// File: @openzeppelin/contracts/utils/Base64.sol
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
// File: Extra/StringUtils.sol
pragma solidity ^0.8.0;
/**
* Strings Library
*
* In summary this is a simple library of string functions which make simple
* string operations less tedious in solidity.
*
* Please be aware these functions can be quite gas heavy so use them only when
* necessary not to clog the blockchain with expensive transactions.
*
* @author James Lockhart <james@n3tw0rk.co.uk>
*/
library StringUtils {
/**
* Concat (High gas cost)
*
* Appends two strings together and returns a new value
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string which will be the concatenated
* prefix
* @param _value The value to be the concatenated suffix
* @return string The resulting string from combinging the base and value
*/
function concat(string memory _base, string memory _value)
internal
pure
returns (string memory) {
bytes memory _baseBytes = bytes(_base);
bytes memory _valueBytes = bytes(_value);
assert(_valueBytes.length > 0);
string memory _tmpValue = new string(_baseBytes.length +
_valueBytes.length);
bytes memory _newValue = bytes(_tmpValue);
uint i;
uint j;
for (i = 0; i < _baseBytes.length; i++) {
_newValue[j++] = _baseBytes[i];
}
for (i = 0; i < _valueBytes.length; i++) {
_newValue[j++] = _valueBytes[i];
}
return string(_newValue);
}
/**
* Index Of
*
* Locates and returns the position of a character within a string
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string acting as the haystack to be
* searched
* @param _value The needle to search for, at present this is currently
* limited to one character
* @return int The position of the needle starting from 0 and returning -1
* in the case of no matches found
*/
function indexOf(string memory _base, string memory _value)
internal
pure
returns (int) {
return _indexOf(_base, _value, 0);
}
/**
* Index Of
*
* Locates and returns the position of a character within a string starting
* from a defined offset
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string acting as the haystack to be
* searched
* @param _value The needle to search for, at present this is currently
* limited to one character
* @param _offset The starting point to start searching from which can start
* from 0, but must not exceed the length of the string
* @return int The position of the needle starting from 0 and returning -1
* in the case of no matches found
*/
function _indexOf(string memory _base, string memory _value, uint _offset)
internal
pure
returns (int) {
bytes memory _baseBytes = bytes(_base);
bytes memory _valueBytes = bytes(_value);
assert(_valueBytes.length == 1);
for (uint i = _offset; i < _baseBytes.length; i++) {
if (_baseBytes[i] == _valueBytes[0]) {
return int(i);
}
}
return -1;
}
/**
* Length
*
* Returns the length of the specified string
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string to be measured
* @return uint The length of the passed string
*/
function length(string memory _base)
internal
pure
returns (uint) {
bytes memory _baseBytes = bytes(_base);
return _baseBytes.length;
}
/**
* Sub String
*
* Extracts the beginning part of a string based on the desired length
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string that will be used for
* extracting the sub string from
* @param _length The length of the sub string to be extracted from the base
* @return string The extracted sub string
*/
function substring(string memory _base, int _length)
internal
pure
returns (string memory) {
return _substring(_base, _length, 0);
}
/**
* Sub String
*
* Extracts the part of a string based on the desired length and offset. The
* offset and length must not exceed the lenth of the base string.
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string that will be used for
* extracting the sub string from
* @param _length The length of the sub string to be extracted from the base
* @param _offset The starting point to extract the sub string from
* @return string The extracted sub string
*/
function _substring(string memory _base, int _length, int _offset)
internal
pure
returns (string memory) {
bytes memory _baseBytes = bytes(_base);
assert(uint(_offset + _length) <= _baseBytes.length);
string memory _tmp = new string(uint(_length));
bytes memory _tmpBytes = bytes(_tmp);
uint j = 0;
for (uint i = uint(_offset); i < uint(_offset + _length); i++) {
_tmpBytes[j++] = _baseBytes[i];
}
return string(_tmpBytes);
}
function split(string memory _base, string memory _value)
internal
pure
returns (string[] memory splitArr) {
bytes memory _baseBytes = bytes(_base);
uint _offset = 0;
uint _splitsCount = 1;
while (_offset < _baseBytes.length - 1) {
int _limit = _indexOf(_base, _value, _offset);
if (_limit == -1)
break;
else {
_splitsCount++;
_offset = uint(_limit) + 1;
}
}
splitArr = new string[](_splitsCount);
_offset = 0;
_splitsCount = 0;
while (_offset < _baseBytes.length - 1) {
int _limit = _indexOf(_base, _value, _offset);
if (_limit == - 1) {
_limit = int(_baseBytes.length);
}
string memory _tmp = new string(uint(_limit) - _offset);
bytes memory _tmpBytes = bytes(_tmp);
uint j = 0;
for (uint i = _offset; i < uint(_limit); i++) {
_tmpBytes[j++] = _baseBytes[i];
}
_offset = uint(_limit) + 1;
splitArr[_splitsCount++] = string(_tmpBytes);
}
return splitArr;
}
/**
* Compare To
*
* Compares the characters of two strings, to ensure that they have an
* identical footprint
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string base to compare against
* @param _value The string the base is being compared to
* @return bool Simply notates if the two string have an equivalent
*/
function compareTo(string memory _base, string memory _value)
internal
pure
returns (bool) {
bytes memory _baseBytes = bytes(_base);
bytes memory _valueBytes = bytes(_value);
if (_baseBytes.length != _valueBytes.length) {
return false;
}
for (uint i = 0; i < _baseBytes.length; i++) {
if (_baseBytes[i] != _valueBytes[i]) {
return false;
}
}
return true;
}
/**
* Compare To Ignore Case (High gas cost)
*
* Compares the characters of two strings, converting them to the same case
* where applicable to alphabetic characters to distinguish if the values
* match.
