// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.0;
import "../ERC20.sol";
import "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
_spendAllowance(account, _msgSender(), amount);
_burn(account, amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
interface IOracle {
function update() external;
function consult(
address _token,
uint256 _amountIn
) external view returns (uint144 amountOut);
function twap(
address _token,
uint256 _amountIn
) external view returns (uint144 _amountOut);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IWETH} from "./IWETH.sol";
interface IRouter {
struct Route {
address from;
address to;
bool stable;
address factory;
}
error ETHTransferFailed();
error Expired();
error InsufficientAmount();
error InsufficientAmountA();
error InsufficientAmountB();
error InsufficientAmountADesired();
error InsufficientAmountBDesired();
error InsufficientAmountAOptimal();
error InsufficientLiquidity();
error InsufficientOutputAmount();
error InvalidAmountInForETHDeposit();
error InvalidTokenInForETHDeposit();
error InvalidPath();
error InvalidRouteA();
error InvalidRouteB();
error OnlyWETH();
error PoolDoesNotExist();
error PoolFactoryDoesNotExist();
error SameAddresses();
error ZeroAddress();
/// @notice Address of FactoryRegistry.sol
function factoryRegistry() external view returns (address);
/// @notice Address of Protocol PoolFactory.sol
function defaultFactory() external view returns (address);
/// @notice Address of Voter.sol
function voter() external view returns (address);
/// @notice Interface of WETH contract used for WETH => ETH wrapping/unwrapping
function weth() external view returns (IWETH);
/// @dev Represents Ether. Used by zapper to determine whether to return assets as ETH/WETH.
function ETHER() external view returns (address);
/// @dev Struct containing information necessary to zap in and out of pools
/// @param tokenA .
/// @param tokenB .
/// @param stable Stable or volatile pool
/// @param factory factory of pool
/// @param amountOutMinA Minimum amount expected from swap leg of zap via routesA
/// @param amountOutMinB Minimum amount expected from swap leg of zap via routesB
/// @param amountAMin Minimum amount of tokenA expected from liquidity leg of zap
/// @param amountBMin Minimum amount of tokenB expected from liquidity leg of zap
struct Zap {
address tokenA;
address tokenB;
bool stable;
address factory;
uint256 amountOutMinA;
uint256 amountOutMinB;
uint256 amountAMin;
uint256 amountBMin;
}
/// @notice Sort two tokens by which address value is less than the other
/// @param tokenA Address of token to sort
/// @param tokenB Address of token to sort
/// @return token0 Lower address value between tokenA and tokenB
/// @return token1 Higher address value between tokenA and tokenB
function sortTokens(address tokenA, address tokenB) external pure returns (address token0, address token1);
/// @notice Calculate the address of a pool by its' factory.
/// Used by all Router functions containing a `Route[]` or `_factory` argument.
