/**
*Submitted for verification at Etherscan.io on 2022-03-17
*/
/**
*Submitted for verification at Etherscan.io on 2022-03-08
*/
// SPDX-License-Identifier: MIT
// File: contracts/libs/Address.sol
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{value: amount}("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return
functionCallWithValue(
target,
data,
value,
"Address: low-level call with value failed"
);
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(
address(this).balance >= value,
"Address: insufficient balance for call"
);
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{value: value}(
data
);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data)
internal
view
returns (bytes memory)
{
return
functionStaticCall(
target,
data,
"Address: low-level static call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return
functionDelegateCall(
target,
data,
"Address: low-level delegate call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) private pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: contracts/libs/IERC20.sol
pragma solidity >=0.4.0;
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the token decimals.
*/
function decimals() external view returns (uint8);
/**
* @dev Returns the token symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the token name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the erc20 token owner.
*/
function getOwner() external view returns (address);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address _owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: contracts/libs/SafeMath.sol
pragma solidity ^0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b)
internal
pure
returns (bool, uint256)
{
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b)
internal
pure
returns (bool, uint256)
{
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b)
internal
pure
returns (bool, uint256)
{
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b)
internal
pure
returns (bool, uint256)
{
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b)
internal
pure
returns (bool, uint256)
{
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// File: contracts/libs/SafeERC20.sol
pragma solidity ^0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(
IERC20 token,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(
value
);
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(
value,
"SafeERC20: decreased allowance below zero"
);
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(
data,
"SafeERC20: low-level call failed"
);
if (returndata.length > 0) {
// Return data is optional
// solhint-disable-next-line max-line-length
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
// File: contracts/libs/EnumerableSet.sol
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value)
private
view
returns (bool)
{
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index)
private
view
returns (bytes32)
{
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value)
internal
returns (bool)
{
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value)
internal
returns (bool)
{
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value)
internal
view
returns (bool)
{
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index)
internal
view
returns (bytes32)
{
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set)
internal
view
returns (bytes32[] memory)
{
return _values(set._inner);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value)
internal
returns (bool)
{
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value)
internal
returns (bool)
{
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value)
internal
view
returns (bool)
{
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index)
internal
view
returns (address)
{
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set)
internal
view
returns (address[] memory)
{
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value)
internal
returns (bool)
{
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value)
internal
view
returns (bool)
{
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index)
internal
view
returns (uint256)
{
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set)
internal
view
returns (uint256[] memory)
{
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly {
result := store
}
return result;
}
}
// File: contracts/libs/IERC721Receiver.sol
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File: contracts/libs/IERC165.sol
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File: contracts/libs/IERC721.sol
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
}
// File: contracts/libs/Context.sol
pragma solidity ^0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: contracts/libs/Ownable.sol
pragma solidity ^0.8.0;
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(
newOwner != address(0),
"Ownable: new owner is the zero address"
);
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: contracts/libs/Pausable.sol
pragma solidity ^0.8.0;
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Ownable {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!paused(), "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(paused(), "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function pause() external onlyOwner whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() external onlyOwner whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// File: contracts/libs/ReentrancyGuard.sol
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Trees proofs.
*
* The proofs can be generated using the JavaScript library
* https://github.com/miguelmota/merkletreejs[merkletreejs].
* Note: the hashing algorithm should be keccak256 and pair sorting should be enabled.
