// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import "@routerprotocol/evm-gateway-contracts/contracts/IGateway.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "./interfaces/IAssetBridge.sol";
import "@routerprotocol/asset-forwarder/src/interfaces/IMessageHandler.sol";
import "./interfaces/IDexSpan.sol";
import "./interfaces/IWETH.sol";
import "./interfaces/IBurnableERC20.sol";
import "./ReentrancyGuard.sol";
/// @title Handles ERC20 deposits and relay executions.
/// @author Router Protocol.
/// @notice This contract is intended to be used with the Bridge contract.
contract AssetBridge is Context, AccessControl, ReentrancyGuard, Pausable, IAssetBridge {
using SafeMath for uint256;
using SafeERC20 for IERC20;
bytes32 public constant RESOURCE_SETTER = keccak256("RESOURCE_SETTER");
bytes32 public constant PAUSER = keccak256("PAUSER");
// NOTE: Change chainId everytime we deploy
string public constant ROUTER_CHAIN_ID = "router_9600-1";
bytes32 public constant ROUTER_CHAIN_ID_BYTES = keccak256(bytes(ROUTER_CHAIN_ID));
// only dest gas limit specified 6 mill, rest is 0
bytes public constant AssetBridge_REQUEST_METADATA =
hex"00000000005B8D80000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
address private constant ETH_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
// Instance of the gateway contract
IGateway public immutable gateway;
IDexSpan public dexSpan;
// NOTE: Change ROUTER_BRIDGE_ADDRESS everytime we deploy
string public constant ROUTER_BRIDGE_ADDRESS = "router17p9rzwnnfxcjp32un9ug7yhhzgtkhvl9jfksztgw5uh69wac2pgsmpev85";
bytes32 public constant ROUTER_BRIDGE_ADDRESS_BYTES = keccak256(bytes(ROUTER_BRIDGE_ADDRESS));
address public immutable wrappedNative;
uint256 public depositNonce;
// keccak256(abi.encode(destChainId)) + depositNonce => Revert Executed?
mapping(bytes32 => mapping(uint256 => bool)) public _executionRevertCompleted;
// token => isBurnable
mapping(address => address) public _contractToLP;
mapping(address => address) public _lpToContract;
// token contract address => is reserve
mapping(address => uint256) public _tokenWhitelist;
// keccak256(abi.encode(sourceChainId)) + nonce => isExecuted
mapping(bytes32 => mapping(uint256 => bool)) public executeRecord;
// codeId:
// 1 -> Only Gateway contract
// 2 -> array length mismatch
// 3 -> contract address cannot be zero address
// 4 -> provided contract is not whitelisted
// 5 -> Either reserve handler or dest caller address is zero address
// 6 -> Insufficient native assets sent
// 7 -> token not whitelisted
// 8 -> min amount lower than required
// 9 -> invalid data
// 10 -> invalid token addresses
// 11 -> data for reserve transfer
// 12 -> data for LP transfer
// 13 -> only AssetBridge middleware
// 14 -> already reverted
// 15 -> no deposit found
// 16 -> dest chain not configured
// 17 -> InvalidChainID
// 18 -> InvalidMiddlewareAddress
error AssetBridgeError(uint8 codeId);
modifier isGateway() {
if (msg.sender != address(gateway)) {
// Only gateway contracts
revert AssetBridgeError(1);
}
_;
}
modifier isLengthSame(uint256 l1, uint256 l2) {
if (l1 != l2) {
// array length mismatch
revert AssetBridgeError(2);
}
_;
}
constructor(
address _dexSpan,
address _wrappedNative,
address _gatewayAddress,
string memory chainId,
string memory routerBridgeAddress,
uint256 startNonce
) {
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
_setupRole(RESOURCE_SETTER, msg.sender);
_setupRole(PAUSER, msg.sender);
dexSpan = IDexSpan(_dexSpan);
wrappedNative = _wrappedNative;
gateway = IGateway(_gatewayAddress);
if (ROUTER_CHAIN_ID_BYTES != keccak256(bytes(chainId))) {
revert AssetBridgeError(17);
}
if (ROUTER_BRIDGE_ADDRESS_BYTES != keccak256(bytes(routerBridgeAddress))) {
revert AssetBridgeError(18);
}
depositNonce = startNonce;
}
/// @notice Pauses deposits on the handler.
/// @notice Only callable by an address that currently has the PAUSER role.
function pause() external onlyRole(PAUSER) whenNotPaused {
_pause();
}
/// @notice Unpauses deposits on the handler.
