// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {LibBitmap} from "solady/src/utils/LibBitmap.sol";
import {MerkleProof} from "openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
/**
* @title Allowlist
* @author fx(hash)
* @notice Extension for claiming tokens through merkle trees
*/
abstract contract Allowlist {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Event emitted when allowlist slot is claimed
* @param _token Address of the token
* @param _reserveId ID of the reserve
* @param _claimer Address of the claimer
* @param _index Index of purchase info inside the BitMap
*/
event SlotClaimed(address indexed _token, uint256 indexed _reserveId, address indexed _claimer, uint256 _index);
/*//////////////////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Error thrown when the merkle proof for an index is invalid
*/
error InvalidProof();
/**
* @notice Error thrown when an index in the merkle tree has already been claimed
*/
error SlotAlreadyClaimed();
/*//////////////////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @dev Claims a merkle tree slot
* @param _token Address of the token contract
* @param _reserveId ID of the reserve
* @param _index Index in the merkle tree
* @param _claimer Address of allowlist slot claimer
* @param _proof Merkle proof used for validating claim
* @param _bitmap Bitmap used for checking if index is already claimed
*/
function _claimSlot(
address _token,
uint256 _reserveId,
uint256 _index,
address _claimer,
bytes32[] memory _proof,
LibBitmap.Bitmap storage _bitmap
) internal {
if (LibBitmap.get(_bitmap, _index)) revert SlotAlreadyClaimed();
bytes32 root = _getMerkleRoot(_token, _reserveId);
bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_index, _claimer))));
if (!MerkleProof.verify(_proof, root, leaf)) revert InvalidProof();
LibBitmap.set(_bitmap, _index);
emit SlotClaimed(_token, _reserveId, _claimer, _index);
}
/**
* @dev Gets the merkle root of a token reserve
* @param _token Address of the token contract
* @param _reserveId ID of the reserve
*/
function _getMerkleRoot(address _token, uint256 _reserveId) internal view virtual returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
// Core
string constant FX_CONTRACT_REGISTRY = "FX_CONTRACT_REGISTRY";
string constant FX_GEN_ART_721 = "FX_GEN_ART_721";
string constant FX_ISSUER_FACTORY = "FX_ISSUER_FACTORY";
string constant FX_MINT_TICKET_721 = "FX_MINT_TICKET_721";
string constant FX_ROLE_REGISTRY = "FX_ROLE_REGISTRY";
string constant FX_TICKET_FACTORY = "FX_TICKET_FACTORY";
// Periphery
string constant DUTCH_AUCTION = "DUTCH_AUCTION";
string constant FIXED_PRICE = "FIXED_PRICE";
string constant ONCHFS_RENDERER = "ONCHFS_RENDERER";
string constant IPFS_RENDERER = "IPFS_RENDERER";
string constant PSEUDO_RANDOMIZER = "PSEUDO_RANDOMIZER";
string constant TICKET_REDEEMER = "TICKET_REDEEMER";
// EIP-712
bytes32 constant CLAIM_TYPEHASH = keccak256(
"Claim(address token,uint256 reserveId,uint96 nonce,uint256 index,address user)"
);
bytes32 constant SET_ONCHAIN_POINTER_TYPEHASH = keccak256("SetOnchainPointer(bytes onchainData,uint96 nonce)");
bytes32 constant SET_PRIMARY_RECEIVER_TYPEHASH = keccak256("SetPrimaryReceiver(address receiver,uint96 nonce)");
bytes32 constant SET_RENDERER_TYPEHASH = keccak256("SetRenderer(address renderer,uint96 nonce)");
// IPFS
bytes constant IPFS_URL = hex"697066733a2f2f172c151325290607391d2c391b242225180a020b291b260929391d1b31222525202804120031280917120b280400";
string constant IPFS_PREFIX = "ipfs://";
// Metadata
string constant API_VERSION = "0.2";
string constant ATTRIBUTES_ENDPOINT = "/attributes.json";
string constant METADATA_ENDPOINT = "/metadata.json";
string constant THUMBNAIL_ENDPOINT = "/thumbnail.json";
// ONCHFS
string constant FX_HASH_QUERY = "/?fxhash=";
string constant FX_PARAMS_QUERY = "#0x";
string constant ITERATION_QUERY = "&fxiteration=";
string constant MINTER_QUERY = "&fxminter=";
string constant ONCHFS_PREFIX = "onchfs://";
// Minters
uint8 constant UNINITIALIZED = 0;
uint8 constant FALSE = 1;
uint8 constant TRUE = 2;
// Project
uint32 constant LOCK_TIME = 3600; // 1 hour
uint64 constant TIME_UNLIMITED = type(uint64).max;
uint120 constant OPEN_EDITION_SUPPLY = type(uint120).max;
uint256 constant LAUNCH_TIMESTAMP = 1702558800; // 12/14/23 14:00 CET
// Roles
bytes32 constant ADMIN_ROLE = keccak256("ADMIN_ROLE");
bytes32 constant BANNED_USER_ROLE = keccak256("BANNED_USER_ROLE");
bytes32 constant CREATOR_ROLE = keccak256("CREATOR_ROLE");
bytes32 constant METADATA_ROLE = keccak256("METADATA_ROLE");
bytes32 constant MINTER_ROLE = keccak256("MINTER_ROLE");
bytes32 constant MODERATOR_ROLE = keccak256("MODERATOR_ROLE");
bytes32 constant SIGNER_ROLE = keccak256("SIGNER_ROLE");
// Royalties
uint32 constant ALLOCATION_DENOMINATOR = 1_000_000;
uint96 constant FEE_DENOMINATOR = 10_000;
uint96 constant MAX_ROYALTY_BPS = 2500; // 25%
// Splits
address constant SPLITS_MAIN = 0x2ed6c4B5dA6378c7897AC67Ba9e43102Feb694EE;
// Ticket
uint256 constant AUCTION_DECAY_RATE = 200; // 2%
uint256 constant DAILY_TAX_RATE = 27; // 0.274%
uint256 constant MINIMUM_PRICE = 0.001 ether;
uint256 constant ONE_DAY = 86_400;
uint256 constant SCALING_FACTOR = 10_000;
uint256 constant TEN_MINUTES = 600;
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {Allowlist} from "src/minters/extensions/Allowlist.sol";
import {LibBitmap} from "solady/src/utils/LibBitmap.sol";
import {LibMap} from "solady/src/utils/LibMap.sol";
import {MintPass} from "src/minters/extensions/MintPass.sol";
import {Ownable} from "solady/src/auth/Ownable.sol";
import {Pausable} from "openzeppelin/contracts/security/Pausable.sol";
import {SafeCastLib} from "solmate/src/utils/SafeCastLib.sol";
import {SafeTransferLib} from "solmate/src/utils/SafeTransferLib.sol";
import {IFixedPrice} from "src/interfaces/IFixedPrice.sol";
import {IToken} from "src/interfaces/IToken.sol";
import {ReserveInfo} from "src/lib/Structs.sol";
import {OPEN_EDITION_SUPPLY, TIME_UNLIMITED} from "src/utils/Constants.sol";
/**
* @title FixedPrice
* @author fx(hash)
* @dev See the documentation in {IFixedPrice}
*/
contract FixedPrice is IFixedPrice, Allowlist, MintPass, Ownable, Pausable {
using SafeCastLib for uint256;
/*//////////////////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////////////////*/
/**
* @dev Mapping of token address to reserve ID to Bitmap of claimed merkle tree slots
*/
mapping(address => mapping(uint256 => LibBitmap.Bitmap)) internal claimedMerkleTreeSlots;
/**
* @dev Mapping of token address to reserve ID to Bitmap of claimed mint passes
*/
mapping(address => mapping(uint256 => LibBitmap.Bitmap)) internal claimedMintPasses;
/**
* @dev Mapping of token address to timestamp of latest update made for token reserves
*/
LibMap.Uint40Map internal latestUpdates;
/**
* @dev Mapping of token to the last valid reserveId that can mint on behalf of the token
*/
LibMap.Uint40Map internal firstValidReserve;
/**
* @dev Mapping of token address to sale proceeds
*/
LibMap.Uint128Map internal saleProceeds;
/**
* @inheritdoc IFixedPrice
*/
mapping(address => mapping(uint256 => bytes32)) public merkleRoots;
/**