*
* See `test/utils/cryptography/MerkleProof.test.js` for some examples.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merklee tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
bytes32 proofElement = proof[i];
if (computedHash <= proofElement) {
// Hash(current computed hash + current element of the proof)
computedHash = _efficientHash(computedHash, proofElement);
} else {
// Hash(current element of the proof + current computed hash)
computedHash = _efficientHash(proofElement, computedHash);
}
}
return computedHash;
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// File: contracts/NftStaking.sol
pragma solidity ^0.8.0;
contract NftStaking is ReentrancyGuard, Pausable, IERC721Receiver {
using SafeMath for uint256;
using EnumerableSet for EnumerableSet.UintSet;
using SafeERC20 for IERC20;
address public constant DEAD = 0x000000000000000000000000000000000000dEaD;
enum Rarity {
COMMON,
RARE,
ICONIC,
GOLDEN
}
enum StakeType {
UNLOCKED,
LOCKED,
PAIR_LOCKED
}
bytes32 public SEASON1_MERKLE_ROOT;
bytes32 public SEASON2_MERKLE_ROOT;
/** Season1 / Season2 NFT address */
address public _season1Nft;
address public _season2Nft;
/** Reward Token address */
address public _rewardToken;
// Withdraw lock period
uint256 public _lockPeriod = 60 days; // Lock period 60 days
uint16 public _unstakeFee = 500; // Unstake fee 5%
uint16 public _forcedUnstakeFee = 10000; // Force unstake fee 100%
struct NftStakeInfo {
Rarity _rarity;
bool _isLocked;
uint256 _pairedTokenId;
uint256 _stakedAt;
}
struct UserInfo {
EnumerableSet.UintSet _season1Nfts;
EnumerableSet.UintSet _season2Nfts;
mapping(uint256 => NftStakeInfo) _season1StakeInfos;
mapping(uint256 => NftStakeInfo) _season2StakeInfos;
uint256 _pending; // Not claimed
uint256 _totalClaimed; // Claimed so far
uint256 _lastClaimedAt;
uint256 _pairCount; // Paired count
}
mapping(Rarity => uint256) _season1BaseRpds; // RPD: reward per day
mapping(Rarity => uint16) _season1LockedExtras;
mapping(Rarity => mapping(StakeType => uint16)) _season2Extras;
// Info of each user that stakes LP tokens.
mapping(address => UserInfo) private _userInfo;
event Staked(
address indexed account,
uint256 tokenId,
bool isSeason1,
bool isLocked
);
event Unstaked(address indexed account, uint256 tokenId, bool isSeason1);
event Locked(address indexed account, uint256 tokenId, bool isSeason1);
event Paired(
address indexed account,
uint256 season1TokenId,
uint256 season2TokenId
);
event Harvested(address indexed account, uint256 amount);
event InsufficientRewardToken(
address indexed account,
uint256 amountNeeded,
uint256 balance
);
constructor(address __rewardToken, address __season1Nft) {
IERC20(__rewardToken).balanceOf(address(this));
IERC721(__season1Nft).balanceOf(address(this));
_rewardToken = __rewardToken;
_season1Nft = __season1Nft;
// Base reward per day
_season1BaseRpds[Rarity.COMMON] = 50 ether;
_season1BaseRpds[Rarity.RARE] = 125 ether;
_season1BaseRpds[Rarity.ICONIC] = 250 ether;
// Season1 locked cases extra percentage
_season1LockedExtras[Rarity.COMMON] = 2000; // 20%
_season1LockedExtras[Rarity.COMMON] = 2000; // 20%
_season1LockedExtras[Rarity.COMMON] = 2000; // 20%
// Season2 extra percentage
_season2Extras[Rarity.COMMON][StakeType.UNLOCKED] = 1000;
_season2Extras[Rarity.COMMON][StakeType.LOCKED] = 2000;
_season2Extras[Rarity.COMMON][StakeType.PAIR_LOCKED] = 5000;