/// @notice Only callable by an address that currently has the PAUSER role.
function unpause() external onlyRole(PAUSER) whenPaused {
_unpause();
}
function isNative(address token) internal pure returns (bool) {
return token == ETH_ADDRESS;
}
function setLiquidityPoolMulti(
address[] memory _tokens,
address[] memory _lptokens
) public onlyRole(RESOURCE_SETTER) isLengthSame(_tokens.length, _lptokens.length) {
uint8 length = uint8(_tokens.length);
for (uint8 i = 0; i < length; i++) {
require((_tokenWhitelist[_tokens[i]] != 0), "provided some token is not whitelisted");
_lpToContract[_lptokens[i]] = _tokens[i];
_contractToLP[_tokens[i]] = _lptokens[i];
}
}
function setWhiteListTokenMulti(
address[] memory _tokens,
uint256[] memory types
) public onlyRole(RESOURCE_SETTER) isLengthSame(_tokens.length, types.length) {
uint8 length = uint8(_tokens.length);
for (uint8 i = 0; i < length; i++) {
if (_tokens[i] == address(0)) {
// token address can't be zero
revert AssetBridgeError(3);
}
_tokenWhitelist[_tokens[i]] = types[i];
}
}
function setDappMetadata(string memory feePayer) external payable onlyRole(RESOURCE_SETTER) {
gateway.setDappMetadata{ value: msg.value }(feePayer);
}
/// @notice Sets DexSpan address.
/// @param _dexSpan Address of DexSpan contract
function setDexSpanAddress(address _dexSpan) external onlyRole(RESOURCE_SETTER) {
if (_dexSpan == address(0)) {
// contract address cannot be zero address
revert AssetBridgeError(3);
}
dexSpan = IDexSpan(_dexSpan);
}
function iSend(bytes memory packet, uint256 value) internal {
bytes memory requestPacket = abi.encode(ROUTER_BRIDGE_ADDRESS, packet);
gateway.iSend{ value: value }(1, 0, "", ROUTER_CHAIN_ID, AssetBridge_REQUEST_METADATA, requestPacket);
}
function getTransferPacket(
bytes32 destChainIdBytes,
address srcTokenAddress,
uint256 srcTokenAmount,
bytes memory recipient,
uint256 partnerId
) internal returns (bytes memory) {
unchecked {
++depositNonce;
}
return
abi.encode(
uint8(0),
destChainIdBytes,
srcTokenAddress,
srcTokenAmount,
msg.sender,
recipient,
depositNonce,
partnerId
);
}
function getTransferWithInstructionPacket(
bytes32 destChainIdBytes,
address srcTokenAddress,
uint256 srcTokenAmount,
bytes memory recipient,
uint256 partnerId,
uint64 gasLimit,
bytes calldata instruction
) internal returns (bytes memory) {
unchecked {
++depositNonce;
}
return
abi.encode(
uint8(1),
destChainIdBytes,
srcTokenAddress,
srcTokenAmount,
msg.sender,
recipient,
depositNonce,
partnerId,
gasLimit,
instruction
);
}
function tokenAndAmountValidation(address token) internal view {
if (_tokenWhitelist[token] == 0) {
revert AssetBridgeError(7); // token not whitelisted
}
}
function safeTransferETH(address to, uint256 value) internal {
require(to != address(0), "safeTransferETH: transfer to address 0");
(bool success, ) = to.call{ value: value }(new bytes(0));
require(success, "safeTransferETH: ETH transfer failed");
}
function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
if (from == address(this)) {
IERC20(token).transfer(to, amount);
} else {
IERC20(token).transferFrom(from, to, amount);
}
}
function lockOrBurnToken(address token, address from, uint256 amount) internal {
uint256 tokenType = _tokenWhitelist[token];
if (tokenType == 1) {
if (from != address(this)) safeTransferFrom(token, from, address(this), amount);
} else if ( tokenType == 2) {
// Old ERC20 Contracts
IBurnableERC20V1(token).burn(from,amount);
} else if ( tokenType == 3) {
// New ERC20 Contracts
if (from == address(this)) {
IBurnableERC20V2(token).burn(amount);
} else {
IBurnableERC20V2(token).burnFrom(from, amount);
}
} else {
revert AssetBridgeError(7); // token not whitelisted
}
}
function transferToken(TransferPayload memory transferPayload) external nonReentrant payable whenNotPaused {
tokenAndAmountValidation(transferPayload.srcTokenAddress);
bool isSourceNative = isNative(transferPayload.srcTokenAddress);
if (!isSourceNative)
lockOrBurnToken(transferPayload.srcTokenAddress, msg.sender, transferPayload.srcTokenAmount);
else {
if (msg.value < transferPayload.srcTokenAmount) {
// No native assets sent
revert AssetBridgeError(6);
}
IWETH(wrappedNative).deposit{ value: transferPayload.srcTokenAmount }();
transferPayload.srcTokenAddress = wrappedNative;
}
bytes memory packet = getTransferPacket(
transferPayload.destChainIdBytes,
transferPayload.srcTokenAddress,
transferPayload.srcTokenAmount,
transferPayload.recipient,
transferPayload.partnerId
);
if (!isSourceNative) iSend(packet, msg.value);
else iSend(packet, msg.value.sub(transferPayload.srcTokenAmount));
emit TokenTransfer(
transferPayload.destChainIdBytes,
transferPayload.srcTokenAddress,
transferPayload.srcTokenAmount,
transferPayload.recipient,
transferPayload.partnerId,
depositNonce
);
}