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string base to compare against
* @param _value The string the base is being compared to
* @return bool Simply notates if the two string have an equivalent value
* discarding case
*/
function compareToIgnoreCase(string memory _base, string memory _value)
internal
pure
returns (bool) {
bytes memory _baseBytes = bytes(_base);
bytes memory _valueBytes = bytes(_value);
if (_baseBytes.length != _valueBytes.length) {
return false;
}
for (uint i = 0; i < _baseBytes.length; i++) {
if (_baseBytes[i] != _valueBytes[i] &&
_upper(_baseBytes[i]) != _upper(_valueBytes[i])) {
return false;
}
}
return true;
}
/**
* Upper
*
* Converts all the values of a string to their corresponding upper case
* value.
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string base to convert to upper case
* @return string
*/
function upper(string memory _base)
internal
pure
returns (string memory) {
bytes memory _baseBytes = bytes(_base);
for (uint i = 0; i < _baseBytes.length; i++) {
_baseBytes[i] = _upper(_baseBytes[i]);
}
return string(_baseBytes);
}
/**
* Lower
*
* Converts all the values of a string to their corresponding lower case
* value.
*
* @param _base When being used for a data type this is the extended object
* otherwise this is the string base to convert to lower case
* @return string
*/
function lower(string memory _base)
internal
pure
returns (string memory) {
bytes memory _baseBytes = bytes(_base);
for (uint i = 0; i < _baseBytes.length; i++) {
_baseBytes[i] = _lower(_baseBytes[i]);
}
return string(_baseBytes);
}
/**
* Upper
*
* Convert an alphabetic character to upper case and return the original
* value when not alphabetic
*
* @param _b1 The byte to be converted to upper case
* @return bytes1 The converted value if the passed value was alphabetic
* and in a lower case otherwise returns the original value
*/
function _upper(bytes1 _b1)
private
pure
returns (bytes1) {
if (_b1 >= 0x61 && _b1 <= 0x7A) {
return bytes1(uint8(_b1) - 32);
}
return _b1;
}
/**
* Lower
*
* Convert an alphabetic character to lower case and return the original
* value when not alphabetic
*
* @param _b1 The byte to be converted to lower case
* @return bytes1 The converted value if the passed value was alphabetic
* and in a upper case otherwise returns the original value
*/
function _lower(bytes1 _b1)
private
pure
returns (bytes1) {
if (_b1 >= 0x41 && _b1 <= 0x5A) {
return bytes1(uint8(_b1) + 32);
}
return _b1;
}
}
// File: Extra/DynamicBuffer.sol
// Copyright (c) 2021 the ethier authors (github.com/divergencetech/ethier)
pragma solidity >=0.8.0;
/// @title DynamicBuffer
/// @author David Huber (@cxkoda) and Simon Fremaux (@dievardump). See also
/// https://raw.githubusercontent.com/dievardump/solidity-dynamic-buffer
/// @notice This library is used to allocate a big amount of container memory
// which will be subsequently filled without needing to reallocate
/// memory.
/// @dev First, allocate memory.