_season2Extras[Rarity.RARE][StakeType.UNLOCKED] = 2000;
_season2Extras[Rarity.RARE][StakeType.LOCKED] = 2000;
_season2Extras[Rarity.RARE][StakeType.PAIR_LOCKED] = 5000;
_season2Extras[Rarity.ICONIC][StakeType.UNLOCKED] = 3500;
_season2Extras[Rarity.ICONIC][StakeType.LOCKED] = 2000;
_season2Extras[Rarity.ICONIC][StakeType.PAIR_LOCKED] = 5000;
_season2Extras[Rarity.GOLDEN][StakeType.UNLOCKED] = 5000;
_season2Extras[Rarity.GOLDEN][StakeType.LOCKED] = 2000;
_season2Extras[Rarity.GOLDEN][StakeType.PAIR_LOCKED] = 5000;
}
function setSeason2Nft(address __season2Nft) external onlyOwner {
IERC721(__season2Nft).balanceOf(address(this));
_season2Nft = __season2Nft;
}
function getRewardInNormal(
uint256 __rpd,
uint256 __stakedAt,
uint256 __lastClaimedAt
) private view returns (uint256) {
uint256 timePassed = __stakedAt > __lastClaimedAt
? block.timestamp.sub(__stakedAt)
: block.timestamp.sub(__lastClaimedAt);
return __rpd.mul(timePassed).div(1 days);
}
function getRewardInLocked(
uint256 __rpd,
uint256 __extraRate,
uint256 __stakedAt,
uint256 __lastClaimedAt
) private view returns (uint256 lockedAmount, uint256 unlockedAmount) {
uint256 lockEndAt = __stakedAt.add(_lockPeriod);
if (lockEndAt > block.timestamp) {
lockedAmount = __rpd
.mul(block.timestamp.sub(__stakedAt))
.mul(uint256(10000).add(__extraRate))
.div(10000)
.div(1 days);
} else {
uint256 timePassed = __lastClaimedAt >= lockEndAt
? block.timestamp.sub(__lastClaimedAt)
: block.timestamp.sub(__stakedAt);
unlockedAmount = __rpd
.mul(timePassed)
.mul(uint256(10000).add(__extraRate))
.div(10000)
.div(1 days);
}
}
function getSeason1Rewards(address __account, uint256 __nftId)
private
view
returns (uint256 lockedAmount, uint256 unlockedAmount)
{
UserInfo storage user = _userInfo[__account];
NftStakeInfo storage season1StakeInfo = user._season1StakeInfos[
__nftId
];
Rarity season1Rarity = season1StakeInfo._rarity;
uint256 baseRpd = _season1BaseRpds[season1Rarity];
// For the locked staking add extra percentage
if (season1StakeInfo._isLocked) {
(lockedAmount, unlockedAmount) = getRewardInLocked(
baseRpd,
_season1LockedExtras[season1Rarity],
season1StakeInfo._stakedAt,
user._lastClaimedAt
);
} else {
unlockedAmount = getRewardInNormal(
baseRpd,
season1StakeInfo._stakedAt,
user._lastClaimedAt
);
}
}
function getPairedSeason2Rewards(address __account, uint256 __nftId)
private
view
returns (uint256 lockedAmount, uint256 unlockedAmount)
{
UserInfo storage user = _userInfo[__account];
NftStakeInfo storage season1StakeInfo = user._season1StakeInfos[
__nftId
];
NftStakeInfo storage season2StakeInfo = user._season2StakeInfos[
season1StakeInfo._pairedTokenId
];
Rarity season1Rarity = season1StakeInfo._rarity;
Rarity season2Rarity = season2StakeInfo._rarity;
uint256 baseRpd = _season1BaseRpds[season1Rarity];
if (season1StakeInfo._pairedTokenId == 0) {
lockedAmount = 0;
unlockedAmount = 0;
} else if (season2StakeInfo._isLocked) {
// extra rate is wheter season1 is locked or not
uint256 rpdExtraRate = season1StakeInfo._isLocked
? _season2Extras[season2Rarity][StakeType.PAIR_LOCKED]
: _season2Extras[season2Rarity][StakeType.LOCKED];
(lockedAmount, unlockedAmount) = getRewardInLocked(
baseRpd,
rpdExtraRate,
season2StakeInfo._stakedAt,
user._lastClaimedAt
);
} else {
// base rpd for the season2 unlocked
