// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.5.0;
library AddressStringUtil {
// converts an address to the uppercase hex string, extracting only len bytes (up to 20, multiple of 2)
function toAsciiString(address addr, uint256 len) internal pure returns (string memory) {
require(len % 2 == 0 && len > 0 && len <= 40, 'AddressStringUtil: INVALID_LEN');
bytes memory s = new bytes(len);
uint256 addrNum = uint256(addr);
for (uint256 i = 0; i < len / 2; i++) {
// shift right and truncate all but the least significant byte to extract the byte at position 19-i
uint8 b = uint8(addrNum >> (8 * (19 - i)));
// first hex character is the most significant 4 bits
uint8 hi = b >> 4;
// second hex character is the least significant 4 bits
uint8 lo = b - (hi << 4);
s[2 * i] = char(hi);
s[2 * i + 1] = char(lo);
}
return string(s);
}
// hi and lo are only 4 bits and between 0 and 16
// this method converts those values to the unicode/ascii code point for the hex representation
// uses upper case for the characters
function char(uint8 b) private pure returns (bytes1 c) {
if (b < 10) {
return bytes1(b + 0x30);
} else {
return bytes1(b + 0x37);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title BitMath
/// @dev This library provides functionality for computing bit properties of an unsigned integer
library BitMath {
/// @notice Returns the index of the most significant bit of the number,
/// where the least significant bit is at index 0 and the most significant bit is at index 255
/// @dev The function satisfies the property:
/// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1)
/// @param x the value for which to compute the most significant bit, must be greater than 0
/// @return r the index of the most significant bit
function mostSignificantBit(uint256 x) internal pure returns (uint8 r) {
require(x > 0);
if (x >= 0x100000000000000000000000000000000) {
x >>= 128;
r += 128;
}
if (x >= 0x10000000000000000) {
x >>= 64;
r += 64;
}
if (x >= 0x100000000) {
x >>= 32;
r += 32;
}
if (x >= 0x10000) {
x >>= 16;
r += 16;
}
if (x >= 0x100) {
x >>= 8;
r += 8;
}
if (x >= 0x10) {
x >>= 4;
r += 4;
}
if (x >= 0x4) {
x >>= 2;
r += 2;
}
if (x >= 0x2) r += 1;
}
/// @notice Returns the index of the least significant bit of the number,
/// where the least significant bit is at index 0 and the most significant bit is at index 255
/// @dev The function satisfies the property:
/// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0)
/// @param x the value for which to compute the least significant bit, must be greater than 0
/// @return r the index of the least significant bit
function leastSignificantBit(uint256 x) internal pure returns (uint8 r) {
require(x > 0);
r = 255;
if (x & type(uint128).max > 0) {
r -= 128;
} else {
x >>= 128;
}
if (x & type(uint64).max > 0) {
r -= 64;
} else {
x >>= 64;
}
if (x & type(uint32).max > 0) {
r -= 32;
} else {
x >>= 32;
}
if (x & type(uint16).max > 0) {
r -= 16;
} else {
x >>= 16;
}
if (x & type(uint8).max > 0) {
r -= 8;
} else {
x >>= 8;
}
if (x & 0xf > 0) {
r -= 4;
} else {
x >>= 4;
}
if (x & 0x3 > 0) {
r -= 2;
} else {
x >>= 2;
}
if (x & 0x1 > 0) r -= 1;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
/// @title Function for getting block timestamp
/// @dev Base contract that is overridden for tests
abstract contract BlockTimestamp {
/// @dev Method that exists purely to be overridden for tests
/// @return The current block timestamp
function _blockTimestamp() internal view virtual returns (uint256) {
return block.timestamp;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* @title Solidity Bytes Arrays Utils
* @author Gonçalo Sá <goncalo.sa@consensys.net>
*
* @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
* The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
*/
pragma solidity >=0.5.0 <0.8.0;
library BytesLib {
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
require(_length + 31 >= _length, 'slice_overflow');
require(_start + _length >= _start, 'slice_overflow');
require(_bytes.length >= _start + _length, 'slice_outOfBounds');
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
require(_start + 20 >= _start, 'toAddress_overflow');
require(_bytes.length >= _start + 20, 'toAddress_outOfBounds');
address tempAddress;
assembly {
tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
}
return tempAddress;
}
function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) {
require(_start + 3 >= _start, 'toUint24_overflow');
require(_bytes.length >= _start + 3, 'toUint24_outOfBounds');
uint24 tempUint;
assembly {
tempUint := mload(add(add(_bytes, 0x3), _start))
}
return tempUint;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import '../interfaces/IZebraV3Pool.sol';
import './PoolAddress.sol';
/// @notice Provides validation for callbacks from Zebra V3 Pools
library CallbackValidation {
/// @notice Returns the address of a valid Zebra V3 Pool
/// @param factory The contract address of the Zebra V3 factory
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The V3 pool contract address
function verifyCallback(
address factory,
address tokenA,
address tokenB,
uint24 fee
) internal view returns (IZebraV3Pool pool) {
return verifyCallback(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee));
}
/// @notice Returns the address of a valid Zebra V3 Pool
/// @param factory The contract address of the Zebra V3 factory
/// @param poolKey The identifying key of the V3 pool
/// @return pool The V3 pool contract address
function verifyCallback(address factory, PoolAddress.PoolKey memory poolKey)
internal
view
returns (IZebraV3Pool pool)
{
pool = IZebraV3Pool(PoolAddress.computeAddress(factory, poolKey));
require(msg.sender == address(pool));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.0;
/// @title Function for getting the current chain ID
library ChainId {
/// @dev Gets the current chain ID
/// @return chainId The current chain ID
function get() internal pure returns (uint256 chainId) {
assembly {
chainId := chainid()
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts may inherit from this and call {_registerInterface} to declare
* their support of an interface.
*/
abstract contract ERC165 is IERC165 {
/*
* bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
*/
bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
/**
* @dev Mapping of interface ids to whether or not it's supported.
*/
mapping(bytes4 => bool) private _supportedInterfaces;
constructor () {
// Derived contracts need only register support for their own interfaces,
// we register support for ERC165 itself here
_registerInterface(_INTERFACE_ID_ERC165);
}
/**
* @dev See {IERC165-supportsInterface}.
*
* Time complexity O(1), guaranteed to always use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return _supportedInterfaces[interfaceId];
}
/**
* @dev Registers the contract as an implementer of the interface defined by
* `interfaceId`. Support of the actual ERC165 interface is automatic and
* registering its interface id is not required.
*
* See {IERC165-supportsInterface}.
*
* Requirements:
*
* - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`).
