// SPDX-License-Identifier: MITpragmasolidity >=0.6.0 <0.8.0;/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (addresspayable) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytesmemory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691returnmsg.data;
}
}
Contract Source Code
File 2 of 8: ERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.7.0;import"./Context.sol";
import"./IERC20.sol";
import"./SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/contractERC20isContext, IERC20{
usingSafeMathforuint256;
mapping(address=>uint256) private _balances;
mapping(address=>mapping(address=>uint256)) private _allowances;
uint256private _totalSupply;
stringprivate _name;
stringprivate _symbol;
uint8private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/constructor(stringmemory name_, stringmemory symbol_) {
_name = name_;
_symbol = symbol_;
_decimals =18;
}
/**
* @dev Returns the name of the token.
*/functionname() publicviewvirtualreturns (stringmemory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/functionsymbol() publicviewvirtualreturns (stringmemory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/functiondecimals() publicviewvirtualreturns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/functiontotalSupply() publicviewvirtualoverridereturns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/functionbalanceOf(address account
) publicviewvirtualoverridereturns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/functiontransfer(address recipient,
uint256 amount
) publicvirtualoverridereturns (bool) {
_transfer(_msgSender(), recipient, amount);
returntrue;
}
/**
* @dev See {IERC20-allowance}.
*/functionallowance(address owner,
address spender
) publicviewvirtualoverridereturns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionapprove(address spender,
uint256 amount
) publicvirtualoverridereturns (bool) {
_approve(_msgSender(), spender, amount);
returntrue;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/functiontransferFrom(address sender,
address recipient,
uint256 amount
) publicvirtualoverridereturns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
_msgSender(),
_allowances[sender][_msgSender()].sub(
amount,
"ERC20: transfer amount exceeds allowance"
)
);
returntrue;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionincreaseAllowance(address spender,
uint256 addedValue
) publicvirtualreturns (bool) {
_approve(
_msgSender(),
spender,
_allowances[_msgSender()][spender].add(addedValue)
);
returntrue;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/functiondecreaseAllowance(address spender,
uint256 subtractedValue
) publicvirtualreturns (bool) {
_approve(
_msgSender(),
spender,
_allowances[_msgSender()][spender].sub(
subtractedValue,
"ERC20: decreased allowance below zero"
)
);
returntrue;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/function_transfer(address sender,
address recipient,
uint256 amount
) internalvirtual{
require(sender !=address(0), "ERC20: transfer from the zero address");
require(recipient !=address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(
amount,
"ERC20: transfer amount exceeds balance"
);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/function_mint(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/function_burn(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(
amount,
"ERC20: burn amount exceeds balance"
);
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/function_approve(address owner,
address spender,
uint256 amount
) internalvirtual{
require(owner !=address(0), "ERC20: approve from the zero address");
require(spender !=address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/function_setupDecimals(uint8 decimals_) internalvirtual{
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_beforeTokenTransfer(addressfrom,
address to,
uint256 amount
) internalvirtual{}
}
Contract Source Code
File 3 of 8: IERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.7.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address recipient, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(address sender, address recipient, uint256 amount) externalreturns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.7.0;/**
* @dev Standard math utilities missing in the Solidity language.
*/libraryMath{
/**
* @dev Returns the largest of two numbers.
*/functionmax(uint256 a, uint256 b) internalpurereturns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/functionmin(uint256 a, uint256 b) internalpurereturns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/functionaverage(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b) / 2 can overflow, so we distributereturn (a /2) + (b /2) + ((a %2+ b %2) /2);
}
}
Contract Source Code
File 6 of 8: Ownable.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.7.0;import"./Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner,
addressindexed newOwner
);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
emit OwnershipTransferred(_owner, address(0));
_owner =address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(
newOwner !=address(0),
"Ownable: new owner is the zero address"
);
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
Contract Source Code
