// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in// construction, since the code is only stored at the end of the// constructor execution.uint256 size;
assembly {
size :=extcodesize(account)
}
return size >0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
require(isContract(target), "Address: static call to non-contract");
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(isContract(target), "Address: delegate call to non-contract");
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
Contract Source Code
File 2 of 15: Context.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
}
Contract Source Code
File 3 of 15: ERC165.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/abstractcontractERC165isIERC165{
/**
* @dev See {IERC165-supportsInterface}.
*/functionsupportsInterface(bytes4 interfaceId) publicviewvirtualoverridereturns (bool) {
return interfaceId ==type(IERC165).interfaceId;
}
}
Contract Source Code
File 4 of 15: ERC721B.sol
Contract Source Code
File 5 of 15: ERC721EnumerableB.sol
Contract Source Code
File 6 of 15: IERC165.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/interfaceIERC165{
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/functionsupportsInterface(bytes4 interfaceId) externalviewreturns (bool);
}
Contract Source Code
File 7 of 15: IERC721.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/interfaceIERC721isIERC165{
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/eventApproval(addressindexed owner, addressindexed approved, uint256indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/eventApprovalForAll(addressindexed owner, addressindexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/functionbalanceOf(address owner) externalviewreturns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/functionownerOf(uint256 tokenId) externalviewreturns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/functionapprove(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/functiongetApproved(uint256 tokenId) externalviewreturns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/functionsetApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/functionisApprovedForAll(address owner, address operator) externalviewreturns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId,
bytescalldata data
) external;
}
Contract Source Code
File 8 of 15: IERC721Enumerable.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/interfaceIERC721EnumerableisIERC721{
/**
* @dev Returns the total amount of tokens stored by the contract.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/functiontokenOfOwnerByIndex(address owner, uint256 index) externalviewreturns (uint256 tokenId);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/functiontokenByIndex(uint256 index) externalviewreturns (uint256);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/interfaceIERC721Receiver{
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
*/functiononERC721Received(address operator,
addressfrom,
uint256 tokenId,
bytescalldata data
) externalreturns (bytes4);
}
Contract Source Code
File 11 of 15: Ownable.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
_setOwner(_msgSender());
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_setOwner(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function_setOwner(address newOwner) private{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Contract Source Code
File 12 of 15: PaymentSplitter.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"../utils/Address.sol";
import"../utils/Context.sol";
import"../utils/math/SafeMath.sol";
/**
* @title PaymentSplitter
* @dev This contract allows to split Ether payments among a group of accounts. The sender does not need to be aware
* that the Ether will be split in this way, since it is handled transparently by the contract.
*
* The split can be in equal parts or in any other arbitrary proportion. The way this is specified is by assigning each
* account to a number of shares. Of all the Ether that this contract receives, each account will then be able to claim
* an amount proportional to the percentage of total shares they were assigned.
*
* `PaymentSplitter` follows a _pull payment_ model. This means that payments are not automatically forwarded to the
* accounts but kept in this contract, and the actual transfer is triggered as a separate step by calling the {release}
* function.
*/contractPaymentSplitterisContext{
eventPayeeAdded(address account, uint256 shares);
eventPaymentReleased(address to, uint256 amount);
eventPaymentReceived(addressfrom, uint256 amount);
uint256private _totalShares;
uint256private _totalReleased;
mapping(address=>uint256) private _shares;
mapping(address=>uint256) private _released;
address[] private _payees;
/**
* @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at
* the matching position in the `shares` array.
*
* All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no
* duplicates in `payees`.
*/constructor(address[] memory payees, uint256[] memory shares_) payable{
require(payees.length== shares_.length, "PaymentSplitter: payees and shares length mismatch");
require(payees.length>0, "PaymentSplitter: no payees");
for (uint256 i =0; i < payees.length; i++) {
_addPayee(payees[i], shares_[i]);
}
}
/**
* @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully
* reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the
* reliability of the events, and not the actual splitting of Ether.
*
* To learn more about this see the Solidity documentation for
* https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback
* functions].
*/receive() externalpayablevirtual{
emit PaymentReceived(_msgSender(), msg.value);
}
/**
* @dev Getter for the total shares held by payees.
*/functiontotalShares() publicviewreturns (uint256) {
return _totalShares;
}
/**
* @dev Getter for the total amount of Ether already released.