/// Reverts if _factory is not approved by the FactoryRegistry
/// @dev Returns a randomly generated address for a nonexistent pool
/// @param tokenA Address of token to query
/// @param tokenB Address of token to query
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of factory which created the pool
function poolFor(
address tokenA,
address tokenB,
bool stable,
address _factory
) external view returns (address pool);
/// @notice Fetch and sort the reserves for a pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of PoolFactory for tokenA and tokenB
/// @return reserveA Amount of reserves of the sorted token A
/// @return reserveB Amount of reserves of the sorted token B
function getReserves(
address tokenA,
address tokenB,
bool stable,
address _factory
) external view returns (uint256 reserveA, uint256 reserveB);
/// @notice Perform chained getAmountOut calculations on any number of pools
function getAmountsOut(uint256 amountIn, Route[] memory routes) external view returns (uint256[] memory amounts);
// **** ADD LIQUIDITY ****
/// @notice Quote the amount deposited into a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of PoolFactory for tokenA and tokenB
/// @param amountADesired Amount of tokenA desired to deposit
/// @param amountBDesired Amount of tokenB desired to deposit
/// @return amountA Amount of tokenA to actually deposit
/// @return amountB Amount of tokenB to actually deposit
/// @return liquidity Amount of liquidity token returned from deposit
function quoteAddLiquidity(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 amountADesired,
uint256 amountBDesired
) external view returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @notice Quote the amount of liquidity removed from a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of PoolFactory for tokenA and tokenB
/// @param liquidity Amount of liquidity to remove
/// @return amountA Amount of tokenA received
/// @return amountB Amount of tokenB received
function quoteRemoveLiquidity(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 liquidity
) external view returns (uint256 amountA, uint256 amountB);
/// @notice Add liquidity of two tokens to a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param amountADesired Amount of tokenA desired to deposit
/// @param amountBDesired Amount of tokenB desired to deposit
/// @param amountAMin Minimum amount of tokenA to deposit
/// @param amountBMin Minimum amount of tokenB to deposit
/// @param to Recipient of liquidity token
/// @param deadline Deadline to receive liquidity
/// @return amountA Amount of tokenA to actually deposit
/// @return amountB Amount of tokenB to actually deposit
/// @return liquidity Amount of liquidity token returned from deposit
function addLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @notice Add liquidity of a token and WETH (transferred as ETH) to a Pool
/// @param token .
/// @param stable True if pool is stable, false if volatile
/// @param amountTokenDesired Amount of token desired to deposit
/// @param amountTokenMin Minimum amount of token to deposit
/// @param amountETHMin Minimum amount of ETH to deposit
/// @param to Recipient of liquidity token
/// @param deadline Deadline to add liquidity
/// @return amountToken Amount of token to actually deposit
/// @return amountETH Amount of tokenETH to actually deposit
/// @return liquidity Amount of liquidity token returned from deposit
function addLiquidityETH(
address token,
bool stable,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
// **** REMOVE LIQUIDITY ****
/// @notice Remove liquidity of two tokens from a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param liquidity Amount of liquidity to remove
/// @param amountAMin Minimum amount of tokenA to receive
/// @param amountBMin Minimum amount of tokenB to receive
/// @param to Recipient of tokens received
/// @param deadline Deadline to remove liquidity
/// @return amountA Amount of tokenA received
/// @return amountB Amount of tokenB received
function removeLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB);
/// @notice Remove liquidity of a token and WETH (returned as ETH) from a Pool
/// @param token .
/// @param stable True if pool is stable, false if volatile
/// @param liquidity Amount of liquidity to remove
/// @param amountTokenMin Minimum amount of token to receive
/// @param amountETHMin Minimum amount of ETH to receive
/// @param to Recipient of liquidity token
/// @param deadline Deadline to receive liquidity
/// @return amountToken Amount of token received
/// @return amountETH Amount of ETH received
function removeLiquidityETH(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
/// @notice Remove liquidity of a fee-on-transfer token and WETH (returned as ETH) from a Pool
/// @param token .
/// @param stable True if pool is stable, false if volatile
/// @param liquidity Amount of liquidity to remove
/// @param amountTokenMin Minimum amount of token to receive
/// @param amountETHMin Minimum amount of ETH to receive
/// @param to Recipient of liquidity token
/// @param deadline Deadline to receive liquidity
/// @return amountETH Amount of ETH received
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountETH);
// **** SWAP ****
/// @notice Swap one token for another
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
/// @return amounts Array of amounts returned per route
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
/// @notice Swap ETH for a token
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
/// @return amounts Array of amounts returned per route
function swapExactETHForTokens(
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
/// @notice Swap a token for WETH (returned as ETH)
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired ETH
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
/// @return amounts Array of amounts returned per route
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
/// @notice Swap one token for another without slippage protection
/// @return amounts Array of amounts to swap per route
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function UNSAFE_swapExactTokensForTokens(
uint256[] memory amounts,
Route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory);
// **** SWAP (supporting fee-on-transfer tokens) ****
/// @notice Swap one token for another supporting fee-on-transfer tokens
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external;
/// @notice Swap ETH for a token supporting fee-on-transfer tokens
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external payable;
/// @notice Swap a token for WETH (returned as ETH) supporting fee-on-transfer tokens
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired ETH
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external;
/// @notice Zap a token A into a pool (B, C). (A can be equal to B or C).
