// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)pragmasolidity ^0.8.1;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0// for contracts in construction, since the code is only stored at the end// of the constructor execution.return account.code.length>0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value
) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target,
bytesmemory data,
uint256 value,
stringmemory errorMessage
) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/functionfunctionStaticCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/functionfunctionDelegateCall(address target,
bytesmemory data,
stringmemory errorMessage
) internalreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/functionverifyCallResultFromTarget(address target,
bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalviewreturns (bytesmemory) {
if (success) {
if (returndata.length==0) {
// only check isContract if the call was successful and the return data is empty// otherwise we already know that it was a contractrequire(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/functionverifyCallResult(bool success,
bytesmemory returndata,
stringmemory errorMessage
) internalpurereturns (bytesmemory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function_revert(bytesmemory returndata, stringmemory errorMessage) privatepure{
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly/// @solidity memory-safe-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
Contract Source Code
File 2 of 19: AddressArray.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;pragmaabicoderv1;/// @title Library that implements address array on mapping, stores array length at 0 index.libraryAddressArray{
errorIndexOutOfBounds();
errorPopFromEmptyArray();
errorOutputArrayTooSmall();
/// @dev Data struct containing raw mapping.structData {
mapping(uint256=>uint256) _raw;
}
/// @dev Length of array.functionlength(Data storageself) internalviewreturns (uint256) {
returnself._raw[0] >>160;
}
/// @dev Returns data item from `self` storage at `i`.functionat(Data storageself, uint256 i) internalviewreturns (address) {
returnaddress(uint160(self._raw[i]));
}
/// @dev Returns list of addresses from storage `self`.functionget(Data storageself) internalviewreturns (address[] memory arr) {
uint256 lengthAndFirst =self._raw[0];
arr =newaddress[](lengthAndFirst >>160);
_get(self, arr, lengthAndFirst);
}
/// @dev Puts list of addresses from `self` storage into `output` array.functionget(Data storageself, address[] memory output) internalviewreturns (address[] memory) {
return _get(self, output, self._raw[0]);
}
function_get(
Data storageself,
address[] memory output,
uint256 lengthAndFirst
) privateviewreturns (address[] memory) {
uint256 len = lengthAndFirst >>160;
if (len > output.length) revert OutputArrayTooSmall();
if (len >0) {
output[0] =address(uint160(lengthAndFirst));
unchecked {
for (uint256 i =1; i < len; i++) {
output[i] =address(uint160(self._raw[i]));
}
}
}
return output;
}
/// @dev Array push back `account` operation on storage `self`.functionpush(Data storageself, address account) internalreturns (uint256) {
unchecked {
uint256 lengthAndFirst =self._raw[0];
uint256 len = lengthAndFirst >>160;
if (len ==0) {
self._raw[0] = (1<<160) +uint160(account);
} else {
self._raw[0] = lengthAndFirst + (1<<160);
self._raw[len] =uint160(account);
}
return len +1;
}
}
/// @dev Array pop back operation for storage `self`.functionpop(Data storageself) internal{
unchecked {
uint256 lengthAndFirst =self._raw[0];
uint256 len = lengthAndFirst >>160;
if (len ==0) revert PopFromEmptyArray();
self._raw[len -1] =0;
if (len >1) {
self._raw[0] = lengthAndFirst - (1<<160);
}
}
}
/// @dev Set element for storage `self` at `index` to `account`.functionset(
Data storageself,
uint256 index,
address account
) internal{
uint256 len = length(self);
if (index >= len) revert IndexOutOfBounds();
if (index ==0) {
self._raw[0] = (len <<160) |uint160(account);
} else {
self._raw[index] =uint160(account);
}
}
}
Contract Source Code
File 3 of 19: AddressSet.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;pragmaabicoderv1;import"./AddressArray.sol";
/** @title Library that is using AddressArray library for AddressArray.Data
* and allows Set operations on address storage data:
* 1. add
* 2. remove
* 3. contains
*/libraryAddressSet{
usingAddressArrayforAddressArray.Data;
/** @dev Data struct from AddressArray.Data items
* and lookup mapping address => index in data array.