* @inheritdoc IFixedPrice
*/
mapping(address => uint256[]) public prices;
/**
* @inheritdoc IFixedPrice
*/
mapping(address => ReserveInfo[]) public reserves;
/*//////////////////////////////////////////////////////////////////////////
EXTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @inheritdoc IFixedPrice
*/
function buy(address _token, uint256 _reserveId, uint256 _amount, address _to) external payable whenNotPaused {
bytes32 merkleRoot = _getMerkleRoot(_token, _reserveId);
address signer = signingAuthorities[_token][_reserveId];
if (merkleRoot != bytes32(0)) revert NoPublicMint();
if (signer != address(0)) revert AddressZero();
_buy(_token, _reserveId, _amount, _to);
}
/**
* @inheritdoc IFixedPrice
*/
function buyAllowlist(
address _token,
uint256 _reserveId,
address _to,
uint256[] calldata _indexes,
bytes32[][] calldata _proofs
) external payable whenNotPaused {
bytes32 merkleRoot = _getMerkleRoot(_token, _reserveId);
if (merkleRoot == bytes32(0)) revert NoAllowlist();
LibBitmap.Bitmap storage claimBitmap = claimedMerkleTreeSlots[_token][_reserveId];
uint256 amount = _proofs.length;
for (uint256 i; i < amount; ++i) {
_claimSlot(_token, _reserveId, _indexes[i], _to, _proofs[i], claimBitmap);
}
_buy(_token, _reserveId, amount, _to);
}
/**
* @inheritdoc IFixedPrice
*/
function buyMintPass(
address _token,
uint256 _reserveId,
uint256 _amount,
address _to,
uint256 _index,
bytes calldata _signature
) external payable whenNotPaused {
address signer = signingAuthorities[_token][_reserveId];
if (signer == address(0)) revert NoSigningAuthority();
LibBitmap.Bitmap storage claimBitmap = claimedMintPasses[_token][_reserveId];
_claimMintPass(_token, _reserveId, _index, _to, _signature, claimBitmap);
_buy(_token, _reserveId, _amount, _to);
}
/**
* @inheritdoc IFixedPrice
*/
function setMintDetails(ReserveInfo calldata _reserve, bytes calldata _mintDetails) external whenNotPaused {
uint256 nextReserve = reserves[msg.sender].length;
if (getLatestUpdate(msg.sender) != block.timestamp) {
_setLatestUpdate(msg.sender, block.timestamp);
_setFirstValidReserve(msg.sender, nextReserve);
}
if (_reserve.allocation == 0) revert InvalidAllocation();
(uint256 price, bytes32 merkleRoot, address signer) = abi.decode(_mintDetails, (uint256, bytes32, address));
if (merkleRoot != bytes32(0)) {
if (signer != address(0)) revert OnlyAuthorityOrAllowlist();
merkleRoots[msg.sender][nextReserve] = merkleRoot;
} else if (signer != address(0)) {
signingAuthorities[msg.sender][nextReserve] = signer;
reserveNonce[msg.sender][nextReserve]++;
}
prices[msg.sender].push(price);
reserves[msg.sender].push(_reserve);
bool openEdition = _reserve.allocation == OPEN_EDITION_SUPPLY ? true : false;
bool timeUnlimited = _reserve.endTime == TIME_UNLIMITED ? true : false;
emit MintDetailsSet(msg.sender, nextReserve, price, _reserve, merkleRoot, signer, openEdition, timeUnlimited);
}
/**
* @inheritdoc IFixedPrice
*/
function withdraw(address _token) external whenNotPaused {
uint256 proceeds = getSaleProceed(_token);
if (proceeds == 0) revert InsufficientFunds();
address saleReceiver = IToken(_token).primaryReceiver();
_setSaleProceeds(_token, 0);
SafeTransferLib.safeTransferETH(saleReceiver, proceeds);
emit Withdrawn(_token, saleReceiver, proceeds);
}
/*//////////////////////////////////////////////////////////////////////////
OWNER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @inheritdoc IFixedPrice
*/
function pause() external onlyOwner {
_pause();
}
/**
* @inheritdoc IFixedPrice
*/
function unpause() external onlyOwner {
_unpause();
}
/*//////////////////////////////////////////////////////////////////////////
READ FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @inheritdoc IFixedPrice
*/
function getFirstValidReserve(address _token) public view returns (uint256) {
return LibMap.get(firstValidReserve, uint256(uint160(_token)));
}
/**
* @inheritdoc IFixedPrice
*/
function getLatestUpdate(address _token) public view returns (uint40) {
return LibMap.get(latestUpdates, uint256(uint160(_token)));
}
/**
* @inheritdoc IFixedPrice
*/
function getSaleProceed(address _token) public view returns (uint128) {
return LibMap.get(saleProceeds, uint256(uint160(_token)));
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @dev Purchases arbitrary amount of tokens at auction price and mints tokens to given account
*/
function _buy(address _token, uint256 _reserveId, uint256 _amount, address _to) internal {
uint256 length = reserves[_token].length;
uint256 validReserve = getFirstValidReserve(_token);
if (length == 0) revert InvalidToken();
if (_reserveId >= length || _reserveId < validReserve) revert InvalidReserve();
ReserveInfo storage reserve = reserves[_token][_reserveId];
if (block.timestamp < reserve.startTime) revert NotStarted();
if (block.timestamp > reserve.endTime) revert Ended();
if (_amount > reserve.allocation) revert TooMany();
if (_to == address(0)) revert AddressZero();
uint256 price = _amount * prices[_token][_reserveId];
if (msg.value != price) revert InvalidPayment();
reserve.allocation -= _amount.safeCastTo128();
_setSaleProceeds(_token, getSaleProceed(_token) + price);
IToken(_token).mint(_to, _amount, price);
emit Purchase(_token, _reserveId, msg.sender, _amount, _to, price);
}
/**
* @dev Sets timestamp of the latest update to token reserves
*/
function _setLatestUpdate(address _token, uint256 _timestamp) internal {
LibMap.set(latestUpdates, uint256(uint160(_token)), uint40(_timestamp));
}
/**
* @dev Sets earliest valid reserve
*/
function _setFirstValidReserve(address _token, uint256 _reserveId) internal {
LibMap.set(firstValidReserve, uint256(uint160(_token)), uint40(_reserveId));
}
/**
* @dev Sets the proceed amount from the token sale
*/
function _setSaleProceeds(address _token, uint256 _amount) internal {
LibMap.set(saleProceeds, uint256(uint160(_token)), uint128(_amount));
}
/**
* @dev Gets the merkle root of a token reserve
*/
function _getMerkleRoot(address _token, uint256 _reserveId) internal view override returns (bytes32) {
return merkleRoots[_token][_reserveId];
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC1271 standard signature validation method for
* contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
*
* _Available since v4.1._
*/
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param hash Hash of the data to be signed
* @param signature Signature byte array associated with _data
*/
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {IMinter} from "src/interfaces/IMinter.sol";
import {ReserveInfo} from "src/lib/Structs.sol";
/**
* @title IFixedPrice
* @author fx(hash)
* @notice Minter for distributing tokens at fixed prices
*/
interface IFixedPrice is IMinter {
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Event emitted when a new fixed price mint has been set
* @param _token Address of the token being minted
* @param _reserveId ID of the reserve
* @param _price Amount of fixed price mint
* @param _merkleRoot The merkle root allowlisted buyers
* @param _mintPassSigner The signing account for mint passes
* @param _reserveInfo Reserve information for the mint
