userLock.unlockedAmount = unlockAmount;
_tokenToLockIds[userLock.token].remove(userLock.id);
IERC20(userLock.token).safeTransfer(msg.sender, unlockAmount);
emit LockRemoved(
userLock.id,
userLock.token,
msg.sender,
unlockAmount,
block.timestamp
);
}
function_vestingUnlock(Lock storage userLock) internal{
uint256 withdrawable = _withdrawableTokens(userLock);
uint256 newTotalUnlockAmount = userLock.unlockedAmount + withdrawable;
require(
withdrawable >0&& newTotalUnlockAmount <= userLock.amount,
"Nothing to unlock"
);
CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[
userLock.token
];
bool isLpToken = tokenInfo.factory !=address(0);
if (newTotalUnlockAmount == userLock.amount) {
if (isLpToken) {
_userLpLockIds[msg.sender].remove(userLock.id);
} else {
_userNormalLockIds[msg.sender].remove(userLock.id);
}
_tokenToLockIds[userLock.token].remove(userLock.id);
emit LockRemoved(
userLock.id,
userLock.token,
msg.sender,
newTotalUnlockAmount,
block.timestamp
);
}
if (tokenInfo.amount <= withdrawable) {
tokenInfo.amount =0;
} else {
tokenInfo.amount = tokenInfo.amount - withdrawable;
}
if (tokenInfo.amount ==0) {
if (isLpToken) {
_lpLockedTokens.remove(userLock.token);
} else {
_normalLockedTokens.remove(userLock.token);
}
}
userLock.unlockedAmount = newTotalUnlockAmount;
IERC20(userLock.token).safeTransfer(userLock.owner, withdrawable);
emit LockVested(
userLock.id,
userLock.token,
msg.sender,
withdrawable,
userLock.amount - userLock.unlockedAmount,
block.timestamp
);
}
functionwithdrawableTokens(uint256 lockId)
externalviewreturns (uint256)
{
Lock memory userLock = getLockById(lockId);
return _withdrawableTokens(userLock);
}
function_withdrawableTokens(Lock memory userLock)
internalviewreturns (uint256)
{
if (userLock.amount ==0) return0;
if (userLock.unlockedAmount >= userLock.amount) return0;
if (block.timestamp< userLock.tgeDate) return0;
if (userLock.cycle ==0) return0;
uint256 tgeReleaseAmount = FullMath.mulDiv(
userLock.amount,
userLock.tgeBps,
10_000
);
uint256 cycleReleaseAmount = FullMath.mulDiv(
userLock.amount,
userLock.cycleBps,
10_000
);
uint256 currentTotal =0;
if (block.timestamp>= userLock.tgeDate) {
currentTotal =
(((block.timestamp- userLock.tgeDate) / userLock.cycle) *
cycleReleaseAmount) +
tgeReleaseAmount; // Truncation is expected here
}
uint256 withdrawable =0;
if (currentTotal > userLock.amount) {
withdrawable = userLock.amount - userLock.unlockedAmount;
} else {
withdrawable = currentTotal - userLock.unlockedAmount;
}
return withdrawable;
}
functioneditLock(uint256 lockId,
uint256 newAmount,
uint256 newUnlockDate
) externaloverridevalidLock(lockId) {
Lock storage userLock = _locks[_getActualIndex(lockId)];
require(
userLock.owner ==msg.sender,
"You are not the owner of this lock"
);
require(userLock.unlockedAmount ==0, "Lock was unlocked");
if (newUnlockDate >0) {
require(
newUnlockDate >= userLock.tgeDate &&
newUnlockDate >block.timestamp,
"New unlock time should not be before old unlock time or current time"
);
userLock.tgeDate = newUnlockDate;
}
if (newAmount >0) {
require(
newAmount >= userLock.amount,
"New amount should not be less than current amount"
);
uint256 diff = newAmount - userLock.amount;
if (diff >0) {
userLock.amount = newAmount;
CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[
userLock.token
];
tokenInfo.amount = tokenInfo.amount + diff;
_safeTransferFromEnsureExactAmount(
userLock.token,
msg.sender,
address(this),
diff
);
}
}
emit LockUpdated(
userLock.id,
userLock.token,
userLock.owner,
userLock.amount,
userLock.tgeDate
);
}
functioneditLockDescription(uint256 lockId, stringmemory description)
externalvalidLock(lockId)
{
Lock storage userLock = _locks[_getActualIndex(lockId)];
require(
userLock.owner ==msg.sender,
"You are not the owner of this lock"
);
userLock.description = description;