function transferTokenWithInstruction(
TransferPayload memory transferPayload,
uint64 destGasLimit,
bytes calldata instruction
) external nonReentrant payable whenNotPaused {
tokenAndAmountValidation(transferPayload.srcTokenAddress);
bool isSourceNative = isNative(transferPayload.srcTokenAddress);
if (!isSourceNative)
lockOrBurnToken(transferPayload.srcTokenAddress, msg.sender, transferPayload.srcTokenAmount);
else {
if (msg.value < transferPayload.srcTokenAmount) {
// No native assets sent
revert AssetBridgeError(6);
}
IWETH(wrappedNative).deposit{ value: transferPayload.srcTokenAmount }();
transferPayload.srcTokenAddress = wrappedNative;
}
bytes memory packet = getTransferWithInstructionPacket(
transferPayload.destChainIdBytes,
transferPayload.srcTokenAddress,
transferPayload.srcTokenAmount,
transferPayload.recipient,
transferPayload.partnerId,
destGasLimit,
instruction
);
if (!isSourceNative) iSend(packet, msg.value);
else iSend(packet, msg.value.sub(transferPayload.srcTokenAmount));
emit TokenTransferWithInstruction(
transferPayload.destChainIdBytes,
transferPayload.srcTokenAddress,
transferPayload.srcTokenAmount,
transferPayload.recipient,
transferPayload.partnerId,
destGasLimit,
instruction,
depositNonce
);
}
function swapAndTransferToken(
SwapTransferPayload memory transferPayload
) external nonReentrant payable whenNotPaused {
bool isSourceNative = isNative(transferPayload.tokens[0]);
if (!isSourceNative)
safeTransferFrom(transferPayload.tokens[0], msg.sender, address(dexSpan), transferPayload.srcTokenAmount);
else {
if (msg.value < transferPayload.srcTokenAmount) {
// No native assets sent
revert AssetBridgeError(6);
}
IWETH(wrappedNative).deposit{ value: transferPayload.srcTokenAmount }();
IWETH(wrappedNative).transfer(address(dexSpan), transferPayload.srcTokenAmount);
transferPayload.tokens[0] = wrappedNative;
}
address toToken = transferPayload.tokens[transferPayload.tokens.length - 1];
uint256 oldBalance = IBurnableERC20V2(toToken).balanceOf(address(this));
uint256 returnAmount = dexSpan.swapMultiWithRecipient(
transferPayload.tokens,
transferPayload.srcTokenAmount,
transferPayload.minToAmount,
transferPayload.flags,
transferPayload.dataTx,
true,
address(this)
);
uint256 newBalance = IBurnableERC20V2(toToken).balanceOf(address(this));
assert(oldBalance + returnAmount == newBalance);
tokenAndAmountValidation(toToken);
lockOrBurnToken(toToken, address(this), returnAmount);
bytes memory packet = getTransferPacket(
transferPayload.destChainIdBytes,
toToken,
returnAmount,
transferPayload.recipient,
transferPayload.partnerId
);
if (!isSourceNative) iSend(packet, msg.value);
else iSend(packet, msg.value.sub(transferPayload.srcTokenAmount));
emit TokenTransfer(
transferPayload.destChainIdBytes,
toToken,
returnAmount,
transferPayload.recipient,
transferPayload.partnerId,
depositNonce
);
}
function swapAndTransferTokenWithInstruction(
SwapTransferPayload memory transferPayload,
uint64 destGasLimit,
bytes calldata instruction
) external nonReentrant payable whenNotPaused {
bool isSourceNative = isNative(transferPayload.tokens[0]);
if (!isSourceNative)
safeTransferFrom(transferPayload.tokens[0], msg.sender, address(dexSpan), transferPayload.srcTokenAmount);
else {
if (msg.value < transferPayload.srcTokenAmount) {
// No native assets sent
revert AssetBridgeError(6);
}
IWETH(wrappedNative).deposit{ value: transferPayload.srcTokenAmount }();
IWETH(wrappedNative).transfer(address(dexSpan), transferPayload.srcTokenAmount);
transferPayload.tokens[0] = wrappedNative;
}
address toToken = transferPayload.tokens[transferPayload.tokens.length - 1];
uint256 oldBalance = IBurnableERC20V2(toToken).balanceOf(address(this));
uint256 returnAmount = dexSpan.swapMultiWithRecipient(
transferPayload.tokens,
transferPayload.srcTokenAmount,
transferPayload.minToAmount,
transferPayload.flags,
transferPayload.dataTx,
true,
address(this)
);
uint256 newBalance = IBurnableERC20V2(toToken).balanceOf(address(this));
assert(oldBalance + returnAmount == newBalance);
tokenAndAmountValidation(toToken);
lockOrBurnToken(toToken, address(this), returnAmount);
bytes memory packet = getTransferWithInstructionPacket(
transferPayload.destChainIdBytes,
toToken,
returnAmount,
transferPayload.recipient,
transferPayload.partnerId,
destGasLimit,
instruction
);
if (!isSourceNative) iSend(packet, msg.value);
else iSend(packet, msg.value.sub(transferPayload.srcTokenAmount));
emit TokenTransferWithInstruction(
transferPayload.destChainIdBytes,
toToken,
returnAmount,
transferPayload.recipient,
transferPayload.partnerId,
destGasLimit,
instruction,
depositNonce
);
}
/// @notice Function to handle the request for execution received from Router Chain
/// @param requestSender Address of the sender of the transaction on the source chain.