* @param _openEdition Status of an open edition mint
* @param _timeUnlimited Status of a mint with unlimited time
*/
event MintDetailsSet(
address indexed _token,
uint256 indexed _reserveId,
uint256 _price,
ReserveInfo _reserveInfo,
bytes32 _merkleRoot,
address _mintPassSigner,
bool _openEdition,
bool _timeUnlimited
);
/**
* @notice Event emitted when a purchase is made
* @param _token Address of the token being purchased
* @param _reserveId ID of the mint
* @param _buyer Address purchasing the tokens
* @param _amount Amount of tokens being purchased
* @param _to Address to which the tokens are being transferred
* @param _price Price of the purchase
*/
event Purchase(
address indexed _token,
uint256 indexed _reserveId,
address indexed _buyer,
uint256 _amount,
address _to,
uint256 _price
);
/**
* @notice Event emitted when sale proceeds are withdrawn
* @param _token Address of the token
* @param _creator Address of the project creator
* @param _proceeds Amount of proceeds being withdrawn
*/
event Withdrawn(address indexed _token, address indexed _creator, uint256 _proceeds);
/*//////////////////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Error thrown when receiver is zero address
*/
error AddressZero();
/**
* @notice Error thrown when the sale has already ended
*/
error Ended();
/**
* @notice Error thrown when no funds available to withdraw
*/
error InsufficientFunds();
/**
* @notice Error thrown when the allocation amount is zero
*/
error InvalidAllocation();
/**
* @notice Error thrown when payment does not equal price
*/
error InvalidPayment();
/**
* @notice Error thrown thrown when reserve does not exist
*/
error InvalidReserve();
/**
* @notice Error thrown when reserve start and end times are invalid
*/
error InvalidTimes();
/**
* @notice Error thrown when token address is invalid
*/
error InvalidToken();
/**
* @notice Error thrown when buying through allowlist and no allowlist exists
*/
error NoAllowlist();
/**
* @notice Error thrown when calling buy when either an allowlist or signer exists
*/
error NoPublicMint();
/**
* @notice Error thrown when buy with a mint pass and no signing authority exists
*/
error NoSigningAuthority();
/**
* @notice Error thrown when the auction has not started
*/
error NotStarted();
/**
* @notice Error thrown when setting both an allowlist and mint signer
*/
error OnlyAuthorityOrAllowlist();
/**
* @notice Error thrown when amount purchased exceeds remaining allocation
*/
error TooMany();
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Purchases tokens at a fixed price
* @param _token Address of the token contract
* @param _reserveId ID of the reserve
* @param _amount Amount of tokens being purchased
* @param _to Address receiving the purchased tokens
*/
function buy(address _token, uint256 _reserveId, uint256 _amount, address _to) external payable;
/**
* @notice Purchases tokens through an allowlist at a fixed price
* @param _token Address of the token being purchased
* @param _reserveId ID of the reserve
* @param _to Address receiving the purchased tokens
* @param _indexes Array of indices regarding purchase info inside the BitMap
* @param _proofs Array of merkle proofs used for verifying the purchase
*/
function buyAllowlist(
address _token,
uint256 _reserveId,
address _to,
uint256[] calldata _indexes,
bytes32[][] calldata _proofs
) external payable;
/**
* @notice Purchases tokens through a mint pass at a fixed price
* @param _token Address of the token being purchased
* @param _reserveId ID of the reserve
* @param _amount Number of tokens being purchased
* @param _to Address receiving the purchased tokens
* @param _index Index of puchase info inside the BitMap
* @param _signature Array of merkle proofs used for verifying the purchase
*/
function buyMintPass(
address _token,
uint256 _reserveId,
uint256 _amount,
address _to,
uint256 _index,
bytes calldata _signature
) external payable;
/**
* @notice Returns the earliest valid reserveId that can mint a token
*/
function getFirstValidReserve(address _token) external view returns (uint256);
/**
* @notice Gets the latest timestamp update made to token reserves
* @param _token Address of the token contract
* @return Timestamp of latest update
*/
function getLatestUpdate(address _token) external view returns (uint40);
/**
* @notice Gets the proceed amount from a token sale
* @param _token Address of the token contract
* @return Amount of proceeds
*/
function getSaleProceed(address _token) external view returns (uint128);
/**
* @notice Mapping of token address to reserve ID to merkle roots
*/
function merkleRoots(address, uint256) external view returns (bytes32);
/**
* @notice Pauses all function executions where modifier is applied
*/
function pause() external;
/**
* @notice Mapping of token address to reserve ID to prices
*/
function prices(address, uint256) external view returns (uint256);
/**
* @notice Mapping of token address to reserve ID to reserve information
*/
function reserves(address, uint256) external view returns (uint64, uint64, uint128);
/**
* @inheritdoc IMinter
* @dev Mint Details: token price, merkle root, and signer address
*/
function setMintDetails(ReserveInfo calldata _reserveInfo, bytes calldata _mintDetails) external;
/**
* @notice Unpauses all function executions where modifier is applied
*/
function unpause() external;
/**
* @notice Withdraws the sale proceeds to the sale receiver
* @param _token Address of the token withdrawing proceeds from
*/
function withdraw(address _token) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {ReserveInfo} from "src/lib/Structs.sol";
/**
* @title IMinter
* @author fx(hash)
* @notice Interface for FxGenArt721 tokens to interact with minters
*/
interface IMinter {
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Sets the mint details for token reserves
* @param _reserveInfo Reserve information for the token
* @param _mintDetails Details of the mint pertaining to the minter
*/
function setMintDetails(ReserveInfo calldata _reserveInfo, bytes calldata _mintDetails) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/**
* @title IToken
* @author fx(hash)
* @notice Interface for minters to interact with tokens
*/
interface IToken {
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Mints arbitrary number of tokens
* @dev Only callable by registered minter contracts
* @param _to Address receiving tokens
* @param _amount Number of tokens being minted
* @param _payment Total payment amount of the transaction
*/
function mint(address _to, uint256 _amount, uint256 _payment) external;
/**
* @notice Returns address of primary receiver for token sales
*/
function primaryReceiver() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for bit twiddling and boolean operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
/// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
library LibBit {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BIT TWIDDLING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Find last set.
/// Returns the index of the most significant bit of `x`,
/// counting from the least significant bit position.
/// If `x` is zero, returns 256.