/// Supports standard ERC20 tokens only (i.e. not fee-on-transfer tokens etc).
/// Slippage is required for the initial swap.
/// Additional slippage may be required when adding liquidity as the
/// price of the token may have changed.
/// @param tokenIn Token you are zapping in from (i.e. input token).
/// @param amountInA Amount of input token you wish to send down routesA
/// @param amountInB Amount of input token you wish to send down routesB
/// @param zapInPool Contains zap struct information. See Zap struct.
/// @param routesA Route used to convert input token to tokenA
/// @param routesB Route used to convert input token to tokenB
/// @param to Address you wish to mint liquidity to.
/// @param stake Auto-stake liquidity in corresponding gauge.
/// @return liquidity Amount of LP tokens created from zapping in.
function zapIn(
address tokenIn,
uint256 amountInA,
uint256 amountInB,
Zap calldata zapInPool,
Route[] calldata routesA,
Route[] calldata routesB,
address to,
bool stake
) external payable returns (uint256 liquidity);
/// @notice Zap out a pool (B, C) into A.
/// Supports standard ERC20 tokens only (i.e. not fee-on-transfer tokens etc).
/// Slippage is required for the removal of liquidity.
/// Additional slippage may be required on the swap as the
/// price of the token may have changed.
/// @param tokenOut Token you are zapping out to (i.e. output token).
/// @param liquidity Amount of liquidity you wish to remove.
/// @param zapOutPool Contains zap struct information. See Zap struct.
/// @param routesA Route used to convert tokenA into output token.
/// @param routesB Route used to convert tokenB into output token.
function zapOut(
address tokenOut,
uint256 liquidity,
Zap calldata zapOutPool,
Route[] calldata routesA,
Route[] calldata routesB
) external;
/// @notice Used to generate params required for zapping in.
/// Zap in => remove liquidity then swap.
/// Apply slippage to expected swap values to account for changes in reserves in between.
/// @dev Output token refers to the token you want to zap in from.
/// @param tokenA .
/// @param tokenB .
/// @param stable .
/// @param _factory .
/// @param amountInA Amount of input token you wish to send down routesA
/// @param amountInB Amount of input token you wish to send down routesB
/// @param routesA Route used to convert input token to tokenA
/// @param routesB Route used to convert input token to tokenB
/// @return amountOutMinA Minimum output expected from swapping input token to tokenA.
/// @return amountOutMinB Minimum output expected from swapping input token to tokenB.
/// @return amountAMin Minimum amount of tokenA expected from depositing liquidity.
/// @return amountBMin Minimum amount of tokenB expected from depositing liquidity.
function generateZapInParams(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 amountInA,
uint256 amountInB,
Route[] calldata routesA,
Route[] calldata routesB
) external view returns (uint256 amountOutMinA, uint256 amountOutMinB, uint256 amountAMin, uint256 amountBMin);
/// @notice Used to generate params required for zapping out.
/// Zap out => swap then add liquidity.
/// Apply slippage to expected liquidity values to account for changes in reserves in between.
/// @dev Output token refers to the token you want to zap out of.
/// @param tokenA .
/// @param tokenB .
/// @param stable .
/// @param _factory .
/// @param liquidity Amount of liquidity being zapped out of into a given output token.
/// @param routesA Route used to convert tokenA into output token.
/// @param routesB Route used to convert tokenB into output token.
/// @return amountOutMinA Minimum output expected from swapping tokenA into output token.
/// @return amountOutMinB Minimum output expected from swapping tokenB into output token.
/// @return amountAMin Minimum amount of tokenA expected from withdrawing liquidity.