*/
function _registerInterface(bytes4 interfaceId) internal virtual {
require(interfaceId != 0xffffffff, "ERC165: invalid interface id");
_supportedInterfaces[interfaceId] = true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "../../utils/Context.sol";
import "./IERC721.sol";
import "./IERC721Metadata.sol";
import "./IERC721Enumerable.sol";
import "./IERC721Receiver.sol";
import "../../introspection/ERC165.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
import "../../utils/EnumerableSet.sol";
import "../../utils/EnumerableMap.sol";
import "../../utils/Strings.sol";
/**
* @title ERC721 Non-Fungible Token Standard basic implementation
* @dev see https://eips.ethereum.org/EIPS/eip-721
*/
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Enumerable {
using SafeMath for uint256;
using Address for address;
using EnumerableSet for EnumerableSet.UintSet;
using EnumerableMap for EnumerableMap.UintToAddressMap;
using Strings for uint256;
// Equals to `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
// which can be also obtained as `IERC721Receiver(0).onERC721Received.selector`
bytes4 private constant _ERC721_RECEIVED = 0x150b7a02;
// Mapping from holder address to their (enumerable) set of owned tokens
mapping (address => EnumerableSet.UintSet) private _holderTokens;
// Enumerable mapping from token ids to their owners
EnumerableMap.UintToAddressMap private _tokenOwners;
// Mapping from token ID to approved address
mapping (uint256 => address) private _tokenApprovals;
// Mapping from owner to operator approvals
mapping (address => mapping (address => bool)) private _operatorApprovals;
// Token name
string private _name;
// Token symbol
string private _symbol;
// Optional mapping for token URIs
mapping (uint256 => string) private _tokenURIs;
// Base URI
string private _baseURI;
/*
* bytes4(keccak256('balanceOf(address)')) == 0x70a08231
* bytes4(keccak256('ownerOf(uint256)')) == 0x6352211e
* bytes4(keccak256('approve(address,uint256)')) == 0x095ea7b3
* bytes4(keccak256('getApproved(uint256)')) == 0x081812fc
* bytes4(keccak256('setApprovalForAll(address,bool)')) == 0xa22cb465
* bytes4(keccak256('isApprovedForAll(address,address)')) == 0xe985e9c5
* bytes4(keccak256('transferFrom(address,address,uint256)')) == 0x23b872dd
* bytes4(keccak256('safeTransferFrom(address,address,uint256)')) == 0x42842e0e
* bytes4(keccak256('safeTransferFrom(address,address,uint256,bytes)')) == 0xb88d4fde
*
* => 0x70a08231 ^ 0x6352211e ^ 0x095ea7b3 ^ 0x081812fc ^
* 0xa22cb465 ^ 0xe985e9c5 ^ 0x23b872dd ^ 0x42842e0e ^ 0xb88d4fde == 0x80ac58cd
*/
bytes4 private constant _INTERFACE_ID_ERC721 = 0x80ac58cd;
/*
* bytes4(keccak256('name()')) == 0x06fdde03
* bytes4(keccak256('symbol()')) == 0x95d89b41
* bytes4(keccak256('tokenURI(uint256)')) == 0xc87b56dd
*
* => 0x06fdde03 ^ 0x95d89b41 ^ 0xc87b56dd == 0x5b5e139f
*/
bytes4 private constant _INTERFACE_ID_ERC721_METADATA = 0x5b5e139f;
/*
* bytes4(keccak256('totalSupply()')) == 0x18160ddd
* bytes4(keccak256('tokenOfOwnerByIndex(address,uint256)')) == 0x2f745c59
* bytes4(keccak256('tokenByIndex(uint256)')) == 0x4f6ccce7
*
* => 0x18160ddd ^ 0x2f745c59 ^ 0x4f6ccce7 == 0x780e9d63
*/
bytes4 private constant _INTERFACE_ID_ERC721_ENUMERABLE = 0x780e9d63;
/**
* @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
*/
constructor (string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
// register the supported interfaces to conform to ERC721 via ERC165
_registerInterface(_INTERFACE_ID_ERC721);
_registerInterface(_INTERFACE_ID_ERC721_METADATA);
_registerInterface(_INTERFACE_ID_ERC721_ENUMERABLE);
}
/**
* @dev See {IERC721-balanceOf}.
*/
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ERC721: balance query for the zero address");
return _holderTokens[owner].length();
}
/**
* @dev See {IERC721-ownerOf}.
*/
function ownerOf(uint256 tokenId) public view virtual override returns (address) {
return _tokenOwners.get(tokenId, "ERC721: owner query for nonexistent token");
}
/**
* @dev See {IERC721Metadata-name}.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev See {IERC721Metadata-symbol}.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev See {IERC721Metadata-tokenURI}.
*/
function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token");
string memory _tokenURI = _tokenURIs[tokenId];
string memory base = baseURI();
// If there is no base URI, return the token URI.
if (bytes(base).length == 0) {
return _tokenURI;
}
// If both are set, concatenate the baseURI and tokenURI (via abi.encodePacked).
if (bytes(_tokenURI).length > 0) {
return string(abi.encodePacked(base, _tokenURI));
}
// If there is a baseURI but no tokenURI, concatenate the tokenID to the baseURI.
return string(abi.encodePacked(base, tokenId.toString()));
}
/**
* @dev Returns the base URI set via {_setBaseURI}. This will be
* automatically added as a prefix in {tokenURI} to each token's URI, or
* to the token ID if no specific URI is set for that token ID.
*/
function baseURI() public view virtual returns (string memory) {
return _baseURI;
}
/**
* @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
return _holderTokens[owner].at(index);
}
/**
* @dev See {IERC721Enumerable-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
// _tokenOwners are indexed by tokenIds, so .length() returns the number of tokenIds
return _tokenOwners.length();
}
/**
* @dev See {IERC721Enumerable-tokenByIndex}.
*/
function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
(uint256 tokenId, ) = _tokenOwners.at(index);
return tokenId;
}
/**
* @dev See {IERC721-approve}.
*/
function approve(address to, uint256 tokenId) public virtual override {
address owner = ERC721.ownerOf(tokenId);
require(to != owner, "ERC721: approval to current owner");
require(_msgSender() == owner || ERC721.isApprovedForAll(owner, _msgSender()),
"ERC721: approve caller is not owner nor approved for all"
);
_approve(to, tokenId);
}
/**
* @dev See {IERC721-getApproved}.
*/
function getApproved(uint256 tokenId) public view virtual override returns (address) {
require(_exists(tokenId), "ERC721: approved query for nonexistent token");
return _tokenApprovals[tokenId];
}
/**
* @dev See {IERC721-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual override {
require(operator != _msgSender(), "ERC721: approve to caller");
_operatorApprovals[_msgSender()][operator] = approved;
emit ApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC721-isApprovedForAll}.
*/
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _operatorApprovals[owner][operator];
}
/**
* @dev See {IERC721-transferFrom}.
*/
function transferFrom(address from, address to, uint256 tokenId) public virtual override {
//solhint-disable-next-line max-line-length
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_transfer(from, to, tokenId);
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
safeTransferFrom(from, to, tokenId, "");
}
/**
* @dev See {IERC721-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory _data) public virtual override {
require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved");
_safeTransfer(from, to, tokenId, _data);
}
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* `_data` is additional data, it has no specified format and it is sent in call to `to`.
*
* This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
* implement alternative mechanisms to perform token transfer, such as signature-based.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeTransfer(address from, address to, uint256 tokenId, bytes memory _data) internal virtual {
_transfer(from, to, tokenId);
require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Returns whether `tokenId` exists.
*
* Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
*
* Tokens start existing when they are minted (`_mint`),
* and stop existing when they are burned (`_burn`).
*/
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _tokenOwners.contains(tokenId);
}
/**
* @dev Returns whether `spender` is allowed to manage `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
require(_exists(tokenId), "ERC721: operator query for nonexistent token");
address owner = ERC721.ownerOf(tokenId);
return (spender == owner || getApproved(tokenId) == spender || ERC721.isApprovedForAll(owner, spender));
}
/**
* @dev Safely mints `tokenId` and transfers it to `to`.
