// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)pragmasolidity ^0.8.1;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0// for contracts in construction, since the code is only stored at the end// of the constructor execution.return account.code.length>0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/functionverifyCallResultFromTarget(address target,
bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
if (success) {
if (returndata.length==0) {
// only check isContract if the call was successful and the return data is empty// otherwise we already know that it was a contractrequire(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function_revert(bytesmemory returndata, stringmemory errorMessage) privatepure{
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly/// @solidity memory-safe-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
Contract Source Code
File 2 of 10: ERC1967Proxy.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)pragmasolidity ^0.8.0;import"../Proxy.sol";
import"./ERC1967Upgrade.sol";
/**
* @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
* implementation address that can be changed. This address is stored in storage in the location specified by
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
* implementation behind the proxy.
*/contractERC1967ProxyisProxy, ERC1967Upgrade{
/**
* @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
*
* If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
* function call, and allows initializing the storage of the proxy like a Solidity constructor.
*/constructor(address _logic, bytesmemory _data) payable{
_upgradeToAndCall(_logic, _data, false);
}
/**
* @dev Returns the current implementation address.
*/function_implementation() internalviewvirtualoverridereturns (address impl) {
return ERC1967Upgrade._getImplementation();
}
}
Contract Source Code
File 3 of 10: ERC1967Upgrade.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol)pragmasolidity ^0.8.2;import"../beacon/IBeacon.sol";
import"../../interfaces/IERC1967.sol";
import"../../interfaces/draft-IERC1822.sol";
import"../../utils/Address.sol";
import"../../utils/StorageSlot.sol";
/**
* @dev This abstract contract provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
*
* _Available since v4.1._
*/abstractcontractERC1967UpgradeisIERC1967{
// This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1bytes32privateconstant _ROLLBACK_SLOT =0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
* validated in the constructor.
*/bytes32internalconstant _IMPLEMENTATION_SLOT =0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev Returns the current implementation address.
*/function_getImplementation() internalviewreturns (address) {
return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 implementation slot.
*/function_setImplementation(address newImplementation) private{
require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value= newImplementation;
}
/**
* @dev Perform implementation upgrade
*
* Emits an {Upgraded} event.
*/function_upgradeTo(address newImplementation) internal{
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Perform implementation upgrade with additional setup call.
*
* Emits an {Upgraded} event.
*/function_upgradeToAndCall(address newImplementation, bytesmemory data, bool forceCall) internal{
_upgradeTo(newImplementation);
if (data.length>0|| forceCall) {
Address.functionDelegateCall(newImplementation, data);
}
}
/**
* @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
*
* Emits an {Upgraded} event.
*/function_upgradeToAndCallUUPS(address newImplementation, bytesmemory data, bool forceCall) internal{
// Upgrades from old implementations will perform a rollback test. This test requires the new// implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing// this special case will break upgrade paths from old UUPS implementation to new ones.if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
_setImplementation(newImplementation);
} else {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
} catch {
revert("ERC1967Upgrade: new implementation is not UUPS");
}
_upgradeToAndCall(newImplementation, data, forceCall);
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
* validated in the constructor.
*/bytes32internalconstant _ADMIN_SLOT =0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*/function_getAdmin() internalviewreturns (address) {
return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 admin slot.
*/function_setAdmin(address newAdmin) private{
require(newAdmin !=address(0), "ERC1967: new admin is the zero address");
StorageSlot.getAddressSlot(_ADMIN_SLOT).value= newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*/function_changeAdmin(address newAdmin) internal{
emit AdminChanged(_getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
*/bytes32internalconstant _BEACON_SLOT =0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/function_getBeacon() internalviewreturns (address) {
return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the EIP1967 beacon slot.
*/function_setBeacon(address newBeacon) private{
require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
require(
Address.isContract(IBeacon(newBeacon).implementation()),
"ERC1967: beacon implementation is not a contract"
);
StorageSlot.getAddressSlot(_BEACON_SLOT).value= newBeacon;
}
/**
* @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
* not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
*
* Emits a {BeaconUpgraded} event.
*/function_upgradeBeaconToAndCall(address newBeacon, bytesmemory data, bool forceCall) internal{
_setBeacon(newBeacon);
emit BeaconUpgraded(newBeacon);
if (data.length>0|| forceCall) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
}
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)pragmasolidity ^0.8.0;/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/interfaceIBeacon{
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {BeaconProxy} will check that this address is a contract.
*/functionimplementation() externalviewreturns (address);
}
Contract Source Code
File 6 of 10: IERC1967.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol)pragmasolidity ^0.8.0;/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*
* _Available since v4.8.3._
*/interfaceIERC1967{
/**
* @dev Emitted when the implementation is upgraded.