/// @return amountBMin Minimum amount of tokenB expected from withdrawing liquidity.
function generateZapOutParams(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 liquidity,
Route[] calldata routesA,
Route[] calldata routesB
) external view returns (uint256 amountOutMinA, uint256 amountOutMinB, uint256 amountAMin, uint256 amountBMin);
/// @notice Used by zapper to determine appropriate ratio of A to B to deposit liquidity. Assumes stable pool.
/// @dev Returns stable liquidity ratio of B to (A + B).
/// E.g. if ratio is 0.4, it means there is more of A than there is of B.
/// Therefore you should deposit more of token A than B.
/// @param tokenA tokenA of stable pool you are zapping into.
/// @param tokenB tokenB of stable pool you are zapping into.
/// @param factory Factory that created stable pool.
/// @return ratio Ratio of token0 to token1 required to deposit into zap.
function quoteStableLiquidityRatio(
address tokenA,
address tokenB,
address factory
) external view returns (uint256 ratio);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import "@openzeppelin/contracts/access/Ownable.sol";
contract Operator is Context, Ownable {
mapping(address => bool) private _operator;
event OperatorTransferred(
address indexed previousOperator,
address indexed newOperator
);
constructor() {
_operator[_msgSender()] = true;
}
function operator() public view returns (bool) {
return _operator[_msgSender()];
}
modifier onlyOperator() {
require(
_operator[_msgSender()] == true,
"operator: caller is not the operator"
);
_;
}
function isOperator() public view returns (bool) {
return _operator[_msgSender()];
}
function setOperator(address newOperator) public onlyOwner {
_operator[newOperator] = true;
}
function removeOperator(address oldOperator) public onlyOwner {
_operator[oldOperator] = false;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
* 0 before setting it to a non-zero value.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
library SafeMath8 {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint8 a, uint8 b) internal pure returns (uint8) {
uint8 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint8 a, uint8 b) internal pure returns (uint8) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint8 a,
uint8 b,
string memory errorMessage
) internal pure returns (uint8) {
require(b <= a, errorMessage);
uint8 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint8 a, uint8 b) internal pure returns (uint8) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint8 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint8 a, uint8 b) internal pure returns (uint8) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint8 a,
uint8 b,
string memory errorMessage
) internal pure returns (uint8) {
require(b > 0, errorMessage);
uint8 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint8 a, uint8 b) internal pure returns (uint8) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint8 a,
uint8 b,
string memory errorMessage
) internal pure returns (uint8) {
require(b != 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: MIT
//
// BasedRate
// website.: www.basedrate.io
// telegram.: https://t.me/BasedRate
// _
// (_)
// |
// ()---|---()
// |
// |
// __ | __
// |\ /^\ /|
// '..-' '-..'
// `-._ _.-`
// `
pragma solidity 0.8.19;
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "./aerodrome/interfaces/IRouter.sol";
import "./libraries/IsOperator.sol";
import "./interfaces/IOracle.sol";
import "./libraries/SafeMath8.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
interface IBasisAsset {
function burn(uint256 amount) external;
function burnFrom(address from, uint256 amount) external;
}
contract BaseShare is ERC20Burnable, Operator {
using SafeMath8 for uint8;
using SafeMath for uint256;
using SafeERC20 for IERC20;
uint256 public constant PRESALE_ALLOCATION = 28 ether;
uint256 public constant LIQUIDITY_ALLOCATION = 21 ether; // plus one
IRouter public constant ROUTER =
IRouter(0xcF77a3Ba9A5CA399B7c97c74d54e5b1Beb874E43);
address public constant FACTORY =
0x420DD381b31aEf6683db6B902084cB0FFECe40Da;
address public constant WETH = 0x4200000000000000000000000000000000000006;
address public BRATE;
bool public swap = true;