/// @param srcChainId request source chain id.
/// @param packet Packet coming from the router chain.
function iReceive(
string memory requestSender,
bytes memory packet,
string memory srcChainId
) external isGateway nonReentrant whenNotPaused {
if (keccak256(bytes(srcChainId)) != ROUTER_CHAIN_ID_BYTES) {
// only AssetBridge middleware
revert AssetBridgeError(13);
}
if (keccak256(bytes(requestSender)) != ROUTER_BRIDGE_ADDRESS_BYTES) {
// only AssetBridge middleware
revert AssetBridgeError(17);
}
uint8 txType = abi.decode(packet, (uint8));
// Refunding deposited token in case of some issues on dest chain
if (txType == 2) {
(, bytes32 destChainIdBytes, IAssetBridge.DepositData memory depositData) = abi.decode(
packet,
(uint8, bytes32, IAssetBridge.DepositData)
);
if (_executionRevertCompleted[destChainIdBytes][depositData.depositNonce]) {
// already reverted
revert AssetBridgeError(14);
}
if (depositData.srcTokenAddress == address(0)) {
// no deposit found
revert AssetBridgeError(15);
}
_executionRevertCompleted[destChainIdBytes][depositData.depositNonce] = true;
executeProposalForReserveToken(depositData.srcTokenAddress, depositData.srcTokenAmount, depositData.sender);
emit DepositReverted(
destChainIdBytes,
depositData.depositNonce,
depositData.sender,
depositData.srcTokenAddress,
depositData.srcTokenAmount
);
return;
}
if (txType == 0) {
// mint token
(, bytes32 srcChainIdBytes, IAssetBridge.ExecuteInfo memory executeDetails) = abi.decode(
packet,
(uint8, bytes32, IAssetBridge.ExecuteInfo)
);
require(!executeRecord[srcChainIdBytes][executeDetails.depositNonce], "already executed");
executeRecord[srcChainIdBytes][executeDetails.depositNonce] = true;
executeProposalForReserveToken(
executeDetails.destTokenAddress,
executeDetails.destTokenAmount,
executeDetails.recipient
);
emit Execute(
0,
srcChainIdBytes,
executeDetails.depositNonce,
executeDetails.destTokenAddress,
executeDetails.destTokenAmount,
executeDetails.recipient
);
return;
}
if (txType == 1) {
// mint token and execute
(, bytes32 srcChainIdBytes, IAssetBridge.ExecuteInfo memory executeDetails, bytes memory instruction) = abi
.decode(packet, (uint8, bytes32, IAssetBridge.ExecuteInfo, bytes));
require(!executeRecord[srcChainIdBytes][executeDetails.depositNonce], "already executed");
executeRecord[srcChainIdBytes][executeDetails.depositNonce] = true;
executeProposalForReserveToken(
executeDetails.destTokenAddress,
executeDetails.destTokenAmount,
executeDetails.recipient
);
(bool success, bytes memory data) = executeDetails.recipient.call(
abi.encodeWithSelector(
IMessageHandler.handleMessage.selector, // function handleAssetBridgeMessage(address tokenSent, uint256 amount, bytes memory instruction) external;
executeDetails.destTokenAddress,
executeDetails.destTokenAmount,
instruction
)
);
//TODO: do we need any check on data and success
//TODO: there should be min gas left after call
emit ExecuteWithMessage(
1,
srcChainIdBytes,
executeDetails.depositNonce,
executeDetails.destTokenAddress,
executeDetails.destTokenAmount,
executeDetails.recipient,
success,
data
);
return;
}
}
function executeProposalForReserveToken(address token, uint256 amount, address recipient) internal {
uint256 tokenType = _tokenWhitelist[token];
require((tokenType != 0), "token not whitelisted");
if (tokenType != 1) {
IBurnableERC20V2(token).mint(recipient, amount);
} else {
uint256 reserveBalance;
if (isNative(token)) {
reserveBalance = address(this).balance;
} else {
reserveBalance = IBurnableERC20V2(token).balanceOf(address(this));
}
if (reserveBalance < amount) {
require(_contractToLP[token] != address(0), "ERC20Handler: Liquidity pool not found");
IBurnableERC20V2(_contractToLP[token]).mint(recipient, amount);
// will there is liquidity provider type of concept here?