*/structData {
AddressArray.Data items;
mapping(address=>uint256) lookup;
}
/// @dev Length of data storage.functionlength(Data storage s) internalviewreturns (uint256) {
return s.items.length();
}
/// @dev Returns data item from `s` storage at `index`.functionat(Data storage s, uint256 index) internalviewreturns (address) {
return s.items.at(index);
}
/// @dev Returns true if storage `s` has `item`.functioncontains(Data storage s, address item) internalviewreturns (bool) {
return s.lookup[item] !=0;
}
/// @dev Adds `item` into storage `s` and returns true if successful.functionadd(Data storage s, address item) internalreturns (bool) {
if (s.lookup[item] >0) {
returnfalse;
}
s.lookup[item] = s.items.push(item);
returntrue;
}
/// @dev Removes `item` from storage `s` and returns true if successful.functionremove(Data storage s, address item) internalreturns (bool) {
uint256 index = s.lookup[item];
if (index ==0) {
returnfalse;
}
if (index < s.items.length()) {
unchecked {
address lastItem = s.items.at(s.items.length() -1);
s.items.set(index -1, lastItem);
s.lookup[lastItem] = index;
}
}
s.items.pop();
delete s.lookup[item];
returntrue;
}
}
Contract Source Code
File 4 of 19: Context.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)pragmasolidity ^0.8.0;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
}
Contract Source Code
File 5 of 19: FarmAccounting.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"@openzeppelin/contracts/utils/math/Math.sol";
libraryFarmAccounting{
errorZeroDuration();
errorDurationTooLarge();
errorAmountTooLarge();
structInfo {
uint40 finished;
uint32 duration;
uint184 reward;
}
uint256internalconstant _MAX_REWARD_AMOUNT =1e32; // 108 bitsuint256internalconstant _SCALE =1e18; // 60 bits/// @dev Requires extra 18 decimals for precision, result fits in 168 bitsfunctionfarmedSinceCheckpointScaled(Info memory info, uint256 checkpoint) internalviewreturns(uint256 amount) {
unchecked {
if (info.duration >0) {
uint256 elapsed = Math.min(block.timestamp, info.finished) - Math.min(checkpoint, info.finished);
// size of (type(uint32).max * _MAX_REWARD_AMOUNT * _SCALE) is less than 200 bits, so there is no overflowreturn elapsed * info.reward * _SCALE / info.duration;
}
}
}
functionstartFarming(Info storage info, uint256 amount, uint256 period) internalreturns(uint256) {
if (period ==0) revert ZeroDuration();
if (period >type(uint32).max) revert DurationTooLarge();
if (amount > _MAX_REWARD_AMOUNT) revert AmountTooLarge();
// If something left from prev farming add it to the new farming
Info memory prev = info;
if (block.timestamp< prev.finished) {
amount += prev.reward - farmedSinceCheckpointScaled(prev, prev.finished - prev.duration) / _SCALE;
}
(info.finished, info.duration, info.reward) = (uint40(block.timestamp+ period), uint32(period), uint184(amount));
return amount;
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 amount
) externalreturns (bool);
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)pragmasolidity ^0.8.0;/**
* @dev Standard math utilities missing in the Solidity language.
*/libraryMath{
enumRounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/functionmax(uint256 a, uint256 b) internalpurereturns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/functionmin(uint256 a, uint256 b) internalpurereturns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/functionaverage(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b) / 2 can overflow.return (a & b) + (a ^ b) /2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/functionceilDiv(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.return a ==0 ? 0 : (a -1) / b +1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/functionmulDiv(uint256 x,
uint256 y,
uint256 denominator
) internalpurereturns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256// variables such that product = prod1 * 2^256 + prod0.uint256 prod0; // Least significant 256 bits of the productuint256 prod1; // Most significant 256 bits of the productassembly {
let mm :=mulmod(x, y, not(0))
prod0 :=mul(x, y)
prod1 :=sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.if (prod1 ==0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.require(denominator > prod1);
///////////////////////////////////////////////// 512 by 256 division.///////////////////////////////////////////////// Make division exact by subtracting the remainder from [prod1 prod0].uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder :=mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 :=sub(prod1, gt(remainder, prod0))
prod0 :=sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.// See https://cs.stackexchange.com/q/138556/92363.// Does not overflow because the denominator cannot be zero at this stage in the function.uint256 twos = denominator & (~denominator +1);
assembly {
// Divide denominator by twos.
denominator :=div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 :=div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos :=add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for// four bits. That is, denominator * inv = 1 mod 2^4.uint256 inverse = (3* denominator) ^2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works// in modular arithmetic, doubling the correct bits in each step.