emit LockDescriptionChanged(lockId);
}
functiontransferLockOwnership(uint256 lockId, address newOwner)
publicvalidLock(lockId)
{
Lock storage userLock = _locks[_getActualIndex(lockId)];
address currentOwner = userLock.owner;
require(
currentOwner ==msg.sender,
"You are not the owner of this lock"
);
userLock.owner = newOwner;
CumulativeLockInfo storage tokenInfo = cumulativeLockInfo[
userLock.token
];
bool isLpToken = tokenInfo.factory !=address(0);
if (isLpToken) {
_userLpLockIds[currentOwner].remove(lockId);
_userLpLockIds[newOwner].add(lockId);
} else {
_userNormalLockIds[currentOwner].remove(lockId);
_userNormalLockIds[newOwner].add(lockId);
}
emit LockOwnerChanged(lockId, currentOwner, newOwner);
}
functionrenounceLockOwnership(uint256 lockId) external{
transferLockOwnership(lockId, address(0));
}
function_safeTransferFromEnsureExactAmount(address token,
address sender,
address recipient,
uint256 amount
) internal{
uint256 oldRecipientBalance = IERC20(token).balanceOf(recipient);
IERC20(token).safeTransferFrom(sender, recipient, amount);
uint256 newRecipientBalance = IERC20(token).balanceOf(recipient);
require(
newRecipientBalance - oldRecipientBalance == amount,
"Not enough token was transfered"
);
}
functiongetTotalLockCount() externalviewreturns (uint256) {
// Returns total lock count, regardless of whether it has been unlocked or notreturn _locks.length;
}
functiongetLockAt(uint256 index) externalviewreturns (Lock memory) {
return _locks[index];
}
functiongetLockById(uint256 lockId) publicviewreturns (Lock memory) {
return _locks[_getActualIndex(lockId)];
}
functionallLpTokenLockedCount() publicviewreturns (uint256) {
return _lpLockedTokens.length();
}
functionallNormalTokenLockedCount() publicviewreturns (uint256) {
return _normalLockedTokens.length();
}
functiongetCumulativeLpTokenLockInfoAt(uint256 index)
externalviewreturns (CumulativeLockInfo memory)
{
return cumulativeLockInfo[_lpLockedTokens.at(index)];
}
functiongetCumulativeNormalTokenLockInfoAt(uint256 index)
externalviewreturns (CumulativeLockInfo memory)
{
return cumulativeLockInfo[_normalLockedTokens.at(index)];
}
functiongetCumulativeLpTokenLockInfo(uint256 start, uint256 end)
externalviewreturns (CumulativeLockInfo[] memory)
{
if (end >= _lpLockedTokens.length()) {
end = _lpLockedTokens.length() -1;
}
uint256 length = end - start +1;
CumulativeLockInfo[] memory lockInfo =new CumulativeLockInfo[](length);
uint256 currentIndex =0;
for (uint256 i = start; i <= end; i++) {
lockInfo[currentIndex] = cumulativeLockInfo[_lpLockedTokens.at(i)];
currentIndex++;
}
return lockInfo;
}
functiongetCumulativeNormalTokenLockInfo(uint256 start, uint256 end)
externalviewreturns (CumulativeLockInfo[] memory)
{
if (end >= _normalLockedTokens.length()) {
end = _normalLockedTokens.length() -1;
}
uint256 length = end - start +1;
CumulativeLockInfo[] memory lockInfo =new CumulativeLockInfo[](length);
uint256 currentIndex =0;
for (uint256 i = start; i <= end; i++) {
lockInfo[currentIndex] = cumulativeLockInfo[
_normalLockedTokens.at(i)
];
currentIndex++;
}
return lockInfo;
}
functiontotalTokenLockedCount() externalviewreturns (uint256) {
return allLpTokenLockedCount() + allNormalTokenLockedCount();
}
functionlpLockCountForUser(address user) publicviewreturns (uint256) {
return _userLpLockIds[user].length();
}
functionlpLocksForUser(address user)
externalviewreturns (Lock[] memory)
{
uint256 length = _userLpLockIds[user].length();
Lock[] memory userLocks =new Lock[](length);
for (uint256 i =0; i < length; i++) {
userLocks[i] = getLockById(_userLpLockIds[user].at(i));
}
return userLocks;
}
functionlpLockForUserAtIndex(address user, uint256 index)
externalviewreturns (Lock memory)
{
require(lpLockCountForUser(user) > index, "Invalid index");
return getLockById(_userLpLockIds[user].at(index));
}