/// Then use `buffer.appendUnchecked(theBytes)` or `appendSafe()` if
/// bounds checking is required.
library DynamicBuffer {
/// @notice Allocates container space for the DynamicBuffer
/// @param capacity The intended max amount of bytes in the buffer
/// @return buffer The memory location of the buffer
/// @dev Allocates `capacity + 0x60` bytes of space
/// The buffer array starts at the first container data position,
/// (i.e. `buffer = container + 0x20`)
function allocate(uint256 capacity)
internal
pure
returns (bytes memory buffer)
{
assembly {
// Get next-free memory address
let container := mload(0x40)
// Allocate memory by setting a new next-free address
{
// Add 2 x 32 bytes in size for the two length fields
// Add 32 bytes safety space for 32B chunked copy
let size := add(capacity, 0x60)
let newNextFree := add(container, size)
mstore(0x40, newNextFree)
}
// Set the correct container length
{
let length := add(capacity, 0x40)
mstore(container, length)
}
// The buffer starts at idx 1 in the container (0 is length)
buffer := add(container, 0x20)
// Init content with length 0
mstore(buffer, 0)
}
return buffer;
}
/// @notice Appends data to buffer, and update buffer length
/// @param buffer the buffer to append the data to
/// @param data the data to append
/// @dev Does not perform out-of-bound checks (container capacity)
/// for efficiency.
function appendUnchecked(bytes memory buffer, bytes memory data)
internal
pure
{
assembly {
let length := mload(data)
for {
data := add(data, 0x20)
let dataEnd := add(data, length)
let copyTo := add(buffer, add(mload(buffer), 0x20))
} lt(data, dataEnd) {
data := add(data, 0x20)
copyTo := add(copyTo, 0x20)
} {
// Copy 32B chunks from data to buffer.
// This may read over data array boundaries and copy invalid
// bytes, which doesn't matter in the end since we will
// later set the correct buffer length, and have allocated an
// additional word to avoid buffer overflow.
mstore(copyTo, mload(data))
}
// Update buffer length
mstore(buffer, add(mload(buffer), length))
}
}
/// @notice Appends data to buffer, and update buffer length
/// @param buffer the buffer to append the data to
/// @param data the data to append
/// @dev Performs out-of-bound checks and calls `appendUnchecked`.
function appendSafe(bytes memory buffer, bytes memory data) internal pure {
uint256 capacity;
uint256 length;
assembly {
capacity := sub(mload(sub(buffer, 0x20)), 0x40)
length := mload(buffer)
}
require(
length + data.length <= capacity,
"DynamicBuffer: Appending out of bounds."
);
appendUnchecked(buffer, data);
}
}
// File: @openzeppelin/contracts/security/ReentrancyGuard.sol
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: @openzeppelin/contracts/utils/math/Math.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// File: @openzeppelin/contracts/utils/Strings.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// File: @openzeppelin/contracts/utils/Context.sol
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File: @openzeppelin/contracts/access/Ownable.sol
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// File: @openzeppelin/contracts/utils/Address.sol
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File: @openzeppelin/contracts/utils/introspection/IERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File: @openzeppelin/contracts/utils/introspection/ERC165.sol
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// File: @openzeppelin/contracts/token/ERC721/IERC721.sol
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// File: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)
pragma solidity ^0.8.0;
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// File: /Contracts/ERC721R.sol
pragma solidity ^0.8.0;
/**
* @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
* the Metadata extension, but not including the Enumerable extension. This does random batch minting.
*/
contract ERC721r is Context, ERC165, IERC721, IERC721Metadata {
using Address for address;
using Strings for uint256;
// Token name
string private _name;
// Token symbol
string private _symbol;
mapping(uint => uint) private _availableTokens;
uint256 private _numAvailableTokens;
uint256 immutable _maxSupply;
// Mapping from token ID to owner address
mapping(uint256 => address) private _owners;
// Mapping owner address to token count
mapping(address => uint256) private _balances;
// Mapping from token ID to approved address
mapping(uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor(string memory name_, string memory symbol_, uint maxSupply_) {
_name = name_;
_symbol = symbol_;
_maxSupply = maxSupply_;
_numAvailableTokens = maxSupply_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC721).interfaceId ||
interfaceId == type(IERC721Metadata).interfaceId ||
super.supportsInterface(interfaceId);
}
function totalSupply() public view virtual returns (uint256) {
return _maxSupply - _numAvailableTokens;
}
function maxSupply() public view virtual returns (uint256) {
return _maxSupply;
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: balance query for the zero address");
return _balances[owner];
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
address owner = _owners[tokenId];
require(owner != address(0), "ERC721: owner query for nonexistent token");
return owner;
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token");
string memory baseURI = _baseURI();
return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
}
/**
* @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
* token will be the concatenation of the `baseURI` and the `tokenId`. Empty
* by default, can be overridden in child contracts.