} else {
if (isNative(token)) {
IWETH(wrappedNative).withdraw(amount);
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Transfer failed.");
} else safeTransferFrom(token, address(this), recipient, amount);
}
}
}
/// @notice Used to stake ERC20 tokens into the LP.
/// @param tokenAddress Address of the ERC20 token
/// @param amount Amount of tokens to be staked
function stake(
address to,
bool isSourceNative,
address tokenAddress,
uint256 amount
) external payable whenNotPaused {
require(_contractToLP[tokenAddress] != address(0), "LP not created");
if (isSourceNative && tokenAddress == wrappedNative) {
require(amount == msg.value, "amount != msg.value");
IWETH(wrappedNative).deposit{ value: msg.value }();
IBurnableERC20V2(_contractToLP[tokenAddress]).mint(to, msg.value);
} else {
require(msg.value == 0, "No need to pass Native Tokens");
safeTransferFrom(tokenAddress, msg.sender, address(this), amount);
IBurnableERC20V2(_contractToLP[tokenAddress]).mint(to, amount);
}
}
/// @notice Unstake the ERC20 tokens from LP.
/// @param tokenAddress staking token of which liquidity needs to be removed.
/// @param amount Amount that needs to be unstaked.
function unstake(address to, bool isSourceNative, address tokenAddress, uint256 amount) external whenNotPaused {
require(_lpToContract[tokenAddress] != address(0), "LP not created");
if (isSourceNative && _lpToContract[tokenAddress] == wrappedNative) {
IBurnableERC20V2(tokenAddress).burnFrom(msg.sender, amount);
IWETH(wrappedNative).withdraw(amount);
safeTransferETH(to, amount);
} else {
IBurnableERC20V2(tokenAddress).burnFrom(msg.sender, amount);
safeTransferFrom(_lpToContract[tokenAddress], address(this), to, amount);
}
}
//TODO: we should remove this
/// @notice Function to withdraw funds from this contract.
/// @notice Only DEFAULT_ADMIN can call this function.
/// @param token Address of token to withdraw. If native token, send address 0.
/// @param amount Amount of tokens to withdraw. If all tokens, send 0.
/// @param recipient Address of recipient.
function withdrawFunds(
address token,
uint256 amount,
address payable recipient
) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (token == address(0)) {
amount = amount != 0 ? amount : address(this).balance;
safeTransferETH(recipient, amount);
} else {
IBurnableERC20V2 _token = IBurnableERC20V2(token);
amount = amount != 0 ? amount : _token.balanceOf(address(this));
safeTransferFrom(token, address(this), recipient, amount);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.0;
import "../ERC20.sol";
import "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys `amount` tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 amount) public virtual {
_burn(_msgSender(), amount);
}
/**
* @dev Destroys `amount` tokens from `account`, deducting from the caller's
* allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `amount`.
*/
function burnFrom(address account, uint256 amount) public virtual {
_spendAllowance(account, _msgSender(), amount);
_burn(account, amount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
/// @title Interface for Voyager contracts that support deposits and deposit executions.
/// @author Router Protocol.
interface IAssetBridge {
//TODO: can remove some field to optimize gas
event TokenTransfer(
bytes32 indexed destChainIdBytes,
address indexed srcTokenAddress,
uint256 srcTokenAmount,
bytes recipient,
uint256 partnerId,
uint256 depositId
);
//TODO: can remove some field to optimize gas
event TokenTransferWithInstruction(
bytes32 indexed destChainIdBytes,
address indexed srcTokenAddress,
uint256 srcTokenAmount,
bytes recipient,
uint256 partnerId,
uint64 destGasLimit,
bytes instruction,
uint256 depositId
);
event DepositReverted(
bytes32 indexed destChainIdBytes,
uint256 indexed depositNonce,
address indexed sender,
address srcSettlementToken,
uint256 srcSettlementAmount
);
event Execute(
uint8 executeType,
bytes32 indexed sourceChainIdBytes,
uint256 indexed depositNonce,
address settlementToken,
uint256 settlementAmount,
address recipient
);
event ExecuteWithMessage(
uint8 executeType,
bytes32 indexed sourceChainIdBytes,
uint256 indexed depositNonce,
address settlementToken,
uint256 settlementAmount,
address recipient,
bool flag,
bytes data
);
struct ExecuteInfo {
address recipient;
address destTokenAddress;
uint256 destTokenAmount;
uint256 depositNonce;
}
struct DepositData {
address sender;
address srcTokenAddress;
uint256 srcTokenAmount;
uint256 depositNonce;
}
struct TransferPayload {
bytes32 destChainIdBytes;
address srcTokenAddress;
uint256 srcTokenAmount;
bytes recipient;
uint256 partnerId;
}
struct SwapTransferPayload {
bytes32 destChainIdBytes;
address[] tokens; // index 0 will be src token and index n-1 will be to address
uint256[] flags;
bytes[] dataTx;
uint256 srcTokenAmount;
uint256 minToAmount;
bytes recipient;
uint256 partnerId;
}
function transferTokenWithInstruction(
TransferPayload memory transferPayload,
uint64 destGasLimit,
bytes calldata instruction
) external payable;
function transferToken(TransferPayload memory transferPayload) external payable;
function swapAndTransferToken(SwapTransferPayload memory transferPayload) external payable;
function swapAndTransferTokenWithInstruction(
SwapTransferPayload memory transferPayload,
uint64 destGasLimit,
bytes calldata instruction
) external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IBurnableERC20V2 is IERC20 {
function mint(address account, uint256 amount) external;
function burn(uint256 amount) external;
function burnFrom(address account, uint256 amount) external;
}
interface IBurnableERC20V1 is IERC20 {
function mint(address account, uint256 amount) external;
function burn(address account, uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
contract IDexSpanConsts {
// flags = FLAG_DISABLE_UNISWAP + FLAG_DISABLE_BANCOR + ...