baseRpd = baseRpd
.mul(_season2Extras[season2Rarity][StakeType.UNLOCKED])
.div(10000);
unlockedAmount = getRewardInNormal(
baseRpd,
season2StakeInfo._stakedAt,
user._lastClaimedAt
);
}
}
function viewProfit(address __account)
public
view
returns (
uint256 totalEarned,
uint256 totalClaimed,
uint256 lockedRewards,
uint256 unlockedRewards
)
{
UserInfo storage user = _userInfo[__account];
totalClaimed = user._totalClaimed;
unlockedRewards = user._pending;
uint256 countSeason1Nfts = user._season1Nfts.length();
uint256 index;
for (index = 0; index < countSeason1Nfts; index++) {
uint256 pendingLockedRewards = 0;
uint256 pendingUnlockedRewards = 0;
(pendingLockedRewards, pendingUnlockedRewards) = getSeason1Rewards(
__account,
user._season1Nfts.at(index)
);
// Add season1 reward
if (pendingLockedRewards > 0) {
lockedRewards = lockedRewards.add(pendingLockedRewards);
}
if (pendingUnlockedRewards > 0) {
unlockedRewards = unlockedRewards.add(pendingUnlockedRewards);
}
(
pendingLockedRewards,
pendingUnlockedRewards
) = getPairedSeason2Rewards(__account, user._season1Nfts.at(index));
// Add season2 reward
if (pendingLockedRewards > 0) {
lockedRewards = lockedRewards.add(pendingLockedRewards);
}
if (pendingUnlockedRewards > 0) {
unlockedRewards = unlockedRewards.add(pendingUnlockedRewards);
}
}
totalEarned = totalClaimed.add(lockedRewards).add(unlockedRewards);
}
/**
* @notice Get season1 nfts
*/
function viewSeason1Nfts(address __account)
external
view
returns (uint256[] memory season1Nfts, bool[] memory lockStats)
{
UserInfo storage user = _userInfo[__account];
uint256 countSeason1Nfts = user._season1Nfts.length();
season1Nfts = new uint256[](countSeason1Nfts);
lockStats = new bool[](countSeason1Nfts);
uint256 index;
uint256 tokenId;
for (index = 0; index < countSeason1Nfts; index++) {
tokenId = user._season1Nfts.at(index);
season1Nfts[index] = tokenId;
lockStats[index] = user._season1StakeInfos[tokenId]._isLocked;
}
}
/**
* @notice Get season2 nfts
*/
function viewSeason2Nfts(address __account)
external
view
returns (uint256[] memory season2Nfts, bool[] memory lockStats)
{
UserInfo storage user = _userInfo[__account];
uint256 countSeason2Nfts = user._season2Nfts.length();
season2Nfts = new uint256[](countSeason2Nfts);
lockStats = new bool[](countSeason2Nfts);
uint256 index;
uint256 tokenId;
for (index = 0; index < countSeason2Nfts; index++) {
tokenId = user._season2Nfts.at(index);
season2Nfts[index] = tokenId;
lockStats[index] = user._season2StakeInfos[tokenId]._isLocked;
}
}
/**
* @notice Get paired season1 / season2 nfts
*/
function viewPairedNfts(address __account)
external
view
returns (
uint256[] memory pairedSeason1Nfts,
uint256[] memory pairedSeason2Nfts
)
{
UserInfo storage user = _userInfo[__account];
uint256 pairCount = user._pairCount;
pairedSeason1Nfts = new uint256[](pairCount);
pairedSeason2Nfts = new uint256[](pairCount);
uint256 index;
uint256 tokenId;
uint256 rindex = 0;
uint256 season2NftCount = user._season2Nfts.length();
for (index = 0; index < season2NftCount; index++) {
tokenId = user._season2Nfts.at(index);
if (user._season2StakeInfos[tokenId]._pairedTokenId == 0) {
continue;
}
pairedSeason1Nfts[rindex] = user
._season2StakeInfos[tokenId]
._pairedTokenId;
pairedSeason2Nfts[rindex] = tokenId;
rindex = rindex.add(1);
}
}
// Verify that a given leaf is in the tree.