*
* Requirements:
d*
* - `tokenId` must not exist.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function _safeMint(address to, uint256 tokenId) internal virtual {
_safeMint(to, tokenId, "");
}
/**
* @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
* forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
*/
function _safeMint(address to, uint256 tokenId, bytes memory _data) internal virtual {
_mint(to, tokenId);
require(_checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer");
}
/**
* @dev Mints `tokenId` and transfers it to `to`.
*
* WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
*
* Requirements:
*
* - `tokenId` must not exist.
* - `to` cannot be the zero address.
*
* Emits a {Transfer} event.
*/
function _mint(address to, uint256 tokenId) internal virtual {
require(to != address(0), "ERC721: mint to the zero address");
require(!_exists(tokenId), "ERC721: token already minted");
_beforeTokenTransfer(address(0), to, tokenId);
_holderTokens[to].add(tokenId);
_tokenOwners.set(tokenId, to);
emit Transfer(address(0), to, tokenId);
}
/**
* @dev Destroys `tokenId`.
* The approval is cleared when the token is burned.
*
* Requirements:
*
* - `tokenId` must exist.
*
* Emits a {Transfer} event.
*/
function _burn(uint256 tokenId) internal virtual {
address owner = ERC721.ownerOf(tokenId); // internal owner
_beforeTokenTransfer(owner, address(0), tokenId);
// Clear approvals
_approve(address(0), tokenId);
// Clear metadata (if any)
if (bytes(_tokenURIs[tokenId]).length != 0) {
delete _tokenURIs[tokenId];
}
_holderTokens[owner].remove(tokenId);
_tokenOwners.remove(tokenId);
emit Transfer(owner, address(0), tokenId);
}
/**
* @dev Transfers `tokenId` from `from` to `to`.
* As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
*
* Emits a {Transfer} event.
*/
function _transfer(address from, address to, uint256 tokenId) internal virtual {
require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); // internal owner
require(to != address(0), "ERC721: transfer to the zero address");
_beforeTokenTransfer(from, to, tokenId);
// Clear approvals from the previous owner
_approve(address(0), tokenId);
_holderTokens[from].remove(tokenId);
_holderTokens[to].add(tokenId);
_tokenOwners.set(tokenId, to);
emit Transfer(from, to, tokenId);
}
/**
* @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
require(_exists(tokenId), "ERC721Metadata: URI set of nonexistent token");
_tokenURIs[tokenId] = _tokenURI;
}
/**
* @dev Internal function to set the base URI for all token IDs. It is
* automatically added as a prefix to the value returned in {tokenURI},
* or to the token ID if {tokenURI} is empty.
*/
function _setBaseURI(string memory baseURI_) internal virtual {
_baseURI = baseURI_;
}
/**
* @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
* The call is not executed if the target address is not a contract.
*
* @param from address representing the previous owner of the given token ID
* @param to target address that will receive the tokens
* @param tokenId uint256 ID of the token to be transferred
* @param _data bytes optional data to send along with the call
* @return bool whether the call correctly returned the expected magic value
*/
function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory _data)
private returns (bool)
{
if (!to.isContract()) {
return true;
}
bytes memory returndata = to.functionCall(abi.encodeWithSelector(
IERC721Receiver(to).onERC721Received.selector,
_msgSender(),
from,
tokenId,
_data
), "ERC721: transfer to non ERC721Receiver implementer");
bytes4 retval = abi.decode(returndata, (bytes4));
return (retval == _ERC721_RECEIVED);
}
/**
* @dev Approve `to` to operate on `tokenId`
*
* Emits an {Approval} event.
*/
function _approve(address to, uint256 tokenId) internal virtual {
_tokenApprovals[tokenId] = to;
emit Approval(ERC721.ownerOf(tokenId), to, tokenId); // internal owner
}
/**
* @dev Hook that is called before any token transfer. This includes minting
* and burning.
*
* Calling conditions:
*
* - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be
* transferred to `to`.
* - When `from` is zero, `tokenId` will be minted for `to`.
* - When `to` is zero, ``from``'s `tokenId` will be burned.
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 tokenId) internal virtual { }
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import '@openzeppelin/contracts/token/ERC721/ERC721.sol';
import '@openzeppelin/contracts/utils/Address.sol';
import '../libraries/ChainId.sol';
import '../interfaces/external/IERC1271.sol';
import '../interfaces/IERC721Permit.sol';
import './BlockTimestamp.sol';
/// @title ERC721 with permit
/// @notice Nonfungible tokens that support an approve via signature, i.e. permit
abstract contract ERC721Permit is BlockTimestamp, ERC721, IERC721Permit {
/// @dev Gets the current nonce for a token ID and then increments it, returning the original value
function _getAndIncrementNonce(uint256 tokenId) internal virtual returns (uint256);
/// @dev The hash of the name used in the permit signature verification
bytes32 private immutable nameHash;
/// @dev The hash of the version string used in the permit signature verification
bytes32 private immutable versionHash;
/// @notice Computes the nameHash and versionHash
constructor(
string memory name_,
string memory symbol_,
string memory version_
) ERC721(name_, symbol_) {
nameHash = keccak256(bytes(name_));
versionHash = keccak256(bytes(version_));
}
/// @inheritdoc IERC721Permit
function DOMAIN_SEPARATOR() public view override returns (bytes32) {
return
keccak256(
abi.encode(
// keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)')
0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f,
nameHash,
versionHash,
ChainId.get(),
address(this)
)
);
}
/// @inheritdoc IERC721Permit
/// @dev Value is equal to keccak256("Permit(address spender,uint256 tokenId,uint256 nonce,uint256 deadline)");
bytes32 public constant override PERMIT_TYPEHASH =
0x49ecf333e5b8c95c40fdafc95c1ad136e8914a8fb55e9dc8bb01eaa83a2df9ad;
/// @inheritdoc IERC721Permit
function permit(
address spender,
uint256 tokenId,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable override {
require(_blockTimestamp() <= deadline, 'Permit expired');
bytes32 digest =
keccak256(
abi.encodePacked(
'\x19\x01',
DOMAIN_SEPARATOR(),
keccak256(abi.encode(PERMIT_TYPEHASH, spender, tokenId, _getAndIncrementNonce(tokenId), deadline))
)
);
address owner = ownerOf(tokenId);
require(spender != owner, 'ERC721Permit: approval to current owner');
if (Address.isContract(owner)) {
require(IERC1271(owner).isValidSignature(digest, abi.encodePacked(r, s, v)) == 0x1626ba7e, 'Unauthorized');
} else {
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0), 'Invalid signature');
require(recoveredAddress == owner, 'Unauthorized');
}
_approve(spender, tokenId);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Library for managing an enumerable variant of Solidity's
* https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
* type.
*
* Maps have the following properties:
*
* - Entries are added, removed, and checked for existence in constant time
* (O(1)).
* - Entries are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableMap for EnumerableMap.UintToAddressMap;
*
* // Declare a set state variable
* EnumerableMap.UintToAddressMap private myMap;
* }
* ```
*
* As of v3.0.0, only maps of type `uint256 -> address` (`UintToAddressMap`) are
* supported.
*/
library EnumerableMap {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Map type with
// bytes32 keys and values.
// The Map implementation uses private functions, and user-facing
// implementations (such as Uint256ToAddressMap) are just wrappers around
// the underlying Map.