functionnormalLockCountForUser(address user)
publicviewreturns (uint256)
{
return _userNormalLockIds[user].length();
}
functionnormalLocksForUser(address user)
externalviewreturns (Lock[] memory)
{
uint256 length = _userNormalLockIds[user].length();
Lock[] memory userLocks =new Lock[](length);
for (uint256 i =0; i < length; i++) {
userLocks[i] = getLockById(_userNormalLockIds[user].at(i));
}
return userLocks;
}
functionnormalLockForUserAtIndex(address user, uint256 index)
externalviewreturns (Lock memory)
{
require(normalLockCountForUser(user) > index, "Invalid index");
return getLockById(_userNormalLockIds[user].at(index));
}
functiontotalLockCountForUser(address user)
externalviewreturns (uint256)
{
return normalLockCountForUser(user) + lpLockCountForUser(user);
}
functiontotalLockCountForToken(address token)
externalviewreturns (uint256)
{
return _tokenToLockIds[token].length();
}
functiongetLocksForToken(address token,
uint256 start,
uint256 end
) publicviewreturns (Lock[] memory) {
if (end >= _tokenToLockIds[token].length()) {
end = _tokenToLockIds[token].length() -1;
}
uint256 length = end - start +1;
Lock[] memory locks =new Lock[](length);
uint256 currentIndex =0;
for (uint256 i = start; i <= end; i++) {
locks[currentIndex] = getLockById(_tokenToLockIds[token].at(i));
currentIndex++;
}
return locks;
}
function_getActualIndex(uint256 lockId) internalviewreturns (uint256) {
if (lockId < ID_PADDING) {
revert("Invalid lock id");
}
uint256 actualIndex = lockId - ID_PADDING;
require(actualIndex < _locks.length, "Invalid lock id");
return actualIndex;
}
function_parseFactoryAddress(address token)
internalviewreturns (address)
{
address possibleFactoryAddress;
try IUniswapV2Pair(token).factory() returns (address factory) {
possibleFactoryAddress = factory;
} catch {
revert("This token is not a LP token");
}
require(
possibleFactoryAddress !=address(0) &&
_isValidLpToken(token, possibleFactoryAddress),
"This token is not a LP token."
);
return possibleFactoryAddress;
}
function_isValidLpToken(address token, address factory)
privateviewreturns (bool)
{
IUniswapV2Pair pair = IUniswapV2Pair(token);
address factoryPair = IUniswapV2Factory(factory).getPair(
pair.token0(),
pair.token1()
);
return factoryPair == token;
}
}
Contract Source Code
File 10 of 10: SafeERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol)pragmasolidity ^0.8.0;import"../IERC20.sol";
import"../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/librarySafeERC20{
usingAddressforaddress;
functionsafeTransfer(
IERC20 token,
address to,
uint256 value
) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
functionsafeTransferFrom(
IERC20 token,
addressfrom,
address to,
uint256 value
) internal{
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/functionsafeApprove(
IERC20 token,
address spender,
uint256 value
) internal{
// safeApprove should only be called when setting an initial allowance,// or when resetting it to zero. To increase and decrease it, use// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'require(
(value ==0) || (token.allowance(address(this), spender) ==0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
functionsafeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal{
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
functionsafeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal{
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/function_callOptionalReturn(IERC20 token, bytesmemory data) private{
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that// the target address contains contract code and also asserts for success in the low-level call.bytesmemory returndata =address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length>0) {
// Return data is optionalrequire(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}