function isWhiteListedSeason1(bytes32 _leafNode, bytes32[] memory _proof)
public
view
returns (bool)
{
return MerkleProof.verify(_proof, SEASON1_MERKLE_ROOT, _leafNode);
}
function isWhiteListedSeason2(bytes32 _leafNode, bytes32[] memory _proof)
public
view
returns (bool)
{
return MerkleProof.verify(_proof, SEASON2_MERKLE_ROOT, _leafNode);
}
// Generate the leaf node (just the hash of tokenID concatenated with the account address)
function toLeaf(
uint256 tokenID,
uint256 index,
uint256 amount
) public pure returns (bytes32) {
return keccak256(abi.encodePacked(index, tokenID, amount));
}
function setMerkleRoot(bytes32 _season1Root, bytes32 _season2Root)
external
onlyOwner
{
SEASON1_MERKLE_ROOT = _season1Root;
SEASON2_MERKLE_ROOT = _season2Root;
}
function updateFeeValues(uint16 __unstakeFee, uint16 __forcedUnstakeFee)
external
onlyOwner
{
_unstakeFee = __unstakeFee;
_forcedUnstakeFee = __forcedUnstakeFee;
}
function updateLockPeriod(uint256 __lockPeriod) external onlyOwner {
require(__lockPeriod > 0, "Invalid lock period");
_lockPeriod = __lockPeriod;
}
function updateSeason1BaseRpd(Rarity __rarity, uint256 __rpd)
external
onlyOwner
{
require(__rpd > 0, "Non zero values required");
_season1BaseRpds[__rarity] = __rpd;
}
function updateSeason1LockedExtraPercent(
Rarity __rarity,
uint16 __lockedExtraPercent
) external onlyOwner {
_season1LockedExtras[__rarity] = __lockedExtraPercent;
}
function updateSeason2ExtraPercent(
Rarity __rarity,
StakeType __stakeType,
uint16 __extraPercent
) external onlyOwner {
_season2Extras[__rarity][__stakeType] = __extraPercent;
}
function isStaked(address __account, uint256 __tokenId)
external
view
returns (bool)
{
UserInfo storage user = _userInfo[__account];
return
user._season1Nfts.contains(__tokenId) ||
user._season2Nfts.contains(__tokenId);
}
/**
* @notice Claim rewards
*/
function claimRewards() external {
UserInfo storage user = _userInfo[_msgSender()];
(, , , uint256 unlockedRewards) = viewProfit(_msgSender());
if (unlockedRewards > 0) {
uint256 feeAmount = unlockedRewards.mul(_unstakeFee).div(10000);
if (feeAmount > 0) {
IERC20(_rewardToken).safeTransfer(DEAD, feeAmount);
unlockedRewards = unlockedRewards.sub(feeAmount);
}
if (unlockedRewards > 0) {
user._totalClaimed = user._totalClaimed.add(unlockedRewards);
IERC20(_rewardToken).safeTransfer(_msgSender(), unlockedRewards);
}
}
user._lastClaimedAt = block.timestamp;
}
/**
* @notice Stake season1 nft
*/
function stakeSeason1(
bool __lockedStaking,
uint256[] calldata __tokenIDList,
uint256[] calldata __indexList,
uint256[] calldata __rarityList,
bytes32[][] calldata __proofList
) external nonReentrant whenNotPaused {
require(
IERC721(_season1Nft).isApprovedForAll(_msgSender(), address(this)),
"Not approve nft to staker address"
);
UserInfo storage user = _userInfo[_msgSender()];
for (uint256 i = 0; i < __tokenIDList.length; i++) {
// Check if the params are correct
require(
isWhiteListedSeason1(
toLeaf(__tokenIDList[i], __indexList[i], __rarityList[i]),
__proofList[i]
),
"Invalid params"
);
IERC721(_season1Nft).safeTransferFrom(
_msgSender(),
address(this),
__tokenIDList[i]
);
user._season1Nfts.add(__tokenIDList[i]);
user._season1StakeInfos[__tokenIDList[i]] = NftStakeInfo({
_rarity: Rarity(__rarityList[i]),
_isLocked: __lockedStaking,
_stakedAt: block.timestamp,
_pairedTokenId: 0
});
emit Staked(_msgSender(), __tokenIDList[i], true, __lockedStaking);
}
}
/**
* @notice Stake season2 nft
*/
function stakeSeason2(
bool __lockedStaking,
uint256[] calldata __tokenIDList,
uint256[] calldata __indexList,
uint256[] calldata __rarityList,
bytes32[][] calldata __proofList
) external nonReentrant whenNotPaused {
require(
IERC721(_season2Nft).isApprovedForAll(_msgSender(), address(this)),
"Not approve nft to staker address"
);
UserInfo storage user = _userInfo[_msgSender()];