uint256 internal constant FLAG_DISABLE_UNISWAP = 0x400;
uint256 internal constant FLAG_DISABLE_SPLIT_RECALCULATION = 0x800000000000;
uint256 internal constant FLAG_DISABLE_ALL_SPLIT_SOURCES = 0x20000000;
uint256 internal constant FLAG_DISABLE_UNISWAP_V2_ALL = 0x400;
uint256 internal constant FLAG_DISABLE_EMPTY = 0x100000000000;
uint256 internal constant FLAG_DISABLE_DFYN = 0x800;
uint256 internal constant FLAG_DISABLE_PANCAKESWAP = 0x80;
uint256 internal constant FLAG_DISABLE_QUICKSWAP = 0x40000000000;
uint256 internal constant FLAG_DISABLE_SUSHISWAP = 0x1000000;
uint256 internal constant FLAG_DISABLE_ONEINCH = 0x100000;
}
abstract contract IDexSpan is IDexSpanConsts {
function getExpectedReturn(
address fromToken,
address destToken,
uint256 amount,
uint256 parts,
uint256 flags // See constants in IOneSplit.sol
) public view virtual returns (uint256 returnAmount, uint256[] memory distribution);
function getExpectedReturnWithGasMulti(
address[] memory tokens,
uint256 amount,
uint256[] memory parts,
uint256[] memory flags,
uint256[] memory destTokenEthPriceTimesGasPrices
)
public
view
virtual
returns (uint256[] memory returnAmounts, uint256 estimateGasAmount, uint256[] memory distribution);
function getExpectedReturnWithGas(
address fromToken,
address destToken,
uint256 amount,
uint256 parts,
uint256 flags, // See constants in IOneSplit.sol
uint256 destTokenEthPriceTimesGasPrice
) public view virtual returns (uint256 returnAmount, uint256 estimateGasAmount, uint256[] memory distribution);
function setHandlerAddress(address _handlerAddress) external virtual returns (bool);
function setReserveAddress(address _reserveAddress) external virtual returns (bool);
function setBridgeAddress(address _bridgeAddress) external virtual returns (bool);
function withdraw(address tokenAddress, address recipient, uint256 amount) public payable virtual returns (bool);
function swap(
address fromToken,
address destToken,
uint256 amount,
uint256 minReturn,
uint256 flags,
bytes memory dataTx,
bool isWrapper
) public payable virtual returns (uint256 returnAmount);
function swapWithRecipient(
address fromToken,
address destToken,
uint256 amount,
uint256 minReturn,
uint256 flags,
bytes memory dataTx,
bool isWrapper,
address recipient
) public payable virtual returns (uint256 returnAmount);
function swapMulti(
address[] memory tokens,
uint256 amount,
uint256 minReturn,
uint256[] memory flags,
bytes[] memory dataTx,
bool isWrapper
) public payable virtual returns (uint256 returnAmount);
function swapMultiWithRecipient(
address[] memory tokens,
uint256 amount,
uint256 minReturn,
uint256[] memory flags,
bytes[] memory dataTx,
bool isWrapper,
address recipient
) public payable virtual returns (uint256 returnAmount);
function getExpectedReturnETH(
address srcStablefromtoken,
uint256 srcStableFromTokenAmount,
uint256 parts,
uint256 flags
) public view virtual returns (uint256 returnAmount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "./Utils.sol";
/**
* @dev Interface of the Gateway Self External Calls.