File 7 of 8: SafeMath.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.7.0;/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/librarySafeMath{
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/functiontryAdd(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/functiontrySub(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/functiontryMul(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the// benefit is lost if 'b' is also tested.// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522if (a ==0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/functiontryDiv(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
if (b ==0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/functiontryMod(uint256 a, uint256 b) internalpurereturns (bool, uint256) {
if (b ==0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/functionadd(uint256 a, uint256 b) internalpurereturns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/functionsub(uint256 a, uint256 b) internalpurereturns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/functionmul(uint256 a, uint256 b) internalpurereturns (uint256) {
if (a ==0) return0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functiondiv(uint256 a, uint256 b) internalpurereturns (uint256) {
require(b >0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functionmod(uint256 a, uint256 b) internalpurereturns (uint256) {
require(b >0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/functionsub(uint256 a, uint256 b, stringmemory errorMessage) internalpurereturns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functiondiv(uint256 a, uint256 b, stringmemory errorMessage) internalpurereturns (uint256) {
require(b >0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functionmod(uint256 a, uint256 b, stringmemory errorMessage) internalpurereturns (uint256) {
require(b >0, errorMessage);
return a % b;
}
}
Contract Source Code
File 8 of 8: XDToken.sol
// SPDX-License-Identifier: MITpragmasolidity =0.7.6;import"./Ownable.sol";
import"./Math.sol";
import"./SafeMath.sol";
import"./ERC20.sol";
import"./IXDToken.sol";
contractXDTokenisOwnable, ERC20("XD Token", "XD"), IXDToken{
usingSafeMathforuint256;
uint256publicconstant MAX_EMISSION_RATE =2ether;
uint256publicconstant MAX_SUPPLY_LIMIT =200000000ether;
uint256public elasticMaxSupply; // Once deployed, controlled through governance onlyuint256public emissionRate; // Token emission per seconduint256publicoverride lastEmissionTime;
uint256public masterReserve; // Pending rewards for the masteruint256publicconstant ALLOCATION_PRECISION =100;
// Allocations emitted over time. When < 100%, the rest is minted into the treasury (default 15%)uint256public masterAllocation =85; // = 85%addresspublic masterAddress;
addresspublic treasuryAddress;
addresspublicconstant BURN_ADDRESS =0x000000000000000000000000000000000000dEaD;
constructor(uint256 maxSupply_,
uint256 initialSupply,
uint256 initialEmissionRate,
address treasuryAddress_
) {
require(
initialEmissionRate <= MAX_EMISSION_RATE,
"invalid emission rate"
);
require(maxSupply_ <= MAX_SUPPLY_LIMIT, "invalid initial maxSupply");
require(initialSupply < maxSupply_, "invalid initial supply");
require(treasuryAddress_ !=address(0), "invalid treasury address");
elasticMaxSupply = maxSupply_;
emissionRate = initialEmissionRate;
treasuryAddress = treasuryAddress_;
_mint(msg.sender, initialSupply);
}
/********************************************//****************** EVENTS ******************//********************************************/eventClaimMasterRewards(uint256 amount);
eventAllocationsDistributed(uint256 masterShare, uint256 treasuryShare);
eventInitializeMasterAddress(address masterAddress);
eventInitializeEmissionStart(uint256 startTime);
eventUpdateAllocations(uint256 masterAllocation,
uint256 treasuryAllocation
);
eventUpdateEmissionRate(uint256 previousEmissionRate,
uint256 newEmissionRate
);
eventUpdateMaxSupply(uint256 previousMaxSupply, uint256 newMaxSupply);
eventUpdateTreasuryAddress(address previousTreasuryAddress,
address newTreasuryAddress
);
/***********************************************//****************** MODIFIERS ******************//***********************************************//*
* @dev Throws error if called by any account other than the master
*/modifieronlyMaster() {
require(
msg.sender== masterAddress,
"XDToken: caller is not the master"
);
_;
}
/**************************************************//****************** PUBLIC VIEWS ******************//**************************************************//**
* @dev Returns master emission rate
*/functionmasterEmissionRate() publicviewoverridereturns (uint256) {
return emissionRate.mul(masterAllocation).div(ALLOCATION_PRECISION);
}
/**
* @dev Returns treasury allocation
*/functiontreasuryAllocation() publicviewreturns (uint256) {
returnuint256(ALLOCATION_PRECISION).sub(masterAllocation);
}
/*****************************************************************//****************** EXTERNAL PUBLIC FUNCTIONS ******************//*****************************************************************//**
* @dev Mint rewards and distribute it between master and treasury
*
* Treasury share is directly minted to the treasury address
* Master incentives are minted into this contract and claimed later by the master contract