for (uint256 i = 0; i < __tokenIDList.length; i++) {
// Check if the params are correct
require(
isWhiteListedSeason2(
toLeaf(__tokenIDList[i], __indexList[i], __rarityList[i]),
__proofList[i]
),
"Invalid params"
);
IERC721(_season2Nft).safeTransferFrom(
_msgSender(),
address(this),
__tokenIDList[i]
);
user._season2Nfts.add(__tokenIDList[i]);
user._season2StakeInfos[__tokenIDList[i]] = NftStakeInfo({
_rarity: Rarity(__rarityList[i]),
_isLocked: __lockedStaking,
_stakedAt: block.timestamp,
_pairedTokenId: 0
});
emit Staked(_msgSender(), __tokenIDList[i], false, __lockedStaking);
}
}
function unstakeSeason1(uint256[] calldata __tokenIDList)
external
nonReentrant
{
UserInfo storage user = _userInfo[_msgSender()];
for (uint256 i = 0; i < __tokenIDList.length; i++) {
require(
user._season1Nfts.contains(__tokenIDList[i]),
"Not staked one of nfts"
);
IERC721(_season1Nft).safeTransferFrom(
address(this),
_msgSender(),
__tokenIDList[i]
);
// locked rewards are sent to rewards back to the pool
// unlocked rewards are added to the user rewards
(, uint256 unlockedRewards) = getSeason1Rewards(
_msgSender(),
__tokenIDList[i]
);
user._pending = user._pending.add(unlockedRewards);
user._season1Nfts.remove(__tokenIDList[i]);
// If it was paired with a season2 nft, unpair them
uint256 pairedTokenId = user
._season1StakeInfos[__tokenIDList[i]]
._pairedTokenId;
if (pairedTokenId > 0) {
user._season2StakeInfos[pairedTokenId]._pairedTokenId = 0;
user._pairCount = user._pairCount.sub(1);
}
delete user._season1StakeInfos[__tokenIDList[i]];
emit Unstaked(_msgSender(), __tokenIDList[i], true);
}
}
function unstakeSeason2(uint256[] calldata __tokenIDList)
external
nonReentrant
{
UserInfo storage user = _userInfo[_msgSender()];
for (uint256 i = 0; i < __tokenIDList.length; i++) {
require(
user._season2Nfts.contains(__tokenIDList[i]),
"Not staked one of nfts"
);
IERC721(_season2Nft).safeTransferFrom(
address(this),
_msgSender(),
__tokenIDList[i]
);
// If it was paired with a season1 nft, unpair them
uint256 pairedTokenId = user
._season2StakeInfos[__tokenIDList[i]]
._pairedTokenId;
if (pairedTokenId > 0) {
// locked rewards are sent to rewards back to the pool
// unlocked rewards are added to the user rewards
(, uint256 unlockedRewards) = getPairedSeason2Rewards(
_msgSender(),
pairedTokenId
);
user._pending = user._pending.add(unlockedRewards);
}
user._season2Nfts.remove(__tokenIDList[i]);
if (pairedTokenId > 0) {
user._season1StakeInfos[pairedTokenId]._pairedTokenId = 0;
user._pairCount = user._pairCount.sub(1);
}
delete user._season2StakeInfos[__tokenIDList[i]];
emit Unstaked(_msgSender(), __tokenIDList[i], false);
}
}
/**
* @notice Lock season1 nft from the unlocked pool to the lock pool
*/
function lockSeason1Nfts(uint256[] calldata __tokenIDList)
external
onlyOwner
{
UserInfo storage user = _userInfo[_msgSender()];
for (uint256 i = 0; i < __tokenIDList.length; i++) {
// Check if the params are correct
require(
user._season1Nfts.contains(__tokenIDList[i]),
"One of nfts not staked yet"
);
require(
!user._season1StakeInfos[__tokenIDList[i]]._isLocked,
"Locked already"
);
(, uint256 unlockedRewards) = getSeason1Rewards(
_msgSender(),
__tokenIDList[i]
);
user._pending = user._pending.add(unlockedRewards);
user._season1StakeInfos[__tokenIDList[i]]._isLocked = true;
user._season1StakeInfos[__tokenIDList[i]]._stakedAt = block
.timestamp;
emit Locked(_msgSender(), __tokenIDList[i], true);
}
}
/**
* @notice Lock season2 nft from the unlocked pool to the lock pool
*/
function lockSeason2Nfts(uint256[] calldata __tokenIDList)
external
onlyOwner
{
UserInfo storage user = _userInfo[_msgSender()];
for (uint256 i = 0; i < __tokenIDList.length; i++) {
// Check if the params are correct
require(
user._season2Nfts.contains(__tokenIDList[i]),
"One of nfts not staked yet"
);
require(
!user._season2StakeInfos[__tokenIDList[i]]._isLocked,