// This means that we can only create new EnumerableMaps for types that fit
// in bytes32.
struct MapEntry {
bytes32 _key;
bytes32 _value;
}
struct Map {
// Storage of map keys and values
MapEntry[] _entries;
// Position of the entry defined by a key in the `entries` array, plus 1
// because index 0 means a key is not in the map.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function _set(Map storage map, bytes32 key, bytes32 value) private returns (bool) {
// We read and store the key's index to prevent multiple reads from the same storage slot
uint256 keyIndex = map._indexes[key];
if (keyIndex == 0) { // Equivalent to !contains(map, key)
map._entries.push(MapEntry({ _key: key, _value: value }));
// The entry is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
map._indexes[key] = map._entries.length;
return true;
} else {
map._entries[keyIndex - 1]._value = value;
return false;
}
}
/**
* @dev Removes a key-value pair from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function _remove(Map storage map, bytes32 key) private returns (bool) {
// We read and store the key's index to prevent multiple reads from the same storage slot
uint256 keyIndex = map._indexes[key];
if (keyIndex != 0) { // Equivalent to contains(map, key)
// To delete a key-value pair from the _entries array in O(1), we swap the entry to delete with the last one
// in the array, and then remove the last entry (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = keyIndex - 1;
uint256 lastIndex = map._entries.length - 1;
// When the entry to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
MapEntry storage lastEntry = map._entries[lastIndex];
// Move the last entry to the index where the entry to delete is
map._entries[toDeleteIndex] = lastEntry;
// Update the index for the moved entry
map._indexes[lastEntry._key] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved entry was stored
map._entries.pop();
// Delete the index for the deleted slot
delete map._indexes[key];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function _contains(Map storage map, bytes32 key) private view returns (bool) {
return map._indexes[key] != 0;
}
/**
* @dev Returns the number of key-value pairs in the map. O(1).
*/
function _length(Map storage map) private view returns (uint256) {
return map._entries.length;
}
/**
* @dev Returns the key-value pair stored at position `index` in the map. O(1).
*
* Note that there are no guarantees on the ordering of entries inside the
* array, and it may change when more entries are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Map storage map, uint256 index) private view returns (bytes32, bytes32) {
require(map._entries.length > index, "EnumerableMap: index out of bounds");
MapEntry storage entry = map._entries[index];
return (entry._key, entry._value);
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function _tryGet(Map storage map, bytes32 key) private view returns (bool, bytes32) {
uint256 keyIndex = map._indexes[key];
if (keyIndex == 0) return (false, 0); // Equivalent to contains(map, key)
return (true, map._entries[keyIndex - 1]._value); // All indexes are 1-based
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function _get(Map storage map, bytes32 key) private view returns (bytes32) {
uint256 keyIndex = map._indexes[key];
require(keyIndex != 0, "EnumerableMap: nonexistent key"); // Equivalent to contains(map, key)
return map._entries[keyIndex - 1]._value; // All indexes are 1-based
}
/**
* @dev Same as {_get}, with a custom error message when `key` is not in the map.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {_tryGet}.
*/
function _get(Map storage map, bytes32 key, string memory errorMessage) private view returns (bytes32) {
uint256 keyIndex = map._indexes[key];
require(keyIndex != 0, errorMessage); // Equivalent to contains(map, key)
return map._entries[keyIndex - 1]._value; // All indexes are 1-based
}
// UintToAddressMap
struct UintToAddressMap {
Map _inner;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) {
return _set(map._inner, bytes32(key), bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) {
return _remove(map._inner, bytes32(key));
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) {
return _contains(map._inner, bytes32(key));
}
/**
* @dev Returns the number of elements in the map. O(1).
*/
function length(UintToAddressMap storage map) internal view returns (uint256) {
return _length(map._inner);
}
/**
* @dev Returns the element stored at position `index` in the set. O(1).
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) {
(bytes32 key, bytes32 value) = _at(map._inner, index);
return (uint256(key), address(uint160(uint256(value))));
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*
* _Available since v3.4._
*/
function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) {
(bool success, bytes32 value) = _tryGet(map._inner, bytes32(key));
return (success, address(uint160(uint256(value))));
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(UintToAddressMap storage map, uint256 key) internal view returns (address) {
return address(uint160(uint256(_get(map._inner, bytes32(key)))));
}
/**
* @dev Same as {get}, with a custom error message when `key` is not in the map.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryGet}.
*/
function get(UintToAddressMap storage map, uint256 key, string memory errorMessage) internal view returns (address) {
return address(uint160(uint256(_get(map._inner, bytes32(key), errorMessage))));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping (bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) { // Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs
// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.
bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
require(set._values.length > index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint128
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
library FixedPoint128 {
uint256 internal constant Q128 = 0x100000000000000000000000000000000;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0 <0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = -denominator & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.7.6;
library HexStrings {
bytes16 internal constant ALPHABET = '0123456789abcdef';
/// @notice Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
/// @dev Credit to Open Zeppelin under MIT license https://github.com/OpenZeppelin/openzeppelin-contracts/blob/243adff49ce1700e0ecb99fe522fb16cff1d1ddc/contracts/utils/Strings.sol#L55
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = '0';
buffer[1] = 'x';
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = ALPHABET[value & 0xf];
value >>= 4;
}
require(value == 0, 'Strings: hex length insufficient');
return string(buffer);
}
function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length);
for (uint256 i = buffer.length; i > 0; i--) {
buffer[i - 1] = ALPHABET[value & 0xf];
value >>= 4;
}
return string(buffer);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Interface for verifying contract-based account signatures
/// @notice Interface that verifies provided signature for the data
/// @dev Interface defined by EIP-1271
interface IERC1271 {
/// @notice Returns whether the provided signature is valid for the provided data
/// @dev MUST return the bytes4 magic value 0x1626ba7e when function passes.
/// MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5).
/// MUST allow external calls.
/// @param hash Hash of the data to be signed
/// @param signature Signature byte array associated with _data
/// @return magicValue The bytes4 magic value 0x1626ba7e
function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.7.0;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
/// @title IERC20Metadata
/// @title Interface for ERC20 Metadata
/// @notice Extension to IERC20 that includes token metadata
interface IERC20Metadata is IERC20 {
/// @return The name of the token
function name() external view returns (string memory);
/// @return The symbol of the token
function symbol() external view returns (string memory);
/// @return The number of decimal places the token has
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Minimal ERC20 interface for Zebra
/// @notice Contains a subset of the full ERC20 interface that is used in Zebra V3
interface IERC20Minimal {
/// @notice Returns the balance of a token
/// @param account The account for which to look up the number of tokens it has, i.e. its balance
/// @return The number of tokens held by the account
function balanceOf(address account) external view returns (uint256);
/// @notice Transfers the amount of token from the `msg.sender` to the recipient
/// @param recipient The account that will receive the amount transferred
/// @param amount The number of tokens to send from the sender to the recipient
/// @return Returns true for a successful transfer, false for an unsuccessful transfer
function transfer(address recipient, uint256 amount) external returns (bool);
/// @notice Returns the current allowance given to a spender by an owner
/// @param owner The account of the token owner
/// @param spender The account of the token spender
/// @return The current allowance granted by `owner` to `spender`
function allowance(address owner, address spender) external view returns (uint256);
/// @notice Sets the allowance of a spender from the `msg.sender` to the value `amount`
/// @param spender The account which will be allowed to spend a given amount of the owners tokens
/// @param amount The amount of tokens allowed to be used by `spender`
/// @return Returns true for a successful approval, false for unsuccessful
function approve(address spender, uint256 amount) external returns (bool);
/// @notice Transfers `amount` tokens from `sender` to `recipient` up to the allowance given to the `msg.sender`
/// @param sender The account from which the transfer will be initiated
/// @param recipient The recipient of the transfer
/// @param amount The amount of the transfer
/// @return Returns true for a successful transfer, false for unsuccessful
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/// @notice Event emitted when tokens are transferred from one address to another, either via `#transfer` or `#transferFrom`.