*/
interface IGateway {
// requestMetadata = abi.encodePacked(
// uint256 destGasLimit;
// uint256 destGasPrice;
// uint256 ackGasLimit;
// uint256 ackGasPrice;
// uint256 relayerFees;
// uint8 ackType;
// bool isReadCall;
// bytes asmAddress;
// )
function iSend(
uint256 version,
uint256 routeAmount,
string calldata routeRecipient,
string calldata destChainId,
bytes calldata requestMetadata,
bytes calldata requestPacket
) external payable returns (uint256);
function setDappMetadata(string memory feePayerAddress) external payable returns (uint256);
function currentVersion() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.18;
/// @title Handles ERC20 deposits and deposit executions.
/// @author Router Protocol.
/// @notice This contract is intended to be used with the Bridge contract.
interface IMessageHandler {
function handleMessage(
address tokenSent,
uint256 amount,
bytes memory message
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
function transferFrom(address src, address dst, uint256 wad) external returns (bool);
function approve(address guy, uint256 wad) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity ^0.8.18;
/**
* @title A contract that provides modifiers to prevent reentrancy to state-changing and view-only methods. This contract
* is inspired by https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
* and https://github.com/balancer-labs/balancer-core/blob/master/contracts/BPool.sol.
* @dev The reason why we use this local contract instead of importing from uma/contracts is because of the addition
* of the internal method `functionCallStackOriginatesFromOutsideThisContract` which doesn't exist in the one exported
* by uma/contracts.
*/
contract ReentrancyGuard {
bool internal _notEntered;
constructor() {
// Storing an initial non-zero value makes deployment a bit more expensive, but in exchange the refund on every
// call to nonReentrant will be lower in amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to increase the likelihood of the full
// refund coming into effect.
_notEntered = true;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a nonReentrant function from another nonReentrant function is not supported. It is possible to
* prevent this from happening by making the nonReentrant function external, and making it call a private
* function that does the actual state modification.
*/
modifier nonReentrant() {
_preEntranceCheck();
_preEntranceSet();
_;
_postEntranceReset();
}
/**
* @dev Designed to prevent a view-only method from being re-entered during a call to a nonReentrant() state-changing method.
*/
modifier nonReentrantView() {
_preEntranceCheck();
_;
}
/**
* @dev Returns true if the contract is currently in a non-entered state, meaning that the origination of the call
* came from outside the contract. This is relevant with fallback/receive methods to see if the call came from ETH
* being dropped onto the contract externally or due to ETH dropped on the the contract from within a method in this
* contract, such as unwrapping WETH to ETH within the contract.
*/
function functionCallStackOriginatesFromOutsideThisContract() internal view returns (bool) {
return _notEntered;
}
// Internal methods are used to avoid copying the require statement's bytecode to every nonReentrant() method.
// On entry into a function, _preEntranceCheck() should always be called to check if the function is being
// re-entered. Then, if the function modifies state, it should call _postEntranceSet(), perform its logic, and
// then call _postEntranceReset().
// View-only methods can simply call _preEntranceCheck() to make sure that it is not being re-entered.
function _preEntranceCheck() internal view {
// On the first call to nonReentrant, _notEntered will be true
require(_notEntered, "ReentrancyGuard: reentrant call");
}
function _preEntranceSet() internal {
// Any calls to nonReentrant after this point will fail
_notEntered = false;
}
function _postEntranceReset() internal {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_notEntered = true;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
library Utils {
// This is used purely to avoid stack too deep errors
// represents everything about a given validator set
struct ValsetArgs {
// the validators in this set, represented by an Ethereum address
address[] validators;
// the powers of the given validators in the same order as above
uint64[] powers;
// the nonce of this validator set
uint256 valsetNonce;
}
struct RequestPayload {
uint256 routeAmount;
uint256 requestIdentifier;
uint256 requestTimestamp;
string srcChainId;
address routeRecipient;
string destChainId;
address asmAddress;
string requestSender;
address handlerAddress;
bytes packet;
bool isReadCall;
}
struct CrossChainAckPayload {
uint256 requestIdentifier;
uint256 ackRequestIdentifier;
string destChainId;
address requestSender;
bytes execData;
bool execFlag;
}
enum AckType {
NO_ACK,
ACK_ON_SUCCESS,
ACK_ON_ERROR,
ACK_ON_BOTH
}
error IncorrectCheckpoint();
error InvalidValsetNonce(uint256 newNonce, uint256 currentNonce);
error MalformedNewValidatorSet();
error MalformedCurrentValidatorSet();
error InsufficientPower(uint64 cumulativePower, uint64 powerThreshold);
error InvalidSignature();
// constants
string constant MSG_PREFIX = "\x19Ethereum Signed Message:\n32";
// The number of 'votes' required to execute a valset
// update or batch execution, set to 2/3 of 2^32
uint64 constant CONSTANT_POWER_THRESHOLD = 2791728742;
}
{
"compilationTarget": {
"contracts/AssetBridge.sol": "AssetBridge"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "none",
"useLiteralContent": true