constructor(address _BRATE) ERC20("BasedRate.io SHARE", "BSHARE") {
BRATE = _BRATE;
_mint(_msgSender(), PRESALE_ALLOCATION);
_mint(_msgSender(), LIQUIDITY_ALLOCATION);
taxManager = _msgSender();
}
function setTaxManager(address _taxManager) public onlyTaxManager {
taxManager = _taxManager;
}
function _burnBRATE(uint256 taxAmount) internal {
IRouter.Route[] memory routes = new IRouter.Route[](2);
routes[0] = IRouter.Route({
from: address(this),
to: WETH,
stable: false,
factory: FACTORY
});
routes[1] = IRouter.Route({
from: WETH,
to: BRATE,
stable: true,
factory: FACTORY
});
IERC20(address(this)).approve(address(ROUTER), taxAmount);
ROUTER.swapExactTokensForTokensSupportingFeeOnTransferTokens(
taxAmount,
0,
routes,
address(this),
block.timestamp.add(60)
);
uint256 amountToBurn = IERC20(BRATE).balanceOf(address(this));
IBasisAsset(BRATE).burn(amountToBurn);
}
function mint(address account, uint256 amount) external onlyOperator {
_mint(account, amount);
}
address public taxManager;
address public oracle;
// Should the taxes be calculated using the tax tiers
bool public autoCalculateTax;
mapping(address => bool) public isLP;
// Current tax rate
uint256 public taxRate;
// Tax Tiers
uint256[] public taxTiersTwaps = [
0,
5e17,
6e17,
7e17,
8e17,
9e17,
9.7e17,
1e18,
1.05e18,
1.10e18
];
uint256[] public taxTiersRates = [
1000,
800,
700,
500,
250,
100,
0,
0,
0,
0
];
// Sender addresses excluded from Tax
mapping(address => bool) public excludedAddresses;
modifier onlyTaxManager() {
require(taxManager == _msgSender(), "Caller is not the tax office");
_;
}
/* ============= Taxation ============= */
function getTaxTiersTwapsCount() public view returns (uint256 count) {
return taxTiersTwaps.length;
}
function getTaxTiersRatesCount() public view returns (uint256 count) {
return taxTiersRates.length;
}
function isAddressExcluded(address _address) public view returns (bool) {
return excludedAddresses[_address];
}
function setTaxTiersTwap(
uint8 _index,
uint256 _value
) public onlyTaxManager returns (bool) {
require(_index >= 0, "Index has to be higher than 0");
require(
_index < getTaxTiersTwapsCount(),
"Index has to lower than count of tax tiers"
);
if (_index > 0) {
require(_value > taxTiersTwaps[_index - 1]);
}
if (_index < getTaxTiersTwapsCount().sub(1)) {
require(_value < taxTiersTwaps[_index + 1]);
}
taxTiersTwaps[_index] = _value;
return true;
}
function setTaxTiersRate(
uint8 _index,
uint256 _value
) public onlyTaxManager returns (bool) {
require(_index >= 0, "Index has to be higher than 0");
require(
_index < getTaxTiersRatesCount(),
"Index has to lower than count of tax tiers"
);
taxTiersRates[_index] = _value;
return true;
}
function _getBratePrice() internal view returns (uint256 _bratePrice) {
try IOracle(oracle).twap(address(BRATE), 1e18) returns (
uint144 _price
) {
return uint256(_price);
} catch {
revert("Brate: failed to fetch BRATE price from Oracle");
}
}
function _updateTaxRate(uint256 _bratePrice) internal returns (uint256) {
for (
uint8 tierId = uint8(getTaxTiersTwapsCount()).sub(1);
tierId >= 0;
--tierId
) {
if (_bratePrice >= taxTiersTwaps[tierId]) {
require(
taxTiersRates[tierId] < 10000,
"tax equal or bigger to 100%"
);
taxRate = taxTiersRates[tierId];
return taxTiersRates[tierId];
}
}
return 0;
}
function setLP(address _LP, bool _isLP) public onlyTaxManager {
isLP[_LP] = _isLP;
}
function setSwap(bool _swap) public onlyTaxManager {
swap = _swap;
}
function enableAutoCalculateTax() public onlyTaxManager {
autoCalculateTax = true;
}
function disableAutoCalculateTax() public onlyTaxManager {
autoCalculateTax = false;
}
function setOracle(address _oracle) public onlyTaxManager {
require(_oracle != address(0), "oracle address cannot be 0 address");
oracle = _oracle;
}
function setTaxRate(uint256 _taxRate) public onlyTaxManager {
require(!autoCalculateTax, "auto calculate tax cannot be enabled");
require(_taxRate <= 2000, "tax equal or bigger to 20%");
taxRate = _taxRate;
}
function excludeAddress(
address _address
) public onlyTaxManager returns (bool) {
require(!excludedAddresses[_address], "address can't be excluded");
excludedAddresses[_address] = true;
return true;
}
function includeAddress(
address _address
) public onlyTaxManager returns (bool) {