*/functiontotalReleased() publicviewreturns (uint256) {
return _totalReleased;
}
/**
* @dev Getter for the amount of shares held by an account.
*/functionshares(address account) publicviewreturns (uint256) {
return _shares[account];
}
/**
* @dev Getter for the amount of Ether already released to a payee.
*/functionreleased(address account) publicviewreturns (uint256) {
return _released[account];
}
/**
* @dev Getter for the address of the payee number `index`.
*/functionpayee(uint256 index) publicviewreturns (address) {
return _payees[index];
}
/**
* @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the
* total shares and their previous withdrawals.
*/functionrelease(addresspayable account) publicvirtual{
require(_shares[account] >0, "PaymentSplitter: account has no shares");
uint256 totalReceived =address(this).balance+ _totalReleased;
uint256 payment = (totalReceived * _shares[account]) / _totalShares - _released[account];
require(payment !=0, "PaymentSplitter: account is not due payment");
_released[account] = _released[account] + payment;
_totalReleased = _totalReleased + payment;
Address.sendValue(account, payment);
emit PaymentReleased(account, payment);
}
/**
* @dev Add a new payee to the contract.
* @param account The address of the payee to add.
* @param shares_ The number of shares owned by the payee.
*/function_addPayee(address account, uint256 shares_) private{
require(account !=address(0), "PaymentSplitter: account is the zero address");
require(shares_ >0, "PaymentSplitter: shares are 0");
require(_shares[account] ==0, "PaymentSplitter: account already has shares");
_payees.push(account);
_shares[account] = shares_;
_totalShares = _totalShares + shares_;
emit PayeeAdded(account, shares_);
}
}
Contract Source Code
File 13 of 15: SafeMath.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;// CAUTION// This version of SafeMath should only be used with Solidity 0.8 or later,// because it relies on the compiler's built in overflow checks./**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is no longer needed starting with Solidity 0.8. The compiler
* now has built in overflow checking.
*/librarySafeMath{
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/functiontryAdd(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/functiontrySub(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/functiontryMul(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the// benefit is lost if 'b' is also tested.// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522if (a ==0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/functiontryDiv(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
unchecked {
if (b ==0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/functiontryMod(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
unchecked {
if (b ==0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/functionadd(uint256 a, uint256 b) internalpurereturns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/functionsub(uint256 a, uint256 b) internalpurereturns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/functionmul(uint256 a, uint256 b) internalpurereturns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/functiondiv(uint256 a, uint256 b) internalpurereturns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functionmod(uint256 a, uint256 b) internalpurereturns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/functionsub(uint256 a,
uint256 b,
stringmemory errorMessage
) internalpurereturns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functiondiv(uint256 a,
uint256 b,
stringmemory errorMessage
) internalpurereturns (uint256) {
unchecked {
require(b >0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functionmod(uint256 a,
uint256 b,
stringmemory errorMessage
) internalpurereturns (uint256) {
unchecked {
require(b >0, errorMessage);
return a % b;
}
}
}
Contract Source Code
File 14 of 15: Strings.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;/**
* @dev String operations.
*/libraryStrings{
bytes16privateconstant _HEX_SYMBOLS ="0123456789abcdef";
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/functiontoString(uint256 value) internalpurereturns (stringmemory) {
// Inspired by OraclizeAPI's implementation - MIT licence// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.solif (value ==0) {
return"0";
}
uint256 temp = value;
uint256 digits;
while (temp !=0) {
digits++;
temp /=10;
}
bytesmemory buffer =newbytes(digits);
while (value !=0) {
digits -=1;
buffer[digits] =bytes1(uint8(48+uint256(value %10)));
value /=10;
}
returnstring(buffer);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/functiontoHexString(uint256 value) internalpurereturns (stringmemory) {
if (value ==0) {
return"0x00";
}
uint256 temp = value;
uint256 length =0;
while (temp !=0) {
length++;
temp >>=8;
}
return toHexString(value, length);
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/functiontoHexString(uint256 value, uint256 length) internalpurereturns (stringmemory) {
bytesmemory buffer =newbytes(2* length +2);
buffer[0] ="0";
buffer[1] ="x";
for (uint256 i =2* length +1; i >1; --i) {
buffer[i] = _HEX_SYMBOLS[value &0xf];
value >>=4;
}
require(value ==0, "Strings: hex length insufficient");
returnstring(buffer);
}
}