// SPDX-License-Identifier: AGPL-3.0-onlypragmasolidity >=0.8.0;/// @notice Minimalist and gas efficient standard ERC1155 implementation./// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)abstractcontractERC1155{
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/eventTransferSingle(addressindexed operator,
addressindexedfrom,
addressindexed to,
uint256 id,
uint256 amount
);
eventTransferBatch(addressindexed operator,
addressindexedfrom,
addressindexed to,
uint256[] ids,
uint256[] amounts
);
eventApprovalForAll(addressindexed owner, addressindexed operator, bool approved);
eventURI(string value, uint256indexed id);
/*//////////////////////////////////////////////////////////////
ERC1155 STORAGE
//////////////////////////////////////////////////////////////*/mapping(address=>mapping(uint256=>uint256)) public balanceOf;
mapping(address=>mapping(address=>bool)) public isApprovedForAll;
/*//////////////////////////////////////////////////////////////
METADATA LOGIC
//////////////////////////////////////////////////////////////*/functionuri(uint256 id) publicviewvirtualreturns (stringmemory);
/*//////////////////////////////////////////////////////////////
ERC1155 LOGIC
//////////////////////////////////////////////////////////////*/functionsetApprovalForAll(address operator, bool approved) publicvirtual{
isApprovedForAll[msg.sender][operator] = approved;
emit ApprovalForAll(msg.sender, operator, approved);
}
functionsafeTransferFrom(addressfrom,
address to,
uint256 id,
uint256 amount,
bytescalldata data
) publicvirtual{
require(msg.sender==from|| isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED");
balanceOf[from][id] -= amount;
balanceOf[to][id] += amount;
emit TransferSingle(msg.sender, from, to, id, amount);
require(
to.code.length==0
? to !=address(0)
: ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) ==
ERC1155TokenReceiver.onERC1155Received.selector,
"UNSAFE_RECIPIENT"
);
}
functionsafeBatchTransferFrom(addressfrom,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytescalldata data
) publicvirtual{
require(ids.length== amounts.length, "LENGTH_MISMATCH");
require(msg.sender==from|| isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED");
// Storing these outside the loop saves ~15 gas per iteration.uint256 id;
uint256 amount;
for (uint256 i =0; i < ids.length; ) {
id = ids[i];
amount = amounts[i];
balanceOf[from][id] -= amount;
balanceOf[to][id] += amount;
// An array can't have a total length// larger than the max uint256 value.unchecked {
++i;
}
}
emit TransferBatch(msg.sender, from, to, ids, amounts);
require(
to.code.length==0
? to !=address(0)
: ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) ==
ERC1155TokenReceiver.onERC1155BatchReceived.selector,
"UNSAFE_RECIPIENT"
);
}
functionbalanceOfBatch(address[] calldata owners, uint256[] calldata ids)
publicviewvirtualreturns (uint256[] memory balances)
{
require(owners.length== ids.length, "LENGTH_MISMATCH");
balances =newuint256[](owners.length);
// Unchecked because the only math done is incrementing// the array index counter which cannot possibly overflow.unchecked {
for (uint256 i =0; i < owners.length; ++i) {
balances[i] = balanceOf[owners[i]][ids[i]];
}
}
}
/*//////////////////////////////////////////////////////////////
ERC165 LOGIC
//////////////////////////////////////////////////////////////*/functionsupportsInterface(bytes4 interfaceId) publicviewvirtualreturns (bool) {
return
interfaceId ==0x01ffc9a7||// ERC165 Interface ID for ERC165
interfaceId ==0xd9b67a26||// ERC165 Interface ID for ERC1155
interfaceId ==0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/function_mint(address to,
uint256 id,
uint256 amount,
bytesmemory data
) internalvirtual{
balanceOf[to][id] += amount;
emit TransferSingle(msg.sender, address(0), to, id, amount);
require(
to.code.length==0
? to !=address(0)
: ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) ==
ERC1155TokenReceiver.onERC1155Received.selector,
"UNSAFE_RECIPIENT"
);
}
function_batchMint(address to,
uint256[] memory ids,
uint256[] memory amounts,
bytesmemory data
) internalvirtual{
uint256 idsLength = ids.length; // Saves MLOADs.require(idsLength == amounts.length, "LENGTH_MISMATCH");
for (uint256 i =0; i < idsLength; ) {
balanceOf[to][ids[i]] += amounts[i];