*/
function _baseURI() internal view virtual returns (string memory) {
return "";
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721r.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(
_msgSender() == owner || isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not owner nor approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
require(_exists(tokenId), "ERC721: approved query for nonexistent token");
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes memory _data
) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_safeTransfer(from, to, tokenId, _data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `_data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(
address from,
address to,
uint256 tokenId,
bytes memory _data
) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _owners[tokenId] != address(0);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
require(_exists(tokenId), "ERC721: operator query for nonexistent token");
address owner = ERC721r.ownerOf(tokenId);
return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender));
}
function _mintIdWithoutBalanceUpdate(address to, uint256 tokenId) private {
_beforeTokenTransfer(address(0), to, tokenId);
_owners[tokenId] = to;
emit Transfer(address(0), to, tokenId);
_afterTokenTransfer(address(0), to, tokenId);
}
function _mintRandom(address to, uint _numToMint) internal virtual {
require(_msgSender() == tx.origin, "Contracts cannot mint");
require(to != address(0), "ERC721: mint to the zero address");
require(_numToMint > 0, "ERC721r: need to mint at least one token");
// TODO: Probably don't need this as it will underflow and revert automatically in this case
require(_numAvailableTokens >= _numToMint, "ERC721r: minting more tokens than available");
uint updatedNumAvailableTokens = _numAvailableTokens;
for (uint256 i; i < _numToMint; ++i) { // Do this ++ unchecked?
uint256 tokenId = getRandomAvailableTokenId(to, updatedNumAvailableTokens);
_mintIdWithoutBalanceUpdate(to, tokenId);
--updatedNumAvailableTokens;
}
_numAvailableTokens = updatedNumAvailableTokens;
_balances[to] += _numToMint;
}
function getRandomAvailableTokenId(address to, uint updatedNumAvailableTokens)
internal
returns (uint256)
{
uint256 randomNum = uint256(
keccak256(
abi.encode(
to,
// tx.gasprice,
// block.number,
// block.timestamp,
// block.difficulty,
// blockhash(block.number - 1),
// address(this),
updatedNumAvailableTokens
)
)
);
uint256 randomIndex = randomNum % updatedNumAvailableTokens;
return getAvailableTokenAtIndex(randomIndex, updatedNumAvailableTokens);
}
// Implements https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. Code taken from CryptoPhunksV2
function getAvailableTokenAtIndex(uint256 indexToUse, uint updatedNumAvailableTokens)
internal
returns (uint256)
{
uint256 valAtIndex = _availableTokens[indexToUse];
uint256 result;
if (valAtIndex == 0) {
// This means the index itself is still an available token
result = indexToUse;
} else {
// This means the index itself is not an available token, but the val at that index is.
result = valAtIndex;
}
uint256 lastIndex = updatedNumAvailableTokens - 1;
uint256 lastValInArray = _availableTokens[lastIndex];
if (indexToUse != lastIndex) {
// Replace the value at indexToUse, now that it's been used.
// Replace it with the data from the last index in the array, since we are going to decrease the array size afterwards.
if (lastValInArray == 0) {
// This means the index itself is still an available token
_availableTokens[indexToUse] = lastIndex;
} else {
// This means the index itself is not an available token, but the val at that index is.
_availableTokens[indexToUse] = lastValInArray;
}
}
if (lastValInArray != 0) {
// Gas refund courtsey of @dievardump
delete _availableTokens[lastIndex];
}
return result;
}
// Not as good as minting a specific tokenId, but will behave the same at the start
// allowing you to explicitly mint some tokens at launch.
function _mintAtIndex(address to, uint index) internal virtual {
require(_msgSender() == tx.origin, "Contracts cannot mint");
require(to != address(0), "ERC721: mint to the zero address");
require(_numAvailableTokens >= 1, "ERC721r: minting more tokens than available");
uint tokenId = getAvailableTokenAtIndex(index, _numAvailableTokens);
--_numAvailableTokens;
_mintIdWithoutBalanceUpdate(to, tokenId);
_balances[to] += 1;
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(
address from,
address to,
uint256 tokenId
) internal virtual {
require(ERC721r.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId);
// Clear approvals from the previous owner
_approve(address(0), tokenId);
_balances[from] -= 1;
_balances[to] += 1;
_owners[tokenId] = to;
emit Transfer(from, to, tokenId);
_afterTokenTransfer(from, to, tokenId);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits a {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721r.ownerOf(tokenId), to, tokenId);
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits a {ApprovalForAll} event.