/// Equivalent to `log2(x)`, but without reverting for the zero case.
function fls(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(8, iszero(x))
r := or(r, shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
// For the remaining 32 bits, use a De Bruijn lookup.
x := shr(r, x)
x := or(x, shr(1, x))
x := or(x, shr(2, x))
x := or(x, shr(4, x))
x := or(x, shr(8, x))
x := or(x, shr(16, x))
// forgefmt: disable-next-item
r := or(r, byte(shr(251, mul(x, shl(224, 0x07c4acdd))),
0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f))
}
}
/// @dev Count leading zeros.
/// Returns the number of zeros preceding the most significant one bit.
/// If `x` is zero, returns 256.
function clz(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
let t := add(iszero(x), 255)
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
// For the remaining 32 bits, use a De Bruijn lookup.
x := shr(r, x)
x := or(x, shr(1, x))
x := or(x, shr(2, x))
x := or(x, shr(4, x))
x := or(x, shr(8, x))
x := or(x, shr(16, x))
// forgefmt: disable-next-item
r := sub(t, or(r, byte(shr(251, mul(x, shl(224, 0x07c4acdd))),
0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f)))
}
}
/// @dev Find first set.
/// Returns the index of the least significant bit of `x`,
/// counting from the least significant bit position.
/// If `x` is zero, returns 256.
/// Equivalent to `ctz` (count trailing zeros), which gives
/// the number of zeros following the least significant one bit.
function ffs(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(8, iszero(x))
// Isolate the least significant bit.
x := and(x, add(not(x), 1))
r := or(r, shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
// For the remaining 32 bits, use a De Bruijn lookup.
// forgefmt: disable-next-item
r := or(r, byte(shr(251, mul(shr(r, x), shl(224, 0x077cb531))),
0x00011c021d0e18031e16140f191104081f1b0d17151310071a0c12060b050a09))
}
}
/// @dev Returns the number of set bits in `x`.
function popCount(uint256 x) internal pure returns (uint256 c) {
/// @solidity memory-safe-assembly
assembly {
let max := not(0)
let isMax := eq(x, max)
x := sub(x, and(shr(1, x), div(max, 3)))
x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
x := and(add(x, shr(4, x)), div(max, 17))
c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
}
}
/// @dev Returns whether `x` is a power of 2.
function isPo2(uint256 x) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `x && !(x & (x - 1))`.
result := iszero(add(and(x, sub(x, 1)), iszero(x)))
}
}
/// @dev Returns `x` reversed at the bit level.
function reverseBits(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Computing masks on-the-fly reduces bytecode size by about 500 bytes.
let m := not(0)
r := x
for { let s := 128 } 1 {} {
m := xor(m, shl(s, m))
r := or(and(shr(s, r), m), and(shl(s, r), not(m)))
s := shr(1, s)
if iszero(s) { break }
}
}
}
/// @dev Returns `x` reversed at the byte level.
function reverseBytes(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Computing masks on-the-fly reduces bytecode size by about 200 bytes.
let m := not(0)
r := x
for { let s := 128 } 1 {} {
m := xor(m, shl(s, m))
r := or(and(shr(s, r), m), and(shl(s, r), not(m)))
s := shr(1, s)
if eq(s, 4) { break }
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BOOLEAN OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `x & y`.
function and(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := and(x, y)
}
}
/// @dev Returns `x | y`.
function or(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, y)
}
}
/// @dev Returns a non-zero number if `b` is true, else 0.
/// If `b` is from plain Solidity, the non-zero number will be 1.
function toUint(bool b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := b
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {LibBit} from "./LibBit.sol";
/// @notice Library for storage of packed unsigned booleans.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solidity-Bits (https://github.com/estarriolvetch/solidity-bits/blob/main/contracts/BitMaps.sol)
library LibBitmap {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when a bitmap scan does not find a result.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev A bitmap in storage.
struct Bitmap {
mapping(uint256 => uint256) map;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the boolean value of the bit at `index` in `bitmap`.
function get(Bitmap storage bitmap, uint256 index) internal view returns (bool isSet) {
// It is better to set `isSet` to either 0 or 1, than zero vs non-zero.
// Both cost the same amount of gas, but the former allows the returned value
// to be reused without cleaning the upper bits.
uint256 b = (bitmap.map[index >> 8] >> (index & 0xff)) & 1;
/// @solidity memory-safe-assembly
assembly {
isSet := b
}
}
/// @dev Updates the bit at `index` in `bitmap` to true.
function set(Bitmap storage bitmap, uint256 index) internal {
bitmap.map[index >> 8] |= (1 << (index & 0xff));
}
/// @dev Updates the bit at `index` in `bitmap` to false.
function unset(Bitmap storage bitmap, uint256 index) internal {
bitmap.map[index >> 8] &= ~(1 << (index & 0xff));
}
/// @dev Flips the bit at `index` in `bitmap`.
/// Returns the boolean result of the flipped bit.
function toggle(Bitmap storage bitmap, uint256 index) internal returns (bool newIsSet) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, shr(8, index))
mstore(0x20, bitmap.slot)
let storageSlot := keccak256(0x00, 0x40)
let shift := and(index, 0xff)
let storageValue := sload(storageSlot)
let mask := shl(shift, 1)
storageValue := xor(storageValue, mask)
// It makes sense to return the `newIsSet`,
// as it allow us to skip an additional warm `sload`,
// and it costs minimal gas (about 15),
// which may be optimized away if the returned value is unused.
newIsSet := iszero(iszero(and(storageValue, mask)))
sstore(storageSlot, storageValue)
}
}
/// @dev Updates the bit at `index` in `bitmap` to `shouldSet`.
function setTo(Bitmap storage bitmap, uint256 index, bool shouldSet) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, index))
let storageSlot := keccak256(0x00, 0x40)
let storageValue := sload(storageSlot)
let shift := and(index, 0xff)
sstore(
storageSlot,
// Unsets the bit at `shift` via `and`, then sets its new value via `or`.
or(and(storageValue, not(shl(shift, 1))), shl(shift, iszero(iszero(shouldSet))))
)
}
}
/// @dev Consecutively sets `amount` of bits starting from the bit at `start`.
function setBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let max := not(0)
let shift := and(start, 0xff)
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, start))
if iszero(lt(add(shift, amount), 257)) {
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, or(sload(storageSlot), shl(shift, max)))
let bucket := add(mload(0x00), 1)
let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
amount := and(add(amount, shift), 0xff)
shift := 0
for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
mstore(0x00, bucket)
sstore(keccak256(0x00, 0x40), max)
}
mstore(0x00, bucket)
}
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, or(sload(storageSlot), shl(shift, shr(sub(256, amount), max))))
}
}
/// @dev Consecutively unsets `amount` of bits starting from the bit at `start`.
function unsetBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let shift := and(start, 0xff)
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, start))
if iszero(lt(add(shift, amount), 257)) {
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, and(sload(storageSlot), not(shl(shift, not(0)))))
let bucket := add(mload(0x00), 1)
let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
amount := and(add(amount, shift), 0xff)
shift := 0
for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
mstore(0x00, bucket)
sstore(keccak256(0x00, 0x40), 0)
}
mstore(0x00, bucket)
}
let storageSlot := keccak256(0x00, 0x40)
sstore(
storageSlot, and(sload(storageSlot), not(shl(shift, shr(sub(256, amount), not(0)))))
)
}
}
/// @dev Returns number of set bits within a range by
/// scanning `amount` of bits starting from the bit at `start`.
function popCount(Bitmap storage bitmap, uint256 start, uint256 amount)
internal
view
returns (uint256 count)
{
unchecked {
uint256 bucket = start >> 8;
uint256 shift = start & 0xff;
if (!(amount + shift < 257)) {
count = LibBit.popCount(bitmap.map[bucket] >> shift);
uint256 bucketEnd = bucket + ((amount + shift) >> 8);
amount = (amount + shift) & 0xff;
shift = 0;
for (++bucket; bucket != bucketEnd; ++bucket) {
count += LibBit.popCount(bitmap.map[bucket]);
}
}
count += LibBit.popCount((bitmap.map[bucket] >> shift) << (256 - amount));
}
}
/// @dev Returns the index of the most significant set bit before the bit at `before`.