"Locked already"
);
uint256 pairedTokenId = user
._season2StakeInfos[__tokenIDList[i]]
._pairedTokenId;
if (pairedTokenId > 0) {
(, uint256 unlockedRewards) = getPairedSeason2Rewards(
_msgSender(),
pairedTokenId
);
user._pending = user._pending.add(unlockedRewards);
}
user._season2StakeInfos[__tokenIDList[i]]._isLocked = true;
user._season2StakeInfos[__tokenIDList[i]]._stakedAt = block
.timestamp;
emit Locked(_msgSender(), __tokenIDList[i], false);
}
}
/**
* @notice
*/
function pairNfts(uint256 __season1TokenID, uint256 __season2TokenID)
external
nonReentrant
whenNotPaused
{
UserInfo storage user = _userInfo[_msgSender()];
require(
user._season1Nfts.contains(__season1TokenID) &&
user._season2Nfts.contains(__season2TokenID),
"One of nfts is not staked"
);
require(
user._season1StakeInfos[__season1TokenID]._pairedTokenId == 0 &&
user._season2StakeInfos[__season2TokenID]._pairedTokenId == 0,
"Already paired"
);
user
._season1StakeInfos[__season1TokenID]
._pairedTokenId = __season2TokenID;
user
._season2StakeInfos[__season2TokenID]
._pairedTokenId = __season1TokenID;
user._season2StakeInfos[__season2TokenID]._stakedAt = block.timestamp;
user._pairCount = user._pairCount.add(1);
emit Paired(_msgSender(), __season1TokenID, __season2TokenID);
}
function safeRewardTransfer(address __to, uint256 __amount)
internal
returns (uint256)
{
uint256 balance = IERC20(_rewardToken).balanceOf(address(this));
if (balance >= __amount) {
IERC20(_rewardToken).safeTransfer(__to, __amount);
return __amount;
}
if (balance > 0) {
IERC20(_rewardToken).safeTransfer(__to, balance);
}
emit InsufficientRewardToken(__to, __amount, balance);
return balance;
}
function onERC721Received(
address,
address,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
}
{
"compilationTarget": {
"NftStaking.sol": "NftStaking"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"__rewardToken","type":"address"},{"internalType":"address","name":"__season1Nft","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Harvested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountNeeded","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"balance","type":"uint256"}],"name":"InsufficientRewardToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isSeason1","type":"bool"}],"name":"Locked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"season1TokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"season2TokenId","type":"uint256"}],"name":"Paired","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isSeason1","type":"bool"},{"indexed":false,"internalType":"bool","name":"isLocked","type":"bool"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isSeason1","type":"bool"}],"name":"Unstaked","type":"event"},{"inputs":[],"name":"DEAD","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SEASON1_MERKLE_ROOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SEASON2_MERKLE_ROOT","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_forcedUnstakeFee","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_lockPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_rewardToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_season1Nft","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_season2Nft","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"_unstakeFee","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"__account","type":"address"},{"internalType":"uint256","name":"__tokenId","type":"uint256"}],"name":"isStaked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_leafNode","type":"bytes32"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"isWhiteListedSeason1","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_leafNode","type":"bytes32"},{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"isWhiteListedSeason2","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"__tokenIDList","type":"uint256[]"}],"name