*/
function _setApprovalForAll(
address owner,
address operator,
bool approved
) internal virtual {
require(owner != operator, "ERC721: approve to caller");
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param _data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(
address from,
address to,
uint256 tokenId,
bytes memory _data
) private returns (bool) {
if (to.isContract()) {
try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) {
return retval == IERC721Receiver.onERC721Received.selector;
} catch (bytes memory reason) {
if (reason.length == 0) {
revert("ERC721: transfer to non ERC721Receiver implementer");
} else {
assembly {
revert(add(32, reason), mload(reason))
}
}
}
} else {
return true;
}
}
/**
* @dev Hook that is called before any token transfer. This includes minting
* and burning.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, ``from``'s `tokenId` will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 tokenId
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 tokenId
) internal virtual {}
}
// File: Mint Contract/ArbiPunksOnChain.sol
pragma solidity ^0.8.17;
interface PunkDataInterface {
function punkImage(uint16 index) external view returns (bytes memory);
function punkAttributes(uint16 index) external view returns (string memory);
}
interface ExtendedPunkDataInterface {
enum PunkAttributeType {SEX, HAIR, EYES, BEARD, EARS, LIPS, MOUTH, FACE, EMOTION, NECK, NOSE, CHEEKS, TEETH}
enum PunkAttributeValue {
NONE, ALIEN, APE, BANDANA, BEANIE, BIG_BEARD, BIG_SHADES, BLACK_LIPSTICK, BLONDE_BOB,
BLONDE_SHORT, BLUE_EYE_SHADOW, BUCK_TEETH, CAP, CAP_FORWARD, CHINSTRAP, CHOKER, CIGARETTE, CLASSIC_SHADES,
CLOWN_EYES_BLUE, CLOWN_EYES_GREEN, CLOWN_HAIR_GREEN, CLOWN_NOSE, COWBOY_HAT, CRAZY_HAIR, DARK_HAIR, DO_RAG, EARRING,
EYE_MASK, EYE_PATCH, FEDORA, FEMALE, FRONT_BEARD, FRONT_BEARD_DARK, FROWN, FRUMPY_HAIR, GOAT, GOLD_CHAIN,
GREEN_EYE_SHADOW, HALF_SHAVED, HANDLEBARS, HEADBAND, HOODIE, HORNED_RIM_GLASSES, HOT_LIPSTICK, KNITTED_CAP,
LUXURIOUS_BEARD, MALE, MEDICAL_MASK, MESSY_HAIR, MOHAWK, MOHAWK_DARK, MOHAWK_THIN, MOLE, MUSTACHE, MUTTONCHOPS,
NERD_GLASSES, NORMAL_BEARD, NORMAL_BEARD_BLACK, ORANGE_SIDE, PEAK_SPIKE, PIGTAILS, PILOT_HELMET, PINK_WITH_HAT,
PIPE, POLICE_CAP, PURPLE_EYE_SHADOW, PURPLE_HAIR, PURPLE_LIPSTICK, RED_MOHAWK, REGULAR_SHADES, ROSY_CHEEKS,
SHADOW_BEARD, SHAVED_HEAD, SILVER_CHAIN, SMALL_SHADES, SMILE, SPOTS, STRAIGHT_HAIR, STRAIGHT_HAIR_BLONDE,
STRAIGHT_HAIR_DARK, STRINGY_HAIR, TASSLE_HAT, THREE_D_GLASSES, TIARA, TOP_HAT, VAMPIRE_HAIR, VAPE, VR,
WELDING_GOGGLES, WILD_BLONDE, WILD_HAIR, WILD_WHITE_HAIR, ZOMBIE
}
function attrStringToEnumMapping(string memory) external view returns (ExtendedPunkDataInterface.PunkAttributeValue);
function attrEnumToStringMapping(PunkAttributeValue) external view returns (string memory);
function attrValueToTypeEnumMapping(PunkAttributeValue) external view returns (ExtendedPunkDataInterface.PunkAttributeType);
}
contract PunksonArbitrum is ERC721r, Ownable, ReentrancyGuard {
/// On Chain variables
enum PunkAttributeType {SEX, HAIR, EYES, BEARD, EARS, LIPS, MOUTH, FACE, EMOTION, NECK, NOSE, CHEEKS, TEETH}
enum PunkAttributeValue {
NONE, ALIEN, APE, BANDANA, BEANIE, BIG_BEARD, BIG_SHADES, BLACK_LIPSTICK, BLONDE_BOB,
BLONDE_SHORT, BLUE_EYE_SHADOW, BUCK_TEETH, CAP, CAP_FORWARD, CHINSTRAP, CHOKER, CIGARETTE, CLASSIC_SHADES,
CLOWN_EYES_BLUE, CLOWN_EYES_GREEN, CLOWN_HAIR_GREEN, CLOWN_NOSE, COWBOY_HAT, CRAZY_HAIR, DARK_HAIR, DO_RAG, EARRING,
EYE_MASK, EYE_PATCH, FEDORA, FEMALE, FRONT_BEARD, FRONT_BEARD_DARK, FROWN, FRUMPY_HAIR, GOAT, GOLD_CHAIN,
GREEN_EYE_SHADOW, HALF_SHAVED, HANDLEBARS, HEADBAND, HOODIE, HORNED_RIM_GLASSES, HOT_LIPSTICK, KNITTED_CAP,
LUXURIOUS_BEARD, MALE, MEDICAL_MASK, MESSY_HAIR, MOHAWK, MOHAWK_DARK, MOHAWK_THIN, MOLE, MUSTACHE, MUTTONCHOPS,