/// If no set bit is found, returns `NOT_FOUND`.
function findLastSet(Bitmap storage bitmap, uint256 before)
internal
view
returns (uint256 setBitIndex)
{
uint256 bucket;
uint256 bucketBits;
/// @solidity memory-safe-assembly
assembly {
setBitIndex := not(0)
bucket := shr(8, before)
mstore(0x00, bucket)
mstore(0x20, bitmap.slot)
let offset := and(0xff, not(before)) // `256 - (255 & before) - 1`.
bucketBits := shr(offset, shl(offset, sload(keccak256(0x00, 0x40))))
if iszero(bucketBits) {
for {} bucket {} {
bucket := add(bucket, setBitIndex) // `sub(bucket, 1)`.
mstore(0x00, bucket)
bucketBits := sload(keccak256(0x00, 0x40))
if bucketBits { break }
}
}
}
if (bucketBits != 0) {
setBitIndex = (bucket << 8) | LibBit.fls(bucketBits);
/// @solidity memory-safe-assembly
assembly {
setBitIndex := or(setBitIndex, sub(0, gt(setBitIndex, before)))
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for storage of packed unsigned integers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibMap.sol)
library LibMap {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev A uint8 map in storage.
struct Uint8Map {
mapping(uint256 => uint256) map;
}
/// @dev A uint16 map in storage.
struct Uint16Map {
mapping(uint256 => uint256) map;
}
/// @dev A uint32 map in storage.
struct Uint32Map {
mapping(uint256 => uint256) map;
}
/// @dev A uint40 map in storage. Useful for storing timestamps up to 34841 A.D.
struct Uint40Map {
mapping(uint256 => uint256) map;
}
/// @dev A uint64 map in storage.
struct Uint64Map {
mapping(uint256 => uint256) map;
}
/// @dev A uint128 map in storage.
struct Uint128Map {
mapping(uint256 => uint256) map;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GETTERS / SETTERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the uint8 value at `index` in `map`.
function get(Uint8Map storage map, uint256 index) internal view returns (uint8 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(5, index))
result := byte(and(31, not(index)), sload(keccak256(0x00, 0x40)))
}
}
/// @dev Updates the uint8 value at `index` in `map`.
function set(Uint8Map storage map, uint256 index, uint8 value) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(5, index))
let s := keccak256(0x00, 0x40) // Storage slot.
mstore(0x00, sload(s))
mstore8(and(31, not(index)), value)
sstore(s, mload(0x00))
}
}
/// @dev Returns the uint16 value at `index` in `map`.
function get(Uint16Map storage map, uint256 index) internal view returns (uint16 result) {
result = uint16(map.map[index >> 4] >> ((index & 15) << 4));
}
/// @dev Updates the uint16 value at `index` in `map`.
function set(Uint16Map storage map, uint256 index, uint16 value) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(4, index))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := shl(4, and(index, 15)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
/// @dev Returns the uint32 value at `index` in `map`.
function get(Uint32Map storage map, uint256 index) internal view returns (uint32 result) {
result = uint32(map.map[index >> 3] >> ((index & 7) << 5));
}
/// @dev Updates the uint32 value at `index` in `map`.
function set(Uint32Map storage map, uint256 index, uint32 value) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(3, index))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := shl(5, and(index, 7)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffffffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
/// @dev Returns the uint40 value at `index` in `map`.
function get(Uint40Map storage map, uint256 index) internal view returns (uint40 result) {
unchecked {
result = uint40(map.map[index / 6] >> ((index % 6) * 40));
}
}
/// @dev Updates the uint40 value at `index` in `map`.
function set(Uint40Map storage map, uint256 index, uint40 value) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, div(index, 6))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := mul(40, mod(index, 6)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffffffffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
/// @dev Returns the uint64 value at `index` in `map`.
function get(Uint64Map storage map, uint256 index) internal view returns (uint64 result) {
result = uint64(map.map[index >> 2] >> ((index & 3) << 6));
}
/// @dev Updates the uint64 value at `index` in `map`.
function set(Uint64Map storage map, uint256 index, uint64 value) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(2, index))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := shl(6, and(index, 3)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffffffffffffffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
/// @dev Returns the uint128 value at `index` in `map`.
function get(Uint128Map storage map, uint256 index) internal view returns (uint128 result) {
result = uint128(map.map[index >> 1] >> ((index & 1) << 7));
}
/// @dev Updates the uint128 value at `index` in `map`.
function set(Uint128Map storage map, uint256 index, uint128 value) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(1, index))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := shl(7, and(index, 1)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffffffffffffffffffffffffffffffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
/// @dev Returns the value at `index` in `map`.
function get(mapping(uint256 => uint256) storage map, uint256 index, uint256 bitWidth)
internal
view
returns (uint256 result)
{
unchecked {
uint256 d = _rawDiv(256, bitWidth); // Bucket size.
uint256 m = (1 << bitWidth) - 1; // Value mask.
result = (map[_rawDiv(index, d)] >> (_rawMod(index, d) * bitWidth)) & m;
}
}
/// @dev Updates the value at `index` in `map`.
function set(
mapping(uint256 => uint256) storage map,
uint256 index,
uint256 value,
uint256 bitWidth
) internal {
unchecked {
uint256 d = _rawDiv(256, bitWidth); // Bucket size.
uint256 m = (1 << bitWidth) - 1; // Value mask.
uint256 o = _rawMod(index, d) * bitWidth; // Storage slot offset (bits).
map[_rawDiv(index, d)] ^= (((map[_rawDiv(index, d)] >> o) ^ value) & m) << o;
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BINARY SEARCH */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// The following functions search in the range of [`start`, `end`)
// (i.e. `start <= index < end`).
// The range must be sorted in ascending order.
// `index` precedence: equal to > nearest before > nearest after.
// An invalid search range will simply return `(found = false, index = start)`.