*/functionemitAllocations() public{
uint256 circulatingSupply = totalSupply();
uint256 currentBlockTimestamp = _currentBlockTimestamp();
uint256 _lastEmissionTime = lastEmissionTime; // gas savinguint256 _maxSupply = elasticMaxSupply; // gas saving// if already up to date or not startedif (
currentBlockTimestamp <= _lastEmissionTime || _lastEmissionTime ==0
) {
return;
}
// if max supply is already reached or emissions deactivatedif (_maxSupply <= circulatingSupply || emissionRate ==0) {
lastEmissionTime = currentBlockTimestamp;
return;
}
uint256 newEmissions = currentBlockTimestamp.sub(_lastEmissionTime).mul(
emissionRate
);
// cap new emissions if exceeding max supplyif (_maxSupply < circulatingSupply.add(newEmissions)) {
newEmissions = _maxSupply.sub(circulatingSupply);
}
// calculate master and treasury shares from new emissionsuint256 masterShare = newEmissions.mul(masterAllocation).div(
ALLOCATION_PRECISION
);
// sub to avoid rounding errorsuint256 treasuryShare = newEmissions.sub(masterShare);
lastEmissionTime = currentBlockTimestamp;
// add master shares to its claimable reserve
masterReserve = masterReserve.add(masterShare);
// mint shares
_mint(address(this), masterShare);
_mint(treasuryAddress, treasuryShare);
emit AllocationsDistributed(masterShare, treasuryShare);
}
/**
* @dev Sends to Master contract the asked "amount" from masterReserve
*
* Can only be called by the MasterContract
*/functionclaimMasterRewards(uint256 amount
) externaloverrideonlyMasterreturns (uint256 effectiveAmount) {
// update emissions
emitAllocations();
// cap asked amount with available reserve
effectiveAmount = Math.min(masterReserve, amount);
// if no rewards to transferif (effectiveAmount ==0) {
return effectiveAmount;
}
// remove claimed rewards from reserve and transfer to master
masterReserve = masterReserve.sub(effectiveAmount);
_transfer(address(this), masterAddress, effectiveAmount);
emit ClaimMasterRewards(effectiveAmount);
}
/**
* @dev Burns "amount" of XD by sending it to BURN_ADDRESS
*/functionburn(uint256 amount) externaloverride{
_transfer(msg.sender, BURN_ADDRESS, amount);
}
/*****************************************************************//****************** EXTERNAL OWNABLE FUNCTIONS ******************//*****************************************************************//**
* @dev Setup Master contract address
*
* Can only be initialized once
* Must only be called by the owner
*/functioninitializeMasterAddress(address masterAddress_
) externalonlyOwner{
require(
masterAddress ==address(0),
"initializeMasterAddress: master already initialized"
);
require(
masterAddress_ !=address(0),
"initializeMasterAddress: master initialized to zero address"
);
masterAddress = masterAddress_;
emit InitializeMasterAddress(masterAddress_);
}
/**
* @dev Set emission start time
*
* Can only be initialized once
* Must only be called by the owner
*/functioninitializeEmissionStart(uint256 startTime) externalonlyOwner{
require(
lastEmissionTime ==0,
"initializeEmissionStart: emission start already initialized"
);
require(
_currentBlockTimestamp() < startTime,
"initializeEmissionStart: invalid"
);
lastEmissionTime = startTime;
emit InitializeEmissionStart(startTime);
}
/**
* @dev Updates emission allocations farming incentives and treasury
*
* Must only be called by the owner
*/functionupdateAllocations(uint256 masterAllocation_) externalonlyOwner{
// apply emissions before changes
emitAllocations();
// total sum of allocations can't be > 100%require(
masterAllocation_ <=100,
"updateAllocations: total allocation is too high"
);
// set new allocations
masterAllocation = masterAllocation_;
emit UpdateAllocations(masterAllocation_, treasuryAllocation());
}
/**
* @dev Updates XD emission rate per second
*
* Must only be called by the owner
*/functionupdateEmissionRate(uint256 emissionRate_) externalonlyOwner{
require(
emissionRate_ <= MAX_EMISSION_RATE,
"updateEmissionRate: can't exceed maximum"
);
// apply emissions before changes
emitAllocations();
emit UpdateEmissionRate(emissionRate, emissionRate_);
emissionRate = emissionRate_;
}
/**
* @dev Updates XD max supply
*
* Must only be called by the owner
*/functionupdateMaxSupply(uint256 maxSupply_) externalonlyOwner{
require(
maxSupply_ >= totalSupply(),
"updateMaxSupply: can't be lower than current circulating supply"
);
require(
maxSupply_ <= MAX_SUPPLY_LIMIT,
"updateMaxSupply: invalid maxSupply"
);
emit UpdateMaxSupply(elasticMaxSupply, maxSupply_);
elasticMaxSupply = maxSupply_;
}
/**
* @dev Updates treasury address
*
* Must only be called by owner
*/functionupdateTreasuryAddress(address treasuryAddress_
) externalonlyOwner{
require(
treasuryAddress_ !=address(0),
"updateTreasuryAddress: invalid address"
);
emit UpdateTreasuryAddress(treasuryAddress, treasuryAddress_);
treasuryAddress = treasuryAddress_;
}
/********************************************************//****************** INTERNAL FUNCTIONS ******************//********************************************************//**
* @dev Utility function to get the current block timestamp
*/function_currentBlockTimestamp() internalviewvirtualreturns (uint256) {
/* solhint-disable not-rely-on-time */returnblock.timestamp;
}
}