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_dexSpan","type":"address"},{"internalType":"address","name":"_wrappedNative","type":"address"},{"internalType":"address","name":"_gatewayAddress","type":"address"},{"internalType":"string","name":"chainId","type":"string"},{"internalType":"string","name":"routerBridgeAddress","type":"string"},{"internalType":"uint256","name":"startNonce","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint8","name":"codeId","type":"uint8"}],"name":"AssetBridgeError","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"depositNonce","type":"uint256"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"address","name":"srcSettlementToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"srcSettlementAmount","type":"uint256"}],"name":"DepositReverted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"executeType","type":"uint8"},{"indexed":true,"internalType":"bytes32","name":"sourceChainIdBytes","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"depositNonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"settlementToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"settlementAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"Execute","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"executeType","type":"uint8"},{"indexed":true,"internalType":"bytes32","name":"sourceChainIdBytes","type":"bytes32"},{"indexed":true,"internalType":"uint256","name":"depositNonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"settlementToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"settlementAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"bool","name":"flag","type":"bool"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"ExecuteWithMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"indexed":true,"internalType":"address","name":"srcTokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"srcTokenAmount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"recipient","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"partnerId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"depositId","type":"uint256"}],"name":"TokenTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"indexed":true,"internalType":"address","name":"srcTokenAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"srcTokenAmount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"recipient","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"partnerId","type":"uint256"},{"indexed":false,"internalType":"uint64","name":"destGasLimit","type":"uint64"},{"indexed":false,"internalType":"bytes","name":"instruction","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"depositId","type":"uint256"}],"name":"TokenTransferWithInstruction","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"AssetBridge_REQUEST_METADATA","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RESOURCE_SETTER","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUTER_BRIDGE_ADDRESS","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUTER_BRIDGE_ADDRESS_BYTES","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUTER_CHAIN_ID","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ROUTER_CHAIN_ID_BYTES","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_contractToLP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"_executionRevertCompleted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_lpToContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_tokenWhitelist","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexSpan","outputs":[{"internalType":"contract IDexSpan","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"executeRecord","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gateway","outputs":[{"internalType":"contract IGateway","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"requestSender","type":"string"},{"internalType":"bytes","name":"packet","type":"bytes"},{"internalType":"string","name":"srcChainId","type":"string"}],"name":"iReceive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"feePayer","type":"string"}],"name":"setDappMetadata","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_dexSpan","type":"address"}],"name":"setDexSpanAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokens","type":"address[]"},{"internalType":"address[]","name":"_lptokens","type":"address[]"}],"name":"setLiquidityPoolMulti","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokens","type":"address[]"},{"internalType":"uint256[]","name":"types","type":"uint256[]"}],"name":"setWhiteListTokenMulti","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"isSourceNative","type":"bool"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"flags","type":"uint256[]"},{"internalType":"bytes[]","name":"dataTx","type":"bytes[]"},{"internalType":"uint256","name":"srcTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToAmount","type":"uint256"},{"internalType":"bytes","name":"recipient","type":"bytes"},{"internalType":"uint256","name":"partnerId","type":"uint256"}],"internalType":"struct IAssetBridge.SwapTransferPayload","name":"transferPayload","type":"tuple"}],"name":"swapAndTransferToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"flags","type":"uint256[]"},{"internalType":"bytes[]","name":"dataTx","type":"bytes[]"},{"internalType":"uint256","name":"srcTokenAmount","type":"uint256"},{"internalType":"uint256","name":"minToAmount","type":"uint256"},{"internalType":"bytes","name":"recipient","type":"bytes"},{"internalType":"uint256","name":"partnerId","type":"uint256"}],"internalType":"struct IAssetBridge.SwapTransferPayload","name":"transferPayload","type":"tuple"},{"internalType":"uint64","name":"destGasLimit","type":"uint64"},{"internalType":"bytes","name":"instruction","type":"bytes"}],"name":"swapAndTransferTokenWithInstruction","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"internalType":"address","name":"srcTokenAddress","type":"address"},{"internalType":"uint256","name":"srcTokenAmount","type":"uint256"},{"internalType":"bytes","name":"recipient","type":"bytes"},{"internalType":"uint256","name":"partnerId","type":"uint256"}],"internalType":"struct IAssetBridge.TransferPayload","name":"transferPayload","type":"tuple"}],"name":"transferToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"destChainIdBytes","type":"bytes32"},{"internalType":"address","name":"srcTokenAddress","type":"address"},{"internalType":"uint256","name":"srcTokenAmount","type":"uint256"},{"internalType":"bytes","name":"recipient","type":"bytes"},{"internalType":"uint256","name":"partnerId","type":"uint256"}],"internalType":"struct IAssetBridge.TransferPayload","name":"transferPayload","type":"tuple"},{"internalType":"uint64","name":"destGasLimit","type":"uint64"},{"internalType":"bytes","name":"instruction","type":"bytes"}],"name":"transferTokenWithInstruction","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"bool","name":"isSourceNative","type":"bool"},{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"name":"withdrawFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"wrappedNative","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]