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(Uint8Map storage map, uint8 needle, uint256 start, uint256 end)
internal
view
returns (bool found, uint256 index)
{
return searchSorted(map.map, needle, start, end, 8);
}
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(Uint16Map storage map, uint16 needle, uint256 start, uint256 end)
internal
view
returns (bool found, uint256 index)
{
return searchSorted(map.map, needle, start, end, 16);
}
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(Uint32Map storage map, uint32 needle, uint256 start, uint256 end)
internal
view
returns (bool found, uint256 index)
{
return searchSorted(map.map, needle, start, end, 32);
}
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(Uint40Map storage map, uint40 needle, uint256 start, uint256 end)
internal
view
returns (bool found, uint256 index)
{
return searchSorted(map.map, needle, start, end, 40);
}
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(Uint64Map storage map, uint64 needle, uint256 start, uint256 end)
internal
view
returns (bool found, uint256 index)
{
return searchSorted(map.map, needle, start, end, 64);
}
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(Uint128Map storage map, uint128 needle, uint256 start, uint256 end)
internal
view
returns (bool found, uint256 index)
{
return searchSorted(map.map, needle, start, end, 128);
}
/// @dev Returns whether `map` contains `needle`, and the index of `needle`.
function searchSorted(
mapping(uint256 => uint256) storage map,
uint256 needle,
uint256 start,
uint256 end,
uint256 bitWidth
) internal view returns (bool found, uint256 index) {
unchecked {
if (start >= end) end = start;
uint256 t;
uint256 o = start - 1; // Offset to derive the actual index.
uint256 l = 1; // Low.
uint256 d = _rawDiv(256, bitWidth); // Bucket size.
uint256 m = (1 << bitWidth) - 1; // Value mask.
uint256 h = end - start; // High.
while (true) {
index = (l & h) + ((l ^ h) >> 1);
if (l > h) break;
t = (map[_rawDiv(index + o, d)] >> (_rawMod(index + o, d) * bitWidth)) & m;
if (t == needle) break;
if (needle <= t) h = index - 1;
else l = index + 1;
}
/// @solidity memory-safe-assembly
assembly {
m := or(iszero(index), iszero(bitWidth))
found := iszero(or(xor(t, needle), m))
index := add(o, xor(index, mul(xor(index, 1), m)))
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function _rawDiv(uint256 x, uint256 y) private pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function _rawMod(uint256 x, uint256 y) private pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mod(x, y)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
import {EIP712} from "openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {LibBitmap} from "solady/src/utils/LibBitmap.sol";
import {SignatureChecker} from "openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {CLAIM_TYPEHASH} from "src/utils/Constants.sol";
/**
* @title MintPass
* @author fx(hash)
* @notice Extension for claiming tokens through mint passes
*/
abstract contract MintPass is EIP712 {
using SignatureChecker for address;
/*//////////////////////////////////////////////////////////////////////////
STORAGE
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Mapping of token address to reserve ID to reserve nonce
*/
mapping(address => mapping(uint256 => uint256)) public reserveNonce;
/**
* @notice Mapping of token address to reserve ID to address of mint pass authority
*/
mapping(address => mapping(uint256 => address)) public signingAuthorities;
/*//////////////////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Event emitted when mint pass is claimed
* @param _token Address of the token
* @param _reserveId ID of the reserve
* @param _claimer Address of the mint pass claimer
* @param _index Index of purchase info inside the BitMap
*/
event PassClaimed(address indexed _token, uint256 indexed _reserveId, address indexed _claimer, uint256 _index);
/*//////////////////////////////////////////////////////////////////////////
ERRORS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Error thrown when the signature of mint pass claimer is invalid
*/
error InvalidSignature();
/**
* @notice Error thrown when a mint pass has already been claimed
*/
error PassAlreadyClaimed();
/*//////////////////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////////////////*/
/**
* @dev Initializes EIP-712
*/
constructor() EIP712("MINT_PASS", "1") {}
/*//////////////////////////////////////////////////////////////////////////
PUBLIC FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Generates the typed data hash for a mint pass claim
* @param _token address of token for the reserve
* @param _reserveId Id of the reserve to mint the token from
* @param _index Index of the mint pass
* @param _claimer Address of mint pass claimer
* @return Digest of typed data hash claimer
*/
function generateTypedDataHash(
address _token,
uint256 _reserveId,
uint256 _reserveNonce,
uint256 _index,
address _claimer
) public view returns (bytes32) {
bytes32 structHash = keccak256(abi.encode(CLAIM_TYPEHASH, _token, _reserveNonce, _reserveId, _index, _claimer));
return _hashTypedDataV4(structHash);
}
/*//////////////////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/**
* @dev Validates a mint pass claim
* @param _token Address of the token contract
* @param _reserveId ID of the reserve
* @param _index Index of the mint pass
* @param _claimer Account associated with the mint pass
* @param _signature Signature of the mint pass claimer
* @param _bitmap Bitmap used for checking if index is already claimed
*/
function _claimMintPass(
address _token,
uint256 _reserveId,
uint256 _index,
address _claimer,
bytes calldata _signature,
LibBitmap.Bitmap storage _bitmap
) internal {
if (LibBitmap.get(_bitmap, _index)) revert PassAlreadyClaimed();
uint256 nonce = reserveNonce[_token][_reserveId];
bytes32 hash = generateTypedDataHash(_token, _reserveId, nonce, _index, _claimer);
address signer = signingAuthorities[_token][_reserveId];
if (!signer.isValidSignatureNow(hash, _signature)) revert InvalidSignature();
LibBitmap.set(_bitmap, _index);
emit PassClaimed(_token, _reserveId, _claimer, _index);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The caller is not authorized to call the function.
error Unauthorized();
/// @dev The `newOwner` cannot be the zero address.
error NewOwnerIsZeroAddress();
/// @dev The `pendingOwner` does not have a valid handover request.
error NoHandoverRequest();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership is transferred from `oldOwner` to `newOwner`.
/// This event is intentionally kept the same as OpenZeppelin's Ownable to be
/// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
/// despite it not being as lightweight as a single argument event.
event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
/// @dev An ownership handover to `pendingOwner` has been requested.
event OwnershipHandoverRequested(address indexed pendingOwner);
/// @dev The ownership handover to `pendingOwner` has been canceled.
event OwnershipHandoverCanceled(address indexed pendingOwner);
/// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
/// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
/// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The owner slot is given by: `not(_OWNER_SLOT_NOT)`.
/// It is intentionally chosen to be a high value
/// to avoid collision with lower slots.
/// The choice of manual storage layout is to enable compatibility
/// with both regular and upgradeable contracts.
uint256 private constant _OWNER_SLOT_NOT = 0x8b78c6d8;
/// The ownership handover slot of `newOwner` is given by:
/// ```
/// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
/// let handoverSlot := keccak256(0x00, 0x20)
/// ```
/// It stores the expiry timestamp of the two-step ownership handover.
uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Initializes the owner directly without authorization guard.
/// This function must be called upon initialization,
/// regardless of whether the contract is upgradeable or not.
/// This is to enable generalization to both regular and upgradeable contracts,
/// and to save gas in case the initial owner is not the caller.
/// For performance reasons, this function will not check if there
/// is an existing owner.
function _initializeOwner(address newOwner) internal virtual {
/// @solidity memory-safe-assembly
assembly {
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(not(_OWNER_SLOT_NOT), newOwner)
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
}
/// @dev Sets the owner directly without authorization guard.
function _setOwner(address newOwner) internal virtual {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := not(_OWNER_SLOT_NOT)
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, newOwner)
}
}
/// @dev Throws if the sender is not the owner.
function _checkOwner() internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// If the caller is not the stored owner, revert.
if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns how long a two-step ownership handover is valid for in seconds.
/// Override to return a different value if needed.
/// Made internal to conserve bytecode. Wrap it in a public function if needed.
function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
return 48 * 3600;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC UPDATE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Allows the owner to transfer the ownership to `newOwner`.
function transferOwnership(address newOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
if iszero(shl(96, newOwner)) {
mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
revert(0x1c, 0x04)
}
}
_setOwner(newOwner);
}
/// @dev Allows the owner to renounce their ownership.
function renounceOwnership() public payable virtual onlyOwner {
_setOwner(address(0));
}
/// @dev Request a two-step ownership handover to the caller.