/// @param from The account from which the tokens were sent, i.e. the balance decreased
/// @param to The account to which the tokens were sent, i.e. the balance increased
/// @param value The amount of tokens that were transferred
event Transfer(address indexed from, address indexed to, uint256 value);
/// @notice Event emitted when the approval amount for the spender of a given owner's tokens changes.
/// @param owner The account that approved spending of its tokens
/// @param spender The account for which the spending allowance was modified
/// @param value The new allowance from the owner to the spender
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
* given `owner`'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Interface for permit
/// @notice Interface used by DAI/CHAI for permit
interface IERC20PermitAllowed {
/// @notice Approve the spender to spend some tokens via the holder signature
/// @dev This is the permit interface used by DAI and CHAI
/// @param holder The address of the token holder, the token owner
/// @param spender The address of the token spender
/// @param nonce The holder's nonce, increases at each call to permit
/// @param expiry The timestamp at which the permit is no longer valid
/// @param allowed Boolean that sets approval amount, true for type(uint256).max and false for 0
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function permit(
address holder,
address spender,
uint256 nonce,
uint256 expiry,
bool allowed,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "../../introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "./IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "./IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional metadata extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Metadata is IERC721 {
/**
* @dev Returns the token collection name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the token collection symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
*/
function tokenURI(uint256 tokenId) external view returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
/// @title ERC721 with permit
/// @notice Extension to ERC721 that includes a permit function for signature based approvals
interface IERC721Permit is IERC721 {
/// @notice The permit typehash used in the permit signature
/// @return The typehash for the permit
function PERMIT_TYPEHASH() external pure returns (bytes32);
/// @notice The domain separator used in the permit signature
/// @return The domain seperator used in encoding of permit signature
function DOMAIN_SEPARATOR() external view returns (bytes32);
/// @notice Approve of a specific token ID for spending by spender via signature
/// @param spender The account that is being approved
/// @param tokenId The ID of the token that is being approved for spending
/// @param deadline The deadline timestamp by which the call must be mined for the approve to work
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function permit(
address spender,
uint256 tokenId,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
*/
function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title Multicall interface
/// @notice Enables calling multiple methods in a single call to the contract
interface IMulticall {
/// @notice Call multiple functions in the current contract and return the data from all of them if they all succeed
/// @dev The `msg.value` should not be trusted for any method callable from multicall.
/// @param data The encoded function data for each of the calls to make to this contract
/// @return results The results from each of the calls passed in via data
function multicall(bytes[] calldata data) external payable returns (bytes[] memory results);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import '@openzeppelin/contracts/token/ERC721/IERC721Metadata.sol';
import '@openzeppelin/contracts/token/ERC721/IERC721Enumerable.sol';
import './IPoolInitializer.sol';
import './IERC721Permit.sol';
import './IPeripheryPayments.sol';
import './IPeripheryImmutableState.sol';
import '../libraries/PoolAddress.sol';
/// @title Non-fungible token for positions
/// @notice Wraps Zebra V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is
IPoolInitializer,
IPeripheryPayments,
IPeripheryImmutableState,
IERC721Metadata,
IERC721Enumerable,
IERC721Permit
{
/// @notice Emitted when liquidity is increased for a position NFT
/// @dev Also emitted when a token is minted
/// @param tokenId The ID of the token for which liquidity was increased
/// @param liquidity The amount by which liquidity for the NFT position was increased
/// @param amount0 The amount of token0 that was paid for the increase in liquidity
/// @param amount1 The amount of token1 that was paid for the increase in liquidity
event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when liquidity is decreased for a position NFT
/// @param tokenId The ID of the token for which liquidity was decreased
/// @param liquidity The amount by which liquidity for the NFT position was decreased
/// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
/// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
/// @notice Emitted when tokens are collected for a position NFT
/// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
/// @param tokenId The ID of the token for which underlying tokens were collected
/// @param recipient The address of the account that received the collected tokens
/// @param amount0 The amount of token0 owed to the position that was collected
/// @param amount1 The amount of token1 owed to the position that was collected
event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);
/// @notice Returns the position information associated with a given token ID.
/// @dev Throws if the token ID is not valid.
/// @param tokenId The ID of the token that represents the position
/// @return nonce The nonce for permits
/// @return operator The address that is approved for spending
/// @return token0 The address of the token0 for a specific pool
/// @return token1 The address of the token1 for a specific pool
/// @return fee The fee associated with the pool
/// @return tickLower The lower end of the tick range for the position
/// @return tickUpper The higher end of the tick range for the position
/// @return liquidity The liquidity of the position
/// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
/// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
/// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
/// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
function positions(uint256 tokenId)
external
view
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
struct MintParams {
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
address recipient;
uint256 deadline;
}
/// @notice Creates a new position wrapped in a NFT
/// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
/// a method does not exist, i.e. the pool is assumed to be initialized.
/// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
/// @return tokenId The ID of the token that represents the minted position
/// @return liquidity The amount of liquidity for this position
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function mint(MintParams calldata params)
external
payable
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
struct IncreaseLiquidityParams {
uint256 tokenId;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
/// @param params tokenId The ID of the token for which liquidity is being increased,
/// amount0Desired The desired amount of token0 to be spent,
/// amount1Desired The desired amount of token1 to be spent,
/// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
/// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
/// deadline The time by which the transaction must be included to effect the change
/// @return liquidity The new liquidity amount as a result of the increase
/// @return amount0 The amount of token0 to acheive resulting liquidity
/// @return amount1 The amount of token1 to acheive resulting liquidity
function increaseLiquidity(IncreaseLiquidityParams calldata params)
external
payable
returns (
uint128 liquidity,
uint256 amount0,
uint256 amount1
);
struct DecreaseLiquidityParams {
uint256 tokenId;
uint128 liquidity;
uint256 amount0Min;
uint256 amount1Min;
uint256 deadline;
}
/// @notice Decreases the amount of liquidity in a position and accounts it to the position
/// @param params tokenId The ID of the token for which liquidity is being decreased,
/// amount The amount by which liquidity will be decreased,
/// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
/// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
/// deadline The time by which the transaction must be included to effect the change
/// @return amount0 The amount of token0 accounted to the position's tokens owed
/// @return amount1 The amount of token1 accounted to the position's tokens owed
function decreaseLiquidity(DecreaseLiquidityParams calldata params)
external
payable
returns (uint256 amount0, uint256 amount1);
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
/// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
/// @param params tokenId The ID of the NFT for which tokens are being collected,
/// recipient The account that should receive the tokens,
/// amount0Max The maximum amount of token0 to collect,
/// amount1Max The maximum amount of token1 to collect
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);
/// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
/// must be collected first.