inverse *=2- denominator * inverse; // inverse mod 2^8
inverse *=2- denominator * inverse; // inverse mod 2^16
inverse *=2- denominator * inverse; // inverse mod 2^32
inverse *=2- denominator * inverse; // inverse mod 2^64
inverse *=2- denominator * inverse; // inverse mod 2^128
inverse *=2- denominator * inverse; // inverse mod 2^256// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/functionmulDiv(uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internalpurereturns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up &&mulmod(x, y, denominator) >0) {
result +=1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/functionsqrt(uint256 a) internalpurereturns (uint256) {
if (a ==0) {
return0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.//// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.//// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`//// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.uint256 result =1<< (log2(a) >>1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision// into the expected uint128 result.unchecked {
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/functionsqrt(uint256 a, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >>128>0) {
value >>=128;
result +=128;
}
if (value >>64>0) {
value >>=64;
result +=64;
}
if (value >>32>0) {
value >>=32;
result +=32;
}
if (value >>16>0) {
value >>=16;
result +=16;
}
if (value >>8>0) {
value >>=8;
result +=8;
}
if (value >>4>0) {
value >>=4;
result +=4;
}
if (value >>2>0) {
value >>=2;
result +=2;
}
if (value >>1>0) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result =log2(value);
return result + (rounding == Rounding.Up &&1<< result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >=10**64) {
value /=10**64;
result +=64;
}
if (value >=10**32) {
value /=10**32;
result +=32;
}
if (value >=10**16) {
value /=10**16;
result +=16;
}
if (value >=10**8) {
value /=10**8;
result +=8;
}
if (value >=10**4) {
value /=10**4;
result +=4;
}
if (value >=10**2) {
value /=10**2;
result +=2;
}
if (value >=10**1) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up &&10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/functionlog256(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >>128>0) {
value >>=128;
result +=16;
}
if (value >>64>0) {
value >>=64;
result +=8;
}
if (value >>32>0) {
value >>=32;
result +=4;
}
if (value >>16>0) {
value >>=16;
result +=2;
}
if (value >>8>0) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog256(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up &&1<< (result *8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)pragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;pragmaabicoderv1;import"@openzeppelin/contracts/token/ERC20/IERC20.sol";
import"@openzeppelin/contracts/token/ERC20/extensions/draft-IERC20Permit.sol";
import"../interfaces/IDaiLikePermit.sol";
import"../libraries/RevertReasonForwarder.sol";
/// @title Implements efficient safe methods for ERC20 interface.librarySafeERC20{
errorSafeTransferFailed();
errorSafeTransferFromFailed();
errorForceApproveFailed();
errorSafeIncreaseAllowanceFailed();
errorSafeDecreaseAllowanceFailed();
errorSafePermitBadLength();
/// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.functionsafeTransferFrom(
IERC20 token,
addressfrom,
address to,
uint256 amount
) internal{
bytes4 selector = token.transferFrom.selector;
bool success;
/// @solidity memory-safe-assemblyassembly { // solhint-disable-line no-inline-assemblylet data :=mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), from)
mstore(add(data, 0x24), to)
mstore(add(data, 0x44), amount)
success :=call(gas(), token, 0, data, 100, 0x0, 0x20)
if success {
switchreturndatasize()
case0 {
success :=gt(extcodesize(token), 0)
}
default {
success :=and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
if (!success) revert SafeTransferFromFailed();
}
/// @dev Ensures method do not revert or return boolean `true`, admits call to non-smart-contract.functionsafeTransfer(
IERC20 token,
address to,
uint256 value
) internal{
if (!_makeCall(token, token.transfer.selector, to, value)) {
revert SafeTransferFailed();
}
}
/// @dev If `approve(from, to, amount)` fails, try to `approve(from, to, 0)` before retry.functionforceApprove(
IERC20 token,
address spender,
uint256 value
) internal{
if (!_makeCall(token, token.approve.selector, spender, value)) {
if (
!_makeCall(token, token.approve.selector, spender, 0) ||!_makeCall(token, token.approve.selector, spender, value)
) {
revert ForceApproveFailed();
}
}
}