/// The request will automatically expire in 48 hours (172800 seconds) by default.
function requestOwnershipHandover() public payable virtual {
unchecked {
uint256 expires = block.timestamp + _ownershipHandoverValidFor();
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to `expires`.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), expires)
// Emit the {OwnershipHandoverRequested} event.
log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
}
}
}
/// @dev Cancels the two-step ownership handover to the caller, if any.
function cancelOwnershipHandover() public payable virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), 0)
// Emit the {OwnershipHandoverCanceled} event.
log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
}
}
/// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
/// Reverts if there is no existing ownership handover requested by `pendingOwner`.
function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
let handoverSlot := keccak256(0x0c, 0x20)
// If the handover does not exist, or has expired.
if gt(timestamp(), sload(handoverSlot)) {
mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
revert(0x1c, 0x04)
}
// Set the handover slot to 0.
sstore(handoverSlot, 0)
}
_setOwner(pendingOwner);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC READ FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of the contract.
function owner() public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := sload(not(_OWNER_SLOT_NOT))
}
}
/// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
function ownershipHandoverExpiresAt(address pendingOwner)
public
view
virtual
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
// Compute the handover slot.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
// Load the handover slot.
result := sload(keccak256(0x0c, 0x20))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Marks a function as only callable by the owner.
modifier onlyOwner() virtual {
_checkOwner();
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Safe unsigned integer casting library that reverts on overflow.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
library SafeCastLib {
function safeCastTo248(uint256 x) internal pure returns (uint248 y) {
require(x < 1 << 248);
y = uint248(x);
}
function safeCastTo240(uint256 x) internal pure returns (uint240 y) {
require(x < 1 << 240);
y = uint240(x);
}
function safeCastTo232(uint256 x) internal pure returns (uint232 y) {
require(x < 1 << 232);
y = uint232(x);
}
function safeCastTo224(uint256 x) internal pure returns (uint224 y) {
require(x < 1 << 224);
y = uint224(x);
}
function safeCastTo216(uint256 x) internal pure returns (uint216 y) {
require(x < 1 << 216);
y = uint216(x);
}
function safeCastTo208(uint256 x) internal pure returns (uint208 y) {
require(x < 1 << 208);
y = uint208(x);
}
function safeCastTo200(uint256 x) internal pure returns (uint200 y) {
require(x < 1 << 200);
y = uint200(x);
}
function safeCastTo192(uint256 x) internal pure returns (uint192 y) {
require(x < 1 << 192);
y = uint192(x);
}
function safeCastTo184(uint256 x) internal pure returns (uint184 y) {
require(x < 1 << 184);
y = uint184(x);
}
function safeCastTo176(uint256 x) internal pure returns (uint176 y) {
require(x < 1 << 176);
y = uint176(x);
}
function safeCastTo168(uint256 x) internal pure returns (uint168 y) {
require(x < 1 << 168);
y = uint168(x);
}
function safeCastTo160(uint256 x) internal pure returns (uint160 y) {
require(x < 1 << 160);
y = uint160(x);
}
function safeCastTo152(uint256 x) internal pure returns (uint152 y) {
require(x < 1 << 152);
y = uint152(x);
}
function safeCastTo144(uint256 x) internal pure returns (uint144 y) {
require(x < 1 << 144);
y = uint144(x);
}
function safeCastTo136(uint256 x) internal pure returns (uint136 y) {
require(x < 1 << 136);
y = uint136(x);
}
function safeCastTo128(uint256 x) internal pure returns (uint128 y) {
require(x < 1 << 128);
y = uint128(x);
}
function safeCastTo120(uint256 x) internal pure returns (uint120 y) {
require(x < 1 << 120);
y = uint120(x);
}
function safeCastTo112(uint256 x) internal pure returns (uint112 y) {
require(x < 1 << 112);
y = uint112(x);
}
function safeCastTo104(uint256 x) internal pure returns (uint104 y) {
require(x < 1 << 104);
y = uint104(x);
}
function safeCastTo96(uint256 x) internal pure returns (uint96 y) {
require(x < 1 << 96);
y = uint96(x);
}
function safeCastTo88(uint256 x) internal pure returns (uint88 y) {
require(x < 1 << 88);
y = uint88(x);
}
function safeCastTo80(uint256 x) internal pure returns (uint80 y) {
require(x < 1 << 80);
y = uint80(x);
}
function safeCastTo72(uint256 x) internal pure returns (uint72 y) {
require(x < 1 << 72);
y = uint72(x);
}
function safeCastTo64(uint256 x) internal pure returns (uint64 y) {
require(x < 1 << 64);
y = uint64(x);
}
function safeCastTo56(uint256 x) internal pure returns (uint56 y) {
require(x < 1 << 56);
y = uint56(x);
}
function safeCastTo48(uint256 x) internal pure returns (uint48 y) {
require(x < 1 << 48);
y = uint48(x);
}
function safeCastTo40(uint256 x) internal pure returns (uint40 y) {
require(x < 1 << 40);
y = uint40(x);
}
function safeCastTo32(uint256 x) internal pure returns (uint32 y) {
require(x < 1 << 32);
y = uint32(x);
}
function safeCastTo24(uint256 x) internal pure returns (uint24 y) {
require(x < 1 << 24);
y = uint24(x);
}
function safeCastTo16(uint256 x) internal pure returns (uint16 y) {
require(x < 1 << 16);
y = uint16(x);
}
function safeCastTo8(uint256 x) internal pure returns (uint8 y) {
require(x < 1 << 8);
y = uint8(x);
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
import {ERC20} from "../tokens/ERC20.sol";
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
/// @solidity memory-safe-assembly
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
import "../../interfaces/IERC1271.sol";
/**
* @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
* signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like
* Argent and Gnosis Safe.
*
* _Available since v4.1._
*/
library SignatureChecker {
/**
* @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
* signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
(address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature);
return
(error == ECDSA.RecoverError.NoError && recovered == signer) ||
isValidERC1271SignatureNow(signer, hash, signature);
}
/**
* @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
* against the signer smart contract using ERC1271.
*
* NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
* change through time. It could return true at block N and false at block N+1 (or the opposite).