/// @param tokenId The ID of the token that is being burned
function burn(uint256 tokenId) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './INonfungiblePositionManager.sol';
/// @title Describes position NFT tokens via URI
interface INonfungibleTokenPositionDescriptor {
/// @notice Produces the URI describing a particular token ID for a position manager
/// @dev Note this URI may be a data: URI with the JSON contents directly inlined
/// @param positionManager The position manager for which to describe the token
/// @param tokenId The ID of the token for which to produce a description, which may not be valid
/// @return The URI of the ERC721-compliant metadata
function tokenURI(INonfungiblePositionManager positionManager, uint256 tokenId)
external
view
returns (string memory);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
/// @return Returns the address of the Zebra V3 factory
function factory() external view returns (address);
/// @return Returns the address of WETH9
function WETH9() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPayments {
/// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
/// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
/// @param amountMinimum The minimum amount of WETH9 to unwrap
/// @param recipient The address receiving ETH
function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;
/// @notice Refunds any ETH balance held by this contract to the `msg.sender`
/// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
/// that use ether for the input amount
function refundETH() external payable;
/// @notice Transfers the full amount of a token held by this contract to recipient
/// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
/// @param token The contract address of the token which will be transferred to `recipient`
/// @param amountMinimum The minimum amount of token required for a transfer
/// @param recipient The destination address of the token
function sweepToken(
address token,
uint256 amountMinimum,
address recipient
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
import './IPeripheryPayments.sol';
/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPaymentsWithFee is IPeripheryPayments {
/// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH, with a percentage between
/// 0 (exclusive), and 1 (inclusive) going to feeRecipient
/// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
function unwrapWETH9WithFee(
uint256 amountMinimum,
address recipient,
uint256 feeBips,
address feeRecipient
) external payable;
/// @notice Transfers the full amount of a token held by this contract to recipient, with a percentage between
/// 0 (exclusive) and 1 (inclusive) going to feeRecipient
/// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
function sweepTokenWithFee(
address token,
uint256 amountMinimum,
address recipient,
uint256 feeBips,
address feeRecipient
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title Creates and initializes V3 Pools
/// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
/// require the pool to exist.
interface IPoolInitializer {
/// @notice Creates a new pool if it does not exist, then initializes if not initialized
/// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
/// @param token0 The contract address of token0 of the pool
/// @param token1 The contract address of token1 of the pool
/// @param fee The fee amount of the v3 pool for the specified token pair
/// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
/// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
function createAndInitializePoolIfNecessary(
address token0,
address token1,
uint24 fee,
uint160 sqrtPriceX96
) external payable returns (address pool);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title QuoterV2 Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps.
/// @notice For each pool also tells you the number of initialized ticks crossed and the sqrt price of the pool after the swap.
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
interface IQuoterV2 {
/// @notice Returns the amount out received for a given exact input swap without executing the swap
/// @param path The path of the swap, i.e. each token pair and the pool fee
/// @param amountIn The amount of the first token to swap
/// @return amountOut The amount of the last token that would be received
/// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
/// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactInput(bytes memory path, uint256 amountIn)
external
returns (
uint256 amountOut,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
);
struct QuoteExactInputSingleParams {
address tokenIn;
address tokenOut;
uint256 amountIn;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
/// @notice Returns the amount out received for a given exact input but for a swap of a single pool
/// @param params The params for the quote, encoded as `QuoteExactInputSingleParams`
/// tokenIn The token being swapped in
/// tokenOut The token being swapped out
/// fee The fee of the token pool to consider for the pair
/// amountIn The desired input amount
/// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
/// @return amountOut The amount of `tokenOut` that would be received
/// @return sqrtPriceX96After The sqrt price of the pool after the swap
/// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactInputSingle(QuoteExactInputSingleParams memory params)
external
returns (
uint256 amountOut,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
/// @notice Returns the amount in required for a given exact output swap without executing the swap
/// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order
/// @param amountOut The amount of the last token to receive
/// @return amountIn The amount of first token required to be paid
/// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
/// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactOutput(bytes memory path, uint256 amountOut)
external
returns (
uint256 amountIn,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
);
struct QuoteExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint256 amount;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
/// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
/// @param params The params for the quote, encoded as `QuoteExactOutputSingleParams`
/// tokenIn The token being swapped in
/// tokenOut The token being swapped out
/// fee The fee of the token pool to consider for the pair
/// amountOut The desired output amount
/// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
/// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
/// @return sqrtPriceX96After The sqrt price of the pool after the swap
/// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactOutputSingle(QuoteExactOutputSingleParams memory params)
external
returns (
uint256 amountIn,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
/// @title Self Permit
/// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
interface ISelfPermit {
/// @notice Permits this contract to spend a given token from `msg.sender`
/// @dev The `owner` is always msg.sender and the `spender` is always address(this).
/// @param token The address of the token spent
/// @param value The amount that can be spent of token
/// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermit(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
/// @notice Permits this contract to spend a given token from `msg.sender`
/// @dev The `owner` is always msg.sender and the `spender` is always address(this).
/// Can be used instead of #selfPermit to prevent calls from failing due to a frontrun of a call to #selfPermit
/// @param token The address of the token spent
/// @param value The amount that can be spent of token
/// @param deadline A timestamp, the current blocktime must be less than or equal to this timestamp
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermitIfNecessary(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
/// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
/// @dev The `owner` is always msg.sender and the `spender` is always address(this)
/// @param token The address of the token spent
/// @param nonce The current nonce of the owner
/// @param expiry The timestamp at which the permit is no longer valid
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermitAllowed(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
/// @notice Permits this contract to spend the sender's tokens for permit signatures that have the `allowed` parameter
/// @dev The `owner` is always msg.sender and the `spender` is always address(this)
/// Can be used instead of #selfPermitAllowed to prevent calls from failing due to a frontrun of a call to #selfPermitAllowed.