":"lockSeason1Nfts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"__tokenIDList","type":"uint256[]"}],"name":"lockSeason2Nfts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"__season1TokenID","type":"uint256"},{"internalType":"uint256","name":"__season2TokenID","type":"uint256"}],"name":"pairNfts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_season1Root","type":"bytes32"},{"internalType":"bytes32","name":"_season2Root","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"__season2Nft","type":"address"}],"name":"setSeason2Nft","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"__lockedStaking","type":"bool"},{"internalType":"uint256[]","name":"__tokenIDList","type":"uint256[]"},{"internalType":"uint256[]","name":"__indexList","type":"uint256[]"},{"internalType":"uint256[]","name":"__rarityList","type":"uint256[]"},{"internalType":"bytes32[][]","name":"__proofList","type":"bytes32[][]"}],"name":"stakeSeason1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"__lockedStaking","type":"bool"},{"internalType":"uint256[]","name":"__tokenIDList","type":"uint256[]"},{"internalType":"uint256[]","name":"__indexList","type":"uint256[]"},{"internalType":"uint256[]","name":"__rarityList","type":"uint256[]"},{"internalType":"bytes32[][]","name":"__proofList","type":"bytes32[][]"}],"name":"stakeSeason2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenID","type":"uint256"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"toLeaf","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"__tokenIDList","type":"uint256[]"}],"name":"unstakeSeason1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"__tokenIDList","type":"uint256[]"}],"name":"unstakeSeason2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"__unstakeFee","type":"uint16"},{"internalType":"uint16","name":"__forcedUnstakeFee","type":"uint16"}],"name":"updateFeeValues","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"__lockPeriod","type":"uint256"}],"name":"updateLockPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum NftStaking.Rarity","name":"__rarity","type":"uint8"},{"internalType":"uint256","name":"__rpd","type":"uint256"}],"name":"updateSeason1BaseRpd","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum NftStaking.Rarity","name":"__rarity","type":"uint8"},{"internalType":"uint16","name":"__lockedExtraPercent","type":"uint16"}],"name":"updateSeason1LockedExtraPercent","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum NftStaking.Rarity","name":"__rarity","type":"uint8"},{"internalType":"enum NftStaking.StakeType","name":"__stakeType","type":"uint8"},{"internalType":"uint16","name":"__extraPercent","type":"uint16"}],"name":"updateSeason2ExtraPercent","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"__account","type":"address"}],"name":"viewPairedNfts","outputs":[{"internalType":"uint256[]","name":"pairedSeason1Nfts","type":"uint256[]"},{"internalType":"uint256[]","name":"pairedSeason2Nfts","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"__account","type":"address"}],"name":"viewProfit","outputs":[{"internalType":"uint256","name":"totalEarned","type":"uint256"},{"internalType":"uint256","name":"totalClaimed","type":"uint256"},{"internalType":"uint256","name":"lockedRewards","type":"uint256"},{"internalType":"uint256","name":"unlockedRewards","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"__account","type":"address"}],"name":"viewSeason1Nfts","outputs":[{"internalType":"uint256[]","name":"season1Nfts","type":"uint256[]"},{"internalType":"bool[]","name":"lockStats","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"__account","type":"address"}],"name":"viewSeason2Nfts","outputs":[{"internalType":"uint256[]","name":"season2Nfts","type":"uint256[]"},{"internalType":"bool[]","name":"lockStats","type":"bool[]"}],"stateMutability":"view","type":"function"}]