// An array can't have a total length// larger than the max uint256 value.unchecked {
++i;
}
}
emit TransferBatch(msg.sender, address(0), to, ids, amounts);
require(
to.code.length==0
? to !=address(0)
: ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) ==
ERC1155TokenReceiver.onERC1155BatchReceived.selector,
"UNSAFE_RECIPIENT"
);
}
function_batchBurn(addressfrom,
uint256[] memory ids,
uint256[] memory amounts
) internalvirtual{
uint256 idsLength = ids.length; // Saves MLOADs.require(idsLength == amounts.length, "LENGTH_MISMATCH");
for (uint256 i =0; i < idsLength; ) {
balanceOf[from][ids[i]] -= amounts[i];
// An array can't have a total length// larger than the max uint256 value.unchecked {
++i;
}
}
emit TransferBatch(msg.sender, from, address(0), ids, amounts);
}
function_burn(addressfrom,
uint256 id,
uint256 amount
) internalvirtual{
balanceOf[from][id] -= amount;
emit TransferSingle(msg.sender, from, address(0), id, amount);
}
}
/// @notice A generic interface for a contract which properly accepts ERC1155 tokens./// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)abstractcontractERC1155TokenReceiver{
functiononERC1155Received(address,
address,
uint256,
uint256,
bytescalldata) externalvirtualreturns (bytes4) {
return ERC1155TokenReceiver.onERC1155Received.selector;
}
functiononERC1155BatchReceived(address,
address,
uint256[] calldata,
uint256[] calldata,
bytescalldata) externalvirtualreturns (bytes4) {
return ERC1155TokenReceiver.onERC1155BatchReceived.selector;
}
}
Contract Source Code
File 2 of 6: IERC20.sol
// SPDX-License-Identifier: MITpragmasolidity >=0.6.2;/// @dev Interface of the ERC20 standard as defined in the EIP./// @dev This includes the optional name, symbol, and decimals metadata.interfaceIERC20{
/// @dev Emitted when `value` tokens are moved from one account (`from`) to another (`to`).eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/// @dev Emitted when the allowance of a `spender` for an `owner` is set, where `value`/// is the new allowance.eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/// @notice Returns the amount of tokens in existence.functiontotalSupply() externalviewreturns (uint256);
/// @notice Returns the amount of tokens owned by `account`.functionbalanceOf(address account) externalviewreturns (uint256);
/// @notice Moves `amount` tokens from the caller's account to `to`.functiontransfer(address to, uint256 amount) externalreturns (bool);
/// @notice Returns the remaining number of tokens that `spender` is allowed/// to spend on behalf of `owner`functionallowance(address owner, address spender) externalviewreturns (uint256);
/// @notice Sets `amount` as the allowance of `spender` over the caller's tokens./// @dev Be aware of front-running risks: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729functionapprove(address spender, uint256 amount) externalreturns (bool);
/// @notice Moves `amount` tokens from `from` to `to` using the allowance mechanism./// `amount` is then deducted from the caller's allowance.functiontransferFrom(addressfrom, address to, uint256 amount) externalreturns (bool);
/// @notice Returns the name of the token.functionname() externalviewreturns (stringmemory);
/// @notice Returns the symbol of the token.functionsymbol() externalviewreturns (stringmemory);
/// @notice Returns the decimals places of the token.functiondecimals() externalviewreturns (uint8);
}
Contract Source Code
File 3 of 6: LibString.sol
// SPDX-License-Identifier: MITpragmasolidity >=0.8.0;/// @notice Efficient library for creating string representations of integers./// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)/// @author Modified from Solady (https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol)libraryLibString{
functiontoString(int256 value) internalpurereturns (stringmemory str) {
if (value >=0) return toString(uint256(value));
unchecked {
str = toString(uint256(-value));
/// @solidity memory-safe-assemblyassembly {
// Note: This is only safe because we over-allocate memory// and write the string from right to left in toString(uint256),// and thus can be sure that sub(str, 1) is an unused memory location.let length :=mload(str) // Load the string length.// Put the - character at the start of the string contents.mstore(str, 45) // 45 is the ASCII code for the - character.