/// @dev Allowance increase with safe math check.functionsafeIncreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal{
uint256 allowance = token.allowance(address(this), spender);
if (value >type(uint256).max- allowance) revert SafeIncreaseAllowanceFailed();
forceApprove(token, spender, allowance + value);
}
/// @dev Allowance decrease with safe math check.functionsafeDecreaseAllowance(
IERC20 token,
address spender,
uint256 value
) internal{
uint256 allowance = token.allowance(address(this), spender);
if (value > allowance) revert SafeDecreaseAllowanceFailed();
forceApprove(token, spender, allowance - value);
}
/// @dev Calls either ERC20 or Dai `permit` for `token`, if unsuccessful forwards revert from external call.functionsafePermit(IERC20 token, bytescalldata permit) internal{
if (!tryPermit(token, permit)) RevertReasonForwarder.reRevert();
}
functiontryPermit(IERC20 token, bytescalldata permit) internalreturns(bool) {
if (permit.length==32*7) {
return _makeCalldataCall(token, IERC20Permit.permit.selector, permit);
}
if (permit.length==32*8) {
return _makeCalldataCall(token, IDaiLikePermit.permit.selector, permit);
}
revert SafePermitBadLength();
}
function_makeCall(
IERC20 token,
bytes4 selector,
address to,
uint256 amount
) privatereturns (bool success) {
/// @solidity memory-safe-assemblyassembly { // solhint-disable-line no-inline-assemblylet data :=mload(0x40)
mstore(data, selector)
mstore(add(data, 0x04), to)
mstore(add(data, 0x24), amount)
success :=call(gas(), token, 0, data, 0x44, 0x0, 0x20)
if success {
switchreturndatasize()
case0 {
success :=gt(extcodesize(token), 0)
}
default {
success :=and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
}
function_makeCalldataCall(
IERC20 token,
bytes4 selector,
bytescalldata args
) privatereturns (bool success) {
/// @solidity memory-safe-assemblyassembly { // solhint-disable-line no-inline-assemblylet len :=add(4, args.length)
let data :=mload(0x40)
mstore(data, selector)
calldatacopy(add(data, 0x04), args.offset, args.length)
success :=call(gas(), token, 0, data, len, 0x0, 0x20)
if success {
switchreturndatasize()
case0 {
success :=gt(extcodesize(token), 0)
}
default {
success :=and(gt(returndatasize(), 31), eq(mload(0), 1))
}
}
}
}
}
Contract Source Code
File 18 of 19: UserAccounting.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.0;import"./FarmAccounting.sol";
libraryUserAccounting{
structInfo {
uint40 checkpoint;
uint216 farmedPerTokenStored;
mapping(address=>int256) corrections;
}
functionfarmedPerToken(
Info storage info,
bytes32 context,
function(bytes32) internalviewreturns(uint256) lazyGetSupply,
function(bytes32, uint256) internalviewreturns(uint256) lazyGetFarmed
) internalviewreturns(uint256) {
(uint256 checkpoint, uint256 fpt) = (info.checkpoint, info.farmedPerTokenStored);
if (block.timestamp!= checkpoint) {
uint256 supply = lazyGetSupply(context);
if (supply >0) {
// fpt increases by 168 bit / supplyunchecked { fpt += lazyGetFarmed(context, checkpoint) / supply; }
}
}
return fpt;
}
functionfarmed(Info storage info, address account, uint256 balance, uint256 fpt) internalviewreturns(uint256) {
// balance * fpt is less than 168 bitreturnuint256(int256(balance * fpt) - info.corrections[account]) / FarmAccounting._SCALE;
}
functioneraseFarmed(Info storage info, address account, uint256 balance, uint256 fpt) internal{
// balance * fpt is less than 168 bit
info.corrections[account] =int256(balance * fpt);
}
functionupdateFarmedPerToken(Info storage info, uint256 fpt) internal{
(info.checkpoint, info.farmedPerTokenStored) = (uint40(block.timestamp), uint216(fpt));
}
functionupdateBalances(Info storage info, addressfrom, address to, uint256 amount, uint256 fpt) internal{
bool fromZero = (from==address(0));
bool toZero = (to ==address(0));
if (amount >0&&from!= to) {
if (fromZero || toZero) {
updateFarmedPerToken(info, fpt);
}
// fpt is less than 168 bit, so amount should be less 98 bitint256 diff =int256(amount * fpt);
if (!fromZero) {
info.corrections[from] -= diff;
}
if (!toZero) {
info.corrections[to] += diff;
}
}
}
}
Contract Source Code
File 19 of 19: draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/interfaceIERC20Permit{
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/functionpermit(address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/functionnonces(address owner) externalviewreturns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/// solhint-disable-next-line func-name-mixedcasefunctionDOMAIN_SEPARATOR() externalviewreturns (bytes32);
}