require(excludedAddresses[_address], "address can't be included");
excludedAddresses[_address] = false;
return true;
}
function transferFrom(
address sender,
address recipient,
uint256 amount
) public override returns (bool) {
_transferBSHARE(sender, recipient, amount);
_approve(
sender,
_msgSender(),
allowance(sender, _msgSender()).sub(
amount,
"ERC20: transfer amount exceeds allowance"
)
);
return true;
}
function transfer(
address recipient,
uint256 amount
) public virtual override returns (bool) {
address sender = _msgSender();
_transferBSHARE(sender, recipient, amount);
return true;
}
function _transferWithTax(
address sender,
address recipient,
uint256 amount
) internal {
uint256 taxAmount = amount.mul(taxRate).div(10000);
uint256 amountAfterTax = amount.sub(taxAmount);
if (swap) {
_transfer(sender, address(this), taxAmount);
_burnBRATE(taxAmount);
} else {
_burn(sender, taxAmount);
}
_transfer(sender, recipient, amountAfterTax);
}
function _transferBSHARE(
address sender,
address recipient,
uint256 amount
) internal {
uint256 currentTaxRate = 0;
if (autoCalculateTax) {
uint256 currentBratePrice = _getBratePrice();
currentTaxRate = _updateTaxRate(currentBratePrice);
}
if (!autoCalculateTax) {
currentTaxRate = taxRate;
}
if (
(isLP[recipient]) &&
currentTaxRate != 0 &&
!excludedAddresses[sender] &&
!excludedAddresses[recipient]
) {
_transferWithTax(sender, recipient, amount);
} else {
_transfer(sender, recipient, amount);
}
}
}
{
"compilationTarget": {
"contracts/baseShare.sol": "BaseShare"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_BRATE","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOperator","type":"address"},{"indexed":true,"internalType":"address","name":"newOperator","type":"address"}],"name":"OperatorTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"BRATE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FACTORY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LIQUIDITY_ALLOCATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRESALE_ALLOCATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUTER","outputs":[{"internalType":"contract IRouter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"autoCalculateTax","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disableAutoCalculateTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableAutoCalculateTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"excludeAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"excludedAddresses","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTaxTiersRatesCount","outputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTaxTiersTwapsCount","outputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"includeAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"isAddressExcluded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isLP","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isOperator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oracle","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"oldOperator","type":"address"}],"name":"removeOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_LP","type":"address"},{"internalType":"bool","name":"_isLP","type":"bool"}],"name":"setLP","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOperator","type":"address"}],"name":"setOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_oracle","type":"address"}],"name":"setOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_swap","type":"bool"}],"name":"setSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_taxManager","type":"address"}],"name":"setTaxManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_taxRate","type":"uint256"}],"name":"setTaxRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_index","type":"uint8"},{"internalType":"uint256","name":"_value","type":"uint256"}],"name":"setTaxTiersRate","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_index","type":"uint8"},{"internalType":"uint256","name":"_value","type":"uint256"}],"name":"setTaxTiersTwap","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swap","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"taxTiersRates","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"taxTiersTwaps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]