NERD_GLASSES, NORMAL_BEARD, NORMAL_BEARD_BLACK, ORANGE_SIDE, PEAK_SPIKE, PIGTAILS, PILOT_HELMET, PINK_WITH_HAT,
PIPE, POLICE_CAP, PURPLE_EYE_SHADOW, PURPLE_HAIR, PURPLE_LIPSTICK, RED_MOHAWK, REGULAR_SHADES, ROSY_CHEEKS,
SHADOW_BEARD, SHAVED_HEAD, SILVER_CHAIN, SMALL_SHADES, SMILE, SPOTS, STRAIGHT_HAIR, STRAIGHT_HAIR_BLONDE,
STRAIGHT_HAIR_DARK, STRINGY_HAIR, TASSLE_HAT, THREE_D_GLASSES, TIARA, TOP_HAT, VAMPIRE_HAIR, VAPE, VR,
WELDING_GOGGLES, WILD_BLONDE, WILD_HAIR, WILD_WHITE_HAIR, ZOMBIE
}
struct Punk {
uint16 id;
PunkAttributeValue sex;
PunkAttributeValue hair;
PunkAttributeValue eyes;
PunkAttributeValue beard;
PunkAttributeValue ears;
PunkAttributeValue lips;
PunkAttributeValue mouth;
PunkAttributeValue face;
PunkAttributeValue emotion;
PunkAttributeValue neck;
PunkAttributeValue nose;
PunkAttributeValue cheeks;
PunkAttributeValue teeth;
}
using StringUtils for string;
using Address for address;
using DynamicBuffer for bytes;
using Strings for uint256;
using Strings for uint16;
using Strings for uint8;
bytes private constant tokenDescription = "Punks on Arbitrum - Fully stored on the Arbitrum Blockchain";
PunkDataInterface private immutable punkDataContract;
ExtendedPunkDataInterface private immutable extendedPunkDataContract;
/// OnChain Variables - end
/// Mint variables
uint public mintPrice = 0.001 ether;
uint public freeAmount = 1000;
uint public freeCount = 0;
bool public mintEnabled = false;
mapping(address => bool) public FreeAddresses;
constructor(address punkDataContractAddress, address extendedPunkDataContractAddress)
ERC721r("Punks on Arbitrum", "APUNK", 10000) {
punkDataContract = PunkDataInterface(punkDataContractAddress);
extendedPunkDataContract = ExtendedPunkDataInterface(extendedPunkDataContractAddress);
}
function mint(uint256 count) external payable {
uint256 cost = mintPrice;
require(mintEnabled, "Mint not ready yet");
require(totalSupply() + count <= maxSupply(), "Sold Out!");
require(msg.value >= count * cost, "Please send the exact ETH amount");
require(msg.sender == tx.origin, "The minter is another contract");
_mintRandom(msg.sender, count);
}
function free_mint() external {
uint256 count = 1;
require(FreeAddresses[msg.sender] == false, "Free Mint already claimed");
require(freeCount < freeAmount, "Free sold out - Mint a paid!");
require(mintEnabled, "Mint is not live yet");
require(totalSupply() + count <= maxSupply(), "Sold Out!");
require(msg.sender == tx.origin, "The minter is another contract");
freeCount = freeCount + 1;
FreeAddresses[msg.sender] = true;
_mintRandom(msg.sender, count);
}
function set_Price(uint _price) public onlyOwner {
mintPrice = _price;
}
function set_freeAmount(uint _freeAmount) public onlyOwner {
freeAmount = _freeAmount;
}
function toggle_Minting() external onlyOwner {
mintEnabled = !mintEnabled;
}
function withdraw() external onlyOwner nonReentrant {
(bool success, ) = msg.sender.call{value: address(this).balance}("");
require(success, "Transfer failed.");
}
function team_mint() external onlyOwner nonReentrant {
_mintRandom(msg.sender, 100);
}
// OnChain Metadata Functions
function exists(uint tokenId) external view returns (bool) {
return _exists(tokenId);
}
function tokenURI(uint256 id) public view override returns (string memory) {
require(_exists(id), "Token does not exist");
return constructTokenURI(uint16(id));
}
function constructTokenURI(uint16 tokenId) private view returns (string memory) {
bytes memory svg = bytes(tokenImage(tokenId));
bytes memory title = abi.encodePacked("ArbiPunk #", tokenId.toString());
return
string(
abi.encodePacked(
"data:application/json;base64,",
Base64.encode(
bytes(
abi.encodePacked(
'{',
'"name":"', title, '",'
'"description":"', tokenDescription, '",'
'"background_color":"28A0F0",'