*/eventUpgraded(addressindexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/eventAdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/eventBeaconUpgraded(addressindexed beacon);
}
Contract Source Code
File 7 of 10: MintProxy.sol
// SPDX-License-Identifier: BSD-3-Clausepragmasolidity 0.8.17;import"@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";
import"./libraries/ErrorCodes.sol";
/**
* Admin slot: 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103
* Implementation slot: 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc
*/contractMintProxyisProxy, ERC1967Upgrade{
/**
* @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
* optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
*/constructor(address _logic,
address _admin,
bytesmemory _data
) payable{
assert(_IMPLEMENTATION_SLOT ==bytes32(uint256(keccak256("eip1967.proxy.implementation")) -1));
assert(_ADMIN_SLOT ==bytes32(uint256(keccak256("eip1967.proxy.admin")) -1));
_changeAdmin(_admin);
_upgradeToAndCall(_logic, _data, false);
}
/**
* @dev Returns the current implementation address.
*/function_implementation() internalviewvirtualoverridereturns (address impl) {
return ERC1967Upgrade._getImplementation();
}
/**
* @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
*/modifieronlyAdmin() {
require(msg.sender== _getAdmin(), ErrorCodes.ADMIN_ONLY);
_;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
*/functionchangeAdmin(address newAdmin) externalonlyAdmin{
_changeAdmin(newAdmin);
}
/**
* @dev Upgrade the implementation of the proxy.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
*/functionupgradeTo(address newImplementation) externalonlyAdmin{
_upgradeToAndCall(newImplementation, bytes(""), false);
}
/**
* @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
* by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
* proxied contract.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
*/functionupgradeToAndCall(address newImplementation, bytescalldata data) externalpayableonlyAdmin{
_upgradeToAndCall(newImplementation, data, true);
}
/**
* @dev Receives and executes a batch of function calls on this contract.
*/functionmulticall(bytes[] calldata data) externalreturns (bytes[] memory results) {
results =newbytes[](data.length);
address impl = _implementation();
for (uint256 i =0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(impl, data[i]);
}
return results;
}
}
Contract Source Code
File 8 of 10: Proxy.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)pragmasolidity ^0.8.0;/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/abstractcontractProxy{
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/function_delegate(address implementation) internalvirtual{
assembly {
// Copy msg.data. We take full control of memory in this inline assembly// block because it will not return to Solidity code. We overwrite the// Solidity scratch pad at memory position 0.calldatacopy(0, 0, calldatasize())
// Call the implementation.// out and outsize are 0 because we don't know the size yet.let result :=delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.case0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
* and {_fallback} should delegate.
*/function_implementation() internalviewvirtualreturns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/function_fallback() internalvirtual{
_beforeFallback();
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/fallback() externalpayablevirtual{
_fallback();
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
* is empty.
*/receive() externalpayablevirtual{
_fallback();
}
/**
* @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
* call, or as part of the Solidity `fallback` or `receive` functions.
*
* If overridden should call `super._beforeFallback()`.
*/function_beforeFallback() internalvirtual{}
}
Contract Source Code
File 9 of 10: StorageSlot.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.pragmasolidity ^0.8.0;/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/libraryStorageSlot{
structAddressSlot {
address value;
}
structBooleanSlot {
bool value;
}
structBytes32Slot {
bytes32 value;
}
structUint256Slot {
uint256 value;
}
structStringSlot {
string value;
}
structBytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/functiongetAddressSlot(bytes32 slot) internalpurereturns (AddressSlot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/functiongetBooleanSlot(bytes32 slot) internalpurereturns (BooleanSlot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/functiongetBytes32Slot(bytes32 slot) internalpurereturns (Bytes32Slot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/functiongetUint256Slot(bytes32 slot) internalpurereturns (Uint256Slot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/functiongetStringSlot(bytes32 slot) internalpurereturns (StringSlot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/functiongetStringSlot(stringstorage store) internalpurereturns (StringSlot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/functiongetBytesSlot(bytes32 slot) internalpurereturns (BytesSlot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/functiongetBytesSlot(bytesstorage store) internalpurereturns (BytesSlot storage r) {
/// @solidity memory-safe-assemblyassembly {
r.slot:= store.slot
}
}
}
Contract Source Code
File 10 of 10: draft-IERC1822.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)pragmasolidity ^0.8.0;/**
* @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/interfaceIERC1822Proxiable{
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/functionproxiableUUID() externalviewreturns (bytes32);
}