Accounts
0x66...a90f
0x66...A90F

0x66...A90F

$500
This contract's source code is verified!
Contract Metadata
Compiler
0.8.26+commit.8a97fa7a
Language
Solidity
Contract Source Code
File 1 of 1: CoinCrusade.sol
// File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// File: contracts/CoinCrusade.sol

pragma solidity ^0.8.19;


contract CoinCrusade {
    /* Error Codes
    SNP = "Sender not player"
    DAP = "Data already processed"
    IS = "Invalid signature"
    AGZ = "Percentage amount greater than zero"
    SNA = "Sender not allowed"
    */

    using ECDSA for bytes32;

    mapping(bytes32 => bool) public usedHashes;
    address public adminAddress;
    address public chainWarsAddress;
    uint256 public contractBalance;

    event Buy(uint256 noOfCoins, uint256 amount, address buyer);
    event Sell(uint256 noOfCoins, uint256 amount, address buyer);

    constructor(address _adminAddress, address _chainWarsAddress) {
        adminAddress = _adminAddress;
        chainWarsAddress = _chainWarsAddress;
    }

    struct BuyCoin {
        uint256 noOfCoins;
        uint256 amount;
        uint256 timeStamp;
        address buyer;
    }

    struct SellCoin {
        uint256 noOfCoins;
        uint256 amount;
        uint256 timeStamp;
        address seller;
    }

    function buyCoin(
        BuyCoin calldata _buyCoinStruct,
        bytes calldata signature
    ) public payable {
        require(msg.sender == _buyCoinStruct.buyer, "SNP");
        bytes32 _hash = keccak256(
            abi.encode(
                _buyCoinStruct.noOfCoins,
                msg.value,
                _buyCoinStruct.timeStamp,
                _buyCoinStruct.buyer
            )
        );
        require(!usedHashes[_hash], "DAP");
        require(recover((_hash), signature) == adminAddress, "IS");
        usedHashes[_hash] = true;
        emit Buy(_buyCoinStruct.noOfCoins, msg.value, _buyCoinStruct.buyer);
    }

    function sellCoin(
        SellCoin calldata _sellCoinStruct,
        bytes calldata signature
    ) public {
        require(msg.sender == _sellCoinStruct.seller, "SNP");
        bytes32 _hash = keccak256(
            abi.encode(
                _sellCoinStruct.noOfCoins,
                _sellCoinStruct.amount,
                _sellCoinStruct.timeStamp,
                _sellCoinStruct.seller
            )
        );
        require(!usedHashes[_hash], "DAP");
        require(recover((_hash), signature) == adminAddress, "IS");
        payable(msg.sender).transfer(_sellCoinStruct.amount);
        usedHashes[_hash] = true;
        emit Sell(
            _sellCoinStruct.noOfCoins,
            _sellCoinStruct.amount,
            _sellCoinStruct.seller
        );
    }

    function withdrawAmount(uint256 amount) public {
        require(msg.sender == chainWarsAddress, "SNA");
        require(amount <= address(this).balance, "NEB");
        (bool success, ) = chainWarsAddress.call{value: amount}("");
        require(success, "Payment failed.");
    }

    receive() external payable {
       
    }
    
    function recover(
        bytes32 hash,
        bytes memory sig
    ) private pure returns (address) {
        hash = keccak256(
            abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)
        );
        return ECDSA.recover(hash, sig);
    }
}
Settings
{
  "compilationTarget": {
    "CoinCrusade.sol": "CoinCrusade"
  },
  "evmVersion": "cancun",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"_adminAddress","type":"address"},{"internalType":"address","name":"_chainWarsAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"noOfCoins","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"buyer","type":"address"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"noOfCoins","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"buyer","type":"address"}],"name":"Sell","type":"event"},{"inputs":[],"name":"adminAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"noOfCoins","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"timeStamp","type":"uint256"},{"internalType":"address","name":"buyer","type":"address"}],"internalType":"struct CoinCrusade.BuyCoin","name":"_buyCoinStruct","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"buyCoin","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"chainWarsAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"noOfCoins","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"timeStamp","type":"uint256"},{"internalType":"address","name":"seller","type":"address"}],"internalType":"struct CoinCrusade.SellCoin","name":"_sellCoinStruct","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"sellCoin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"usedHashes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]