'"image_data":"data:image/svg+xml;base64,', Base64.encode(svg), '",'
'"attributes": ',
punkAttributesAsJSON(tokenId),
'}'
)
)
)
)
);
}
function initializePunk(uint16 punkId) private view returns (Punk memory) {
Punk memory punk = Punk({
id: punkId,
sex: PunkAttributeValue.NONE,
hair: PunkAttributeValue.NONE,
eyes: PunkAttributeValue.NONE,
beard: PunkAttributeValue.NONE,
ears: PunkAttributeValue.NONE,
lips: PunkAttributeValue.NONE,
mouth: PunkAttributeValue.NONE,
face: PunkAttributeValue.NONE,
emotion: PunkAttributeValue.NONE,
neck: PunkAttributeValue.NONE,
nose: PunkAttributeValue.NONE,
cheeks: PunkAttributeValue.NONE,
teeth: PunkAttributeValue.NONE
});
punk.id = punkId;
string memory attributes = punkDataContract.punkAttributes(punk.id);
string[] memory attributeArray = attributes.split(",");
for (uint i = 0; i < attributeArray.length; i++) {
string memory untrimmedAttribute = attributeArray[i];
string memory trimmedAttribute;
if (i < 1) {
trimmedAttribute = untrimmedAttribute.split(' ')[0];
} else {
trimmedAttribute = untrimmedAttribute._substring(int(bytes(untrimmedAttribute).length - 1), 1);
}
PunkAttributeValue attrValue = PunkAttributeValue(uint(extendedPunkDataContract.attrStringToEnumMapping(trimmedAttribute)));
PunkAttributeType attrType = PunkAttributeType(uint(extendedPunkDataContract.attrValueToTypeEnumMapping(ExtendedPunkDataInterface.PunkAttributeValue(uint(attrValue)))));
if (attrType == PunkAttributeType.SEX) {
punk.sex = attrValue;
} else if (attrType == PunkAttributeType.HAIR) {
punk.hair = attrValue;
} else if (attrType == PunkAttributeType.EYES) {
punk.eyes = attrValue;
} else if (attrType == PunkAttributeType.BEARD) {
punk.beard = attrValue;
} else if (attrType == PunkAttributeType.EARS) {
punk.ears = attrValue;
} else if (attrType == PunkAttributeType.LIPS) {
punk.lips = attrValue;
} else if (attrType == PunkAttributeType.MOUTH) {
punk.mouth = attrValue;
} else if (attrType == PunkAttributeType.FACE) {
punk.face = attrValue;
} else if (attrType == PunkAttributeType.EMOTION) {
punk.emotion = attrValue;
} else if (attrType == PunkAttributeType.NECK) {
punk.neck = attrValue;
} else if (attrType == PunkAttributeType.NOSE) {
punk.nose = attrValue;
} else if (attrType == PunkAttributeType.CHEEKS) {
punk.cheeks = attrValue;
} else if (attrType == PunkAttributeType.TEETH) {
punk.teeth = attrValue;
}
}
return punk;
}
bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
function tokenImage(uint16 tokenId) public view returns (string memory) {
bytes memory pixels = punkDataContract.punkImage(uint16(tokenId));
bytes memory svgBytes = DynamicBuffer.allocate(1024 * 128);
svgBytes.appendSafe('<svg width="1200" height="1200" shape-rendering="crispEdges" xmlns="http://www.w3.org/2000/svg" version="1.2" viewBox="0 0 24 24"><style>rect{width:1px;height:1px}</style><rect x="0" y="0" style="width:100%;height:100%" fill="#28A0F0" /><g style="transform: translate(calc(50% - 12px), calc(50% - 12px))">');
bytes memory buffer = new bytes(8);
for (uint256 y = 0; y < 24; y++) {
for (uint256 x = 0; x < 24; x++) {
uint256 p = (y * 24 + x) * 4;
if (uint8(pixels[p + 3]) > 0) {
for (uint256 i = 0; i < 4; i++) {
uint8 value = uint8(pixels[p + i]);
buffer[i * 2 + 1] = _HEX_SYMBOLS[value & 0xf];
value >>= 4;
buffer[i * 2] = _HEX_SYMBOLS[value & 0xf];
}
string memory oldColor = string(buffer);
svgBytes.appendSafe(
abi.encodePacked(
'<rect x="',
x.toString(),
'" y="',
y.toString(),
'" fill="#',
oldColor,
'"/>'
)
);
}
}
}
svgBytes.appendSafe('</g></svg>');
return string(svgBytes);
}
function punkAttributeCount(Punk memory punk) private pure returns (uint totalCount) {
PunkAttributeValue[13] memory attrArray = [
punk.sex,
punk.hair,
punk.eyes,
punk.beard,
punk.ears,
punk.lips,
punk.mouth,
punk.face,