/// @param token The address of the token spent
/// @param nonce The current nonce of the owner
/// @param expiry The timestamp at which the permit is no longer valid
/// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
/// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
/// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
function selfPermitAllowedIfNecessary(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external payable;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import './callback/IZebraV3SwapCallback.sol';
/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Zebra V3
interface ISwapRouter is IZebraV3SwapCallback {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another token
/// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
/// @return amountOut The amount of the received token
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
struct ExactInputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
/// @return amountOut The amount of the received token
function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);
struct ExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another token
/// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
/// @return amountIn The amount of the input token
function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);
struct ExactOutputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
/// @return amountIn The amount of the input token
function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title Tick Lens
/// @notice Provides functions for fetching chunks of tick data for a pool
/// @dev This avoids the waterfall of fetching the tick bitmap, parsing the bitmap to know which ticks to fetch, and
/// then sending additional multicalls to fetch the tick data
interface ITickLens {
struct PopulatedTick {
int24 tick;
int128 liquidityNet;
uint128 liquidityGross;
}
/// @notice Get all the tick data for the populated ticks from a word of the tick bitmap of a pool
/// @param pool The address of the pool for which to fetch populated tick data
/// @param tickBitmapIndex The index of the word in the tick bitmap for which to parse the bitmap and
/// fetch all the populated ticks
/// @return populatedTicks An array of tick data for the given word in the tick bitmap
function getPopulatedTicksInWord(address pool, int16 tickBitmapIndex)
external
view
returns (PopulatedTick[] memory populatedTicks);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import './IMulticall.sol';
import './ISelfPermit.sol';
import './IPoolInitializer.sol';
/// @title V3 Migrator
/// @notice Enables migration of liqudity from Zebra v2-compatible pairs into Zebra v3 pools
interface IV3Migrator is IMulticall, ISelfPermit, IPoolInitializer {
struct MigrateParams {
address pair; // the Zebra v2-compatible pair
uint256 liquidityToMigrate; // expected to be balanceOf(msg.sender)
uint8 percentageToMigrate; // represented as a numerator over 100
address token0;
address token1;
uint24 fee;
int24 tickLower;
int24 tickUpper;
uint256 amount0Min; // must be discounted by percentageToMigrate
uint256 amount1Min; // must be discounted by percentageToMigrate
address recipient;
uint256 deadline;
bool refundAsETH;
}
/// @notice Migrates liquidity to v3 by burning v2 liquidity and minting a new position for v3
/// @dev Slippage protection is enforced via `amount{0,1}Min`, which should be a discount of the expected values of
/// the maximum amount of v3 liquidity that the v2 liquidity can get. For the special case of migrating to an
/// out-of-range position, `amount{0,1}Min` may be set to 0, enforcing that the position remains out of range
/// @param params The params necessary to migrate v2 liquidity, encoded as `MigrateParams` in calldata
function migrate(MigrateParams calldata params) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
/// @title Interface for WETH9
interface IWETH9 is IERC20 {
/// @notice Deposit ether to get wrapped ether
function deposit() external payable;
/// @notice Withdraw wrapped ether to get ether
function withdraw(uint256) external;
}
pragma solidity >=0.5.0;
interface IZebraV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for the Zebra V3 Factory
/// @notice The Zebra V3 Factory facilitates creation of Zebra V3 pools and control over the protocol fees
interface IZebraV3Factory {
/// @notice Emitted when the owner of the factory is changed
/// @param oldOwner The owner before the owner was changed
/// @param newOwner The owner after the owner was changed
event OwnerChanged(address indexed oldOwner, address indexed newOwner);
/// @notice Emitted when a pool is created
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks
/// @param pool The address of the created pool
event PoolCreated(
address indexed token0,
address indexed token1,
uint24 indexed fee,
int24 tickSpacing,
address pool
);
/// @notice Emitted when a new fee amount is enabled for pool creation via the factory
/// @param fee The enabled fee, denominated in hundredths of a bip
/// @param tickSpacing The minimum number of ticks between initialized ticks for pools created with the given fee
event FeeAmountEnabled(uint24 indexed fee, int24 indexed tickSpacing);
/// @notice Returns the current owner of the factory
/// @dev Can be changed by the current owner via setOwner
/// @return The address of the factory owner
function owner() external view returns (address);
/// @notice Returns the tick spacing for a given fee amount, if enabled, or 0 if not enabled
/// @dev A fee amount can never be removed, so this value should be hard coded or cached in the calling context
/// @param fee The enabled fee, denominated in hundredths of a bip. Returns 0 in case of unenabled fee
/// @return The tick spacing
function feeAmountTickSpacing(uint24 fee) external view returns (int24);
/// @notice Returns the pool address for a given pair of tokens and a fee, or address 0 if it does not exist
/// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The pool address
function getPool(
address tokenA,
address tokenB,
uint24 fee
) external view returns (address pool);
/// @notice Creates a pool for the given two tokens and fee
/// @param tokenA One of the two tokens in the desired pool
/// @param tokenB The other of the two tokens in the desired pool
/// @param fee The desired fee for the pool
/// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0. tickSpacing is retrieved
/// from the fee. The call will revert if the pool already exists, the fee is invalid, or the token arguments
/// are invalid.
/// @return pool The address of the newly created pool
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external returns (address pool);
/// @notice Updates the owner of the factory
/// @dev Must be called by the current owner
/// @param _owner The new owner of the factory
function setOwner(address _owner) external;
/// @notice Enables a fee amount with the given tickSpacing
/// @dev Fee amounts may never be removed once enabled
/// @param fee The fee amount to enable, denominated in hundredths of a bip (i.e. 1e-6)
/// @param tickSpacing The spacing between ticks to be enforced for all pools created with the given fee amount
function enableFeeAmount(uint24 fee, int24 tickSpacing) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IZebraV3PoolActions#flash
/// @notice Any contract that calls IZebraV3PoolActions#flash must implement this interface
interface IZebraV3FlashCallback {
/// @notice Called to `msg.sender` after transferring to the recipient from IZebraV3Pool#flash.
/// @dev In the implementation you must repay the pool the tokens sent by flash plus the computed fee amounts.
/// The caller of this method must be checked to be a ZebraV3Pool deployed by the canonical ZebraV3Factory.
/// @param fee0 The fee amount in token0 due to the pool by the end of the flash
/// @param fee1 The fee amount in token1 due to the pool by the end of the flash
/// @param data Any data passed through by the caller via the IZebraV3PoolActions#flash call
function zebraV3FlashCallback(
uint256 fee0,
uint256 fee1,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IZebraV3PoolActions#mint
/// @notice Any contract that calls IZebraV3PoolActions#mint must implement this interface
interface IZebraV3MintCallback {
/// @notice Called to `msg.sender` after minting liquidity to a position from IZebraV3Pool#mint.
/// @dev In the implementation you must pay the pool tokens owed for the minted liquidity.
/// The caller of this method must be checked to be a ZebraV3Pool deployed by the canonical ZebraV3Factory.
/// @param amount0Owed The amount of token0 due to the pool for the minted liquidity
/// @param amount1Owed The amount of token1 due to the pool for the minted liquidity
/// @param data Any data passed through by the caller via the IZebraV3PoolActions#mint call
function zebraV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './pool/IZebraV3PoolImmutables.sol';
import './pool/IZebraV3PoolState.sol';
import './pool/IZebraV3PoolDerivedState.sol';
import './pool/IZebraV3PoolActions.sol';
import './pool/IZebraV3PoolOwnerActions.sol';
import './pool/IZebraV3PoolEvents.sol';
/// @title The interface for a Zebra V3 Pool
/// @notice A Zebra pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IZebraV3Pool is
IZebraV3PoolImmutables,
IZebraV3PoolState,
IZebraV3PoolDerivedState,
IZebraV3PoolActions,
IZebraV3PoolOwnerActions,
IZebraV3PoolEvents
{
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IZebraV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IZebraV3MintCallback#zebraV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IZebraV3SwapCallback#zebraV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IZebraV3FlashCallback#zebraV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title An interface for a contract that is capable of deploying Zebra V3 Pools
/// @notice A contract that constructs a pool must implement this to pass arguments to the pool
/// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
/// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain
interface IZebraV3PoolDeployer {
/// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
/// @dev Called by the pool constructor to fetch the parameters of the pool
/// Returns factory The factory address
/// Returns token0 The first token of the pool by address sort order
/// Returns token1 The second token of the pool by address sort order
/// Returns fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// Returns tickSpacing The minimum number of ticks between initialized ticks
function parameters()
external
view
returns (
address factory,