*/
function isValidERC1271SignatureNow(
address signer,
bytes32 hash,
bytes memory signature
) internal view returns (bool) {
(bool success, bytes memory result) = signer.staticcall(
abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature)
);
return (success &&
result.length >= 32 &&
abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;
/*//////////////////////////////////////////////////////////////////////////
STRUCTS
//////////////////////////////////////////////////////////////////////////*/
/**
* @notice Struct of dutch auction information
* - `refunded` Flag indicating if refunds are enabled
* - `stepLength` Duration (in seconds) of each auction step
* - `prices` Array of prices for each step of the auction
*/
struct AuctionInfo {
bool refunded;
uint248 stepLength;
uint256[] prices;
}
/**
* @notice Struct of system config information
* - `feeReceiver` Address receiving platform fees
* - `primaryFeeAllocation` Amount of basis points allocated to calculate platform fees on primary sale proceeds
* - `secondaryFeeAllocation` Amount of basis points allocated to calculate platform fees on royalty payments
* - `lockTime` Locked time duration added to mint start time for unverified creators
* - `referrerShare` Share amount distributed to accounts referring tokens
* - `defaultMetadataURI` Default base URI of token metadata
* - `externalURI` External URI for displaying tokens
*/
struct ConfigInfo {
address feeReceiver;
uint32 primaryFeeAllocation;
uint32 secondaryFeeAllocation;
uint32 lockTime;
uint64 referrerShare;
string defaultMetadataURI;
string externalURI;
}
/**
* @notice Struct of generative art information
* - `minter` Address of initial token owner
* - `seed` Hash of randomly generated seed
* - `fxParams` Random sequence of fixed-length bytes used as token input
*/
struct GenArtInfo {
address minter;
bytes32 seed;
bytes fxParams;
}
/**
* @notice Struct of initialization information used on project creation
* - `name` Name of project
* - `symbol` Symbol of project
* - `primaryReceiver` Address of splitter contract receiving primary sales
* - `randomizer` Address of Randomizer contract
* - `renderer` Address of Renderer contract
* - `tagIds` Array of tag IDs describing the project
* - 'onchainData' Onchain data to be stored using SSTORE2 and available to renderers
*/
struct InitInfo {
string name;
string symbol;
address[] primaryReceivers;
uint32[] allocations;
address randomizer;
address renderer;
uint256[] tagIds;
bytes onchainData;
}
/**
* @notice Struct of issuer information
* - `primaryReceiver` Address of splitter contract receiving primary sales
* - `projectInfo` Project information
* - `activeMinters` Array of authorized minter contracts used for enumeration
* - `minters` Mapping of minter contract to authorization status
*/
struct IssuerInfo {
address primaryReceiver;
ProjectInfo projectInfo;
address[] activeMinters;
mapping(address => uint8) minters;
}
/**
* @notice Struct of metadata information
* - `baseURI` Decoded URI of content identifier
* - `onchainPointer` Address of bytes-encoded data rendered onchain
*/
struct MetadataInfo {
bytes baseURI;
address onchainPointer;
}
/**
* @notice Struct of mint information
* - `minter` Address of the minter contract
* - `reserveInfo` Reserve information
* - `params` Optional bytes data decoded inside minter
*/
struct MintInfo {
address minter;
ReserveInfo reserveInfo;
bytes params;
}
/**
* @notice Struct of minter information
* - `totalMints` Total number of mints executed by the minter
* - `totalPaid` Total amount paid by the minter
*/
struct MinterInfo {
uint128 totalMints;
uint128 totalPaid;
}
/**
* @notice Struct of project information
* - `mintEnabled` Flag inidicating if minting is enabled
* - `burnEnabled` Flag inidicating if burning is enabled
* - `maxSupply` Maximum supply of tokens
* - `inputSize` Maximum input size of fxParams bytes data
* - `earliestStartTime` Earliest possible start time for registering minters
*/
struct ProjectInfo {
bool mintEnabled;
bool burnEnabled;
uint120 maxSupply;
uint88 inputSize;
uint32 earliestStartTime;
}
/**
* @notice Struct of refund information
* - `lastPrice` Price of last sale before selling out
* - `minterInfo` Mapping of minter address to struct of minter information
*/
struct RefundInfo {
uint256 lastPrice;
mapping(address minter => MinterInfo) minterInfo;
}
/**
* @notice Struct of reserve information
* - `startTime` Start timestamp of minter
* - `endTime` End timestamp of minter
* - `allocation` Allocation amount for minter
*/
struct ReserveInfo {
uint64 startTime;
uint64 endTime;
uint128 allocation;
}
/**
* @notice Struct of royalty information
* - `receiver` Address receiving royalties
* - `basisPoints` Points used to calculate the royalty payment (0.01%)
*/
struct RoyaltyInfo {
address receiver;
uint96 basisPoints;
}
/**
* @notice Struct of tax information
* - `startTime` Timestamp of when harberger taxation begins
* - `foreclosureTime` Timestamp of token foreclosure
* - `currentPrice` Current listing price of token
* - `depositAmount` Total amount of taxes deposited
*/
struct TaxInfo {
uint48 startTime;
uint48 foreclosureTime;
uint80 currentPrice;
uint80 depositAmount;
}
{
"compilationTarget": {
"src/minters/FixedPrice.sol": "FixedPrice"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 2
},
"remappings": [
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
":openzeppelin/=lib/openzeppelin-contracts/",
":scripty.sol/=lib/scripty.sol/",
":solady/=lib/solady/",
":solmate/=lib/solmate/",
":sstore2/=lib/sstore2/"
]
}
[{"inputs":[],"name":"AddressZero","type":"error"},{"inputs":[],"name":"Ended","type":"error"},{"inputs":[],"name":"InsufficientFunds","type":"error"},{"inputs":[],"name":"InvalidAllocation","type":"error"},{"inputs":[],"name":"InvalidPayment","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidReserve","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidTimes","type":"error"},{"inputs":[],"name":"InvalidToken","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoAllowlist","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"NoPublicMint","type":"error"},{"inputs":[],"name":"NoSigningAuthority","type":"error"},{"inputs":[],"name":"NotStarted","type":"error"},{"inputs":[],"name":"OnlyAuthorityOrAllowlist","type":"error"},{"inputs":[],"name":"PassAlreadyClaimed","type":"error"},{"inputs":[],"name":"SlotAlreadyClaimed","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"TooMany","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_price","type":"uint256"},{"components":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"},{"internalType":"uint128","name":"allocation","type":"uint128"}],"indexed":false,"internalType":"struct ReserveInfo","name":"_reserveInfo","type":"tuple"},{"indexed":false,"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"indexed":false,"internalType":"address","name":"_mintPassSigner","type":"address"},{"indexed":false,"internalType":"bool","name":"_openEdition","type":"bool"},{"indexed":false,"internalType":"bool","name":"_timeUnlimited","type":"bool"}],"name":"MintDetailsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":true,"internalType":"address","name":"_claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"_index","type":"uint256"}],"name":"PassClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":true,"internalType":"address","name":"_buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"_to","type":"address"},{"indexed":false,"internalType":"uint256","name":"_price","type":"uint256"}],"name":"Purchase","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_reserveId","type":"uint256"},{"indexed":true,"internalType":"address","name":"_claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"_index","type":"uint256"}],"name":"SlotClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"address","name":"_creator","type":"address"},{"indexed":false,"internalType":"uint256","name":"_proceeds","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_to","type":"address"}],"name":"buy","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256[]","name":"_indexes","type":"uint256[]"},{"internalType":"bytes32[][]","name":"_proofs","type":"bytes32[][]"}],"name":"buyAllowlist","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"buyMintPass","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_reserveId","type":"uint256"},{"internalType":"uint256","name":"_reserveNonce","type":"uint256"},{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"address","name":"_claimer","type":"address"}],"name":"generateTypedDataHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"getFirstValidReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"getLatestUpdate","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"getSaleProceed","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"merkleRoots","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"prices","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"reserveNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"reserves","outputs":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"},{"internalType":"uint128","name":"allocation","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint64","name":"startTime","type":"uint64"},{"internalType":"uint64","name":"endTime","type":"uint64"},{"internalType":"uint128","name":"allocation","type":"uint128"}],"internalType":"struct ReserveInfo","name":"_reserve","type":"tuple"},{"internalType":"bytes","name":"_mintDetails","type":"bytes"}],"name":"setMintDetails","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"signingAuthorities","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]