punk.emotion,
punk.neck,
punk.nose,
punk.cheeks,
punk.teeth
];
for (uint i = 0; i < 13; ++i) {
if (attrArray[i] != PunkAttributeValue.NONE) {
totalCount++;
}
}
// Don't count sex as an attribute
totalCount--;
}
function punkAttributesAsJSON(uint16 punkId) public view returns (string memory json) {
Punk memory punk = initializePunk(punkId);
PunkAttributeValue none = PunkAttributeValue.NONE;
bytes memory output = "[";
PunkAttributeValue[13] memory attrArray = [
punk.sex,
punk.hair,
punk.eyes,
punk.beard,
punk.ears,
punk.lips,
punk.mouth,
punk.face,
punk.emotion,
punk.neck,
punk.nose,
punk.cheeks,
punk.teeth
];
uint attrCount = punkAttributeCount(punk);
uint count = 0;
for (uint i = 0; i < 13; ++i) {
PunkAttributeValue attrVal = attrArray[i];
if (attrVal != none) {
output = abi.encodePacked(output, punkAttributeAsJSON(attrVal));
if (count < attrCount) {
output.appendSafe(",");
++count;
}
}
}
return string(abi.encodePacked(output, "]"));
}
function punkAttributeAsJSON(PunkAttributeValue attribute) internal view returns (string memory json) {
require(attribute != PunkAttributeValue.NONE);
string memory attributeAsString = extendedPunkDataContract.attrEnumToStringMapping(ExtendedPunkDataInterface.PunkAttributeValue(uint(attribute)));
string memory attributeTypeAsString;
PunkAttributeType attrType = PunkAttributeType(uint(extendedPunkDataContract.attrValueToTypeEnumMapping(ExtendedPunkDataInterface.PunkAttributeValue(uint(attribute)))));
if (attrType == PunkAttributeType.SEX) {
attributeTypeAsString = "Sex";
} else if (attrType == PunkAttributeType.HAIR) {
attributeTypeAsString = "Hair";
} else if (attrType == PunkAttributeType.EYES) {
attributeTypeAsString = "Eyes";
} else if (attrType == PunkAttributeType.BEARD) {
attributeTypeAsString = "Beard";
} else if (attrType == PunkAttributeType.EARS) {
attributeTypeAsString = "Ears";
} else if (attrType == PunkAttributeType.LIPS) {
attributeTypeAsString = "Lips";
} else if (attrType == PunkAttributeType.MOUTH) {
attributeTypeAsString = "Mouth";
} else if (attrType == PunkAttributeType.FACE) {
attributeTypeAsString = "Face";
} else if (attrType == PunkAttributeType.EMOTION) {
attributeTypeAsString = "Emotion";
} else if (attrType == PunkAttributeType.NECK) {
attributeTypeAsString = "Neck";
} else if (attrType == PunkAttributeType.NOSE) {
attributeTypeAsString = "Nose";
} else if (attrType == PunkAttributeType.CHEEKS) {
attributeTypeAsString = "Cheeks";
} else if (attrType == PunkAttributeType.TEETH) {
attributeTypeAsString = "Teeth";
}
return string(abi.encodePacked('{"trait_type":"', attributeTypeAsString, '", "value":"', attributeAsString, '"}'));
}
}
{
"compilationTarget": {
"PunksonArbitrum.sol": "PunksonArbitrum"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"punkDataContractAddress","type":"address"},{"internalType":"address","name":"extendedPunkDataContractAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"FreeAddresses","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"freeAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"freeCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"free_mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint16","name":"punkId","type":"uint16"}],"name":"punkAttributesAsJSON","outputs":[{"internalType":"string","name":"json","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_price","type":"uint256"}],"name":"set_Price","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_freeAmount","type":"uint256"}],"name":"set_freeAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"team_mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"toggle_Minting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"tokenId","type":"uint16"}],"name":"tokenImage","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]