str :=sub(str, 1) // Move back the string pointer by a byte.mstore(str, add(length, 1)) // Update the string length.
}
}
}
functiontoString(uint256 value) internalpurereturns (stringmemory str) {
/// @solidity memory-safe-assemblyassembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but we allocate 160 bytes// to keep the free memory pointer word aligned. We'll need 1 word for the length, 1 word for the// trailing zeros padding, and 3 other words for a max of 78 digits. In total: 5 * 32 = 160 bytes.let newFreeMemoryPointer :=add(mload(0x40), 160)
// Update the free memory pointer to avoid overriding our string.mstore(0x40, newFreeMemoryPointer)
// Assign str to the end of the zone of newly allocated memory.
str :=sub(newFreeMemoryPointer, 32)
// Clean the last word of memory it may not be overwritten.mstore(str, 0)
// Cache the end of the memory to calculate the length later.let end := str
// We write the string from rightmost digit to leftmost digit.// The following is essentially a do-while loop that also handles the zero case.// prettier-ignorefor { let temp := value } 1 {} {
// Move the pointer 1 byte to the left.
str :=sub(str, 1)
// Write the character to the pointer.// The ASCII index of the '0' character is 48.mstore8(str, add(48, mod(temp, 10)))
// Keep dividing temp until zero.
temp :=div(temp, 10)
// prettier-ignoreifiszero(temp) { break }
}
// Compute and cache the final total length of the string.let length :=sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str :=sub(str, 32)
// Store the string's length at the start of memory allocated for our string.mstore(str, length)
}
}
}
Contract Source Code
File 4 of 6: MerkleProof.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)pragmasolidity ^0.8.0;/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/libraryMerkleProof{
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/functionverify(bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internalpurereturns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/functionverifyCalldata(bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internalpurereturns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/functionprocessProof(bytes32[] memory proof, bytes32 leaf) internalpurereturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/functionprocessProofCalldata(bytes32[] calldata proof, bytes32 leaf) internalpurereturns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i =0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/functionmultiProofVerify(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internalpurereturns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/functionmultiProofVerifyCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internalpurereturns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/functionprocessMultiProof(bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internalpurereturns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the merkle tree.uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.require(leavesLen + proof.length-1== totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](totalHashes);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes >0) {
return hashes[totalHashes -1];
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/functionprocessMultiProofCalldata(bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internalpurereturns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of// the merkle tree.uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.require(leavesLen + proof.length-1== totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".bytes32[] memory hashes =newbytes32[](totalHashes);
uint256 leafPos =0;
uint256 hashPos =0;
uint256 proofPos =0;
// At each step, we compute the next hash using two values:// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we// get the next hash.// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the// `proof` array.for (uint256 i =0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes >0) {
return hashes[totalHashes -1];
} elseif (leavesLen >0) {
return leaves[0];
} else {
return proof[0];
}
}
function_hashPair(bytes32 a, bytes32 b) privatepurereturns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function_efficientHash(bytes32 a, bytes32 b) privatepurereturns (bytes32 value) {
/// @solidity memory-safe-assemblyassembly {
mstore(0x00, a)
mstore(0x20, b)
value :=keccak256(0x00, 0x40)
}
}
}