address token0,
address token1,
uint24 fee,
int24 tickSpacing
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IZebraV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(uint32[] calldata secondsAgos)
external
view
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IZebraV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IZebraV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IZebraV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IZebraV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IZebraV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// observationIndex The index of the last oracle observation that was written,
/// observationCardinality The current maximum number of observations stored in the pool,
/// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees() external view returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper,
/// liquidityNet how much liquidity changes when the pool price crosses the tick,
/// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// secondsOutside the seconds spent on the other side of the tick from the current tick,
/// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(int24 tick)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return _liquidity The amount of liquidity in the position,
/// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(bytes32 key)
external
view
returns (
uint128 _liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// Returns initialized whether the observation has been initialized and the values are safe to use
function observations(uint256 index)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IZebraV3PoolActions#swap
/// @notice Any contract that calls IZebraV3PoolActions#swap must implement this interface
interface IZebraV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IZebraV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a ZebraV3Pool deployed by the canonical ZebraV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IZebraV3PoolActions#swap call
function zebraV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './FullMath.sol';
import './FixedPoint96.sol';
/// @title Liquidity amount functions
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
/// @notice Downcasts uint256 to uint128
/// @param x The uint258 to be downcasted
/// @return y The passed value, downcasted to uint128
function toUint128(uint256 x) private pure returns (uint128 y) {
require((y = uint128(x)) == x);
}
/// @notice Computes the amount of liquidity received for a given amount of token0 and price range
/// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount0 The amount0 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount0(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 intermediate = FullMath.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96);
return toUint128(FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96));
}
/// @notice Computes the amount of liquidity received for a given amount of token1 and price range
/// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount1 The amount1 being sent in
/// @return liquidity The amount of returned liquidity
function getLiquidityForAmount1(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return toUint128(FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96));
}
/// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
/// pool prices and the prices at the tick boundaries
/// @param sqrtRatioX96 A sqrt price representing the current pool prices
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param amount0 The amount of token0 being sent in
/// @param amount1 The amount of token1 being sent in
/// @return liquidity The maximum amount of liquidity received
function getLiquidityForAmounts(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint256 amount0,
uint256 amount1
) internal pure returns (uint128 liquidity) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0);
uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1);
liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1;
} else {
liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1);
}
}
/// @notice Computes the amount of token0 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount0 The amount of token0
function getAmount0ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
FullMath.mulDiv(
uint256(liquidity) << FixedPoint96.RESOLUTION,
sqrtRatioBX96 - sqrtRatioAX96,
sqrtRatioBX96
) / sqrtRatioAX96;
}
/// @notice Computes the amount of token1 for a given amount of liquidity and a price range
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount1 The amount of token1
function getAmount1ForLiquidity(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
}
/// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
/// pool prices and the prices at the tick boundaries
/// @param sqrtRatioX96 A sqrt price representing the current pool prices
/// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
/// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
/// @param liquidity The liquidity being valued
/// @return amount0 The amount of token0
/// @return amount1 The amount of token1
function getAmountsForLiquidity(
uint160 sqrtRatioX96,
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity
) internal pure returns (uint256 amount0, uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
if (sqrtRatioX96 <= sqrtRatioAX96) {
amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
} else if (sqrtRatioX96 < sqrtRatioBX96) {
amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity);
amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity);
} else {
amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import '../interfaces/IZebraV3Factory.sol';
import '../interfaces/callback/IZebraV3MintCallback.sol';
import '../libraries/TickMath.sol';
import '../libraries/PoolAddress.sol';
import '../libraries/CallbackValidation.sol';
import '../libraries/LiquidityAmounts.sol';
import './PeripheryPayments.sol';
import './PeripheryImmutableState.sol';
/// @title Liquidity management functions
/// @notice Internal functions for safely managing liquidity in Zebra V3
abstract contract LiquidityManagement is IZebraV3MintCallback, PeripheryImmutableState, PeripheryPayments {
struct MintCallbackData {
PoolAddress.PoolKey poolKey;
address payer;
}
/// @inheritdoc IZebraV3MintCallback
function zebraV3MintCallback(
uint256 amount0Owed,
uint256 amount1Owed,
bytes calldata data
) external override {
MintCallbackData memory decoded = abi.decode(data, (MintCallbackData));
CallbackValidation.verifyCallback(factory, decoded.poolKey);
if (amount0Owed > 0) pay(decoded.poolKey.token0, decoded.payer, msg.sender, amount0Owed);
if (amount1Owed > 0) pay(decoded.poolKey.token1, decoded.payer, msg.sender, amount1Owed);
}
struct AddLiquidityParams {
address token0;
address token1;
uint24 fee;
address recipient;
int24 tickLower;
int24 tickUpper;
uint256 amount0Desired;
uint256 amount1Desired;
uint256 amount0Min;
uint256 amount1Min;
}
/// @notice Add liquidity to an initialized pool
function addLiquidity(AddLiquidityParams memory params)
internal
returns (
uint128 liquidity,
uint256 amount0,
uint256 amount1,
IZebraV3Pool pool
)
{
PoolAddress.PoolKey memory poolKey =
PoolAddress.PoolKey({token0: params.token0, token1: params.token1, fee: params.fee});
pool = IZebraV3Pool(PoolAddress.computeAddress(factory, poolKey));
// compute the liquidity amount
{
(uint160 sqrtPriceX96, , , , , , ) = pool.slot0();
uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(params.tickLower);
uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(params.tickUpper);
liquidity = LiquidityAmounts.getLiquidityForAmounts(
sqrtPriceX96,
sqrtRatioAX96,
sqrtRatioBX96,
params.amount0Desired,
params.amount1Desired
);
}
(amount0, amount1) = pool.mint(
params.recipient,
params.tickLower,
params.tickUpper,
liquidity,
abi.encode(MintCallbackData({poolKey: poolKey, payer: msg.sender}))
);
require(amount0 >= params.amount0Min && amount1 >= params.amount1Min, 'Price slippage check');
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math library for liquidity
library LiquidityMath {
/// @notice Add a signed liquidity delta to liquidity and revert if it overflows or underflows
/// @param x The liquidity before change
/// @param y The delta by which liquidity should be changed
/// @return z The liquidity delta
function addDelta(uint128 x, int128 y) internal pure returns (uint128 z) {
if (y < 0) {
require((z = x - uint128(-y)) < x, 'LS');
} else {
require((z = x + uint128(y)) >= x, 'LA');
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.0;
/// @title Optimized overflow and underflow safe math operations
/// @notice Contains methods for doing math operations that revert on overflow or underflow for minimal gas cost
library LowGasSafeMath {
/// @notice Returns x + y, reverts if sum overflows uint256
/// @param x The augend
/// @param y The addend
/// @return z The sum of x and y
function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x + y) >= x);
}
/// @notice Returns x - y, reverts if underflows
/// @param x The minuend
/// @param y The subtrahend
/// @return z The difference of x and y
function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x - y) <= x);
}
/// @notice Returns x * y, reverts if overflows
/// @param x The multiplicand
/// @param y The multiplier
/// @return z The product of x and y
function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
require(x == 0 || (z = x * y) / x == y);
}
/// @notice Returns x + y, reverts if overflows or underflows
/// @param x The augend
/// @param y The addend
/// @return z The sum of x and y
function add(int256 x, int256 y) internal pure returns (int256 z) {
require((z = x + y) >= x == (y >= 0));
}
/// @notice Returns x - y, reverts if overflows or underflows
/// @param x The minuend
/// @param y The subtrahend
/// @return z The difference of x and y
function sub(int256 x, int256 y) internal pure returns (int256 z) {
require((z = x - y) <= x == (y >= 0));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import '../interfaces/IMulticall.sol';
/// @title Multicall
/// @notice Enables calling multiple methods in a single call to the contract
abstract contract Multicall is IMulticall {
/// @inheritdoc IMulticall
function multicall(bytes[] calldata data) public payable override returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
(bool success, bytes memory result) = address(this).delegatecall(data[i]);
if (!success) {
// Next 5 lines from https://ethereum.stackexchange.com/a/83577
if (result.length < 68) revert();
assembly {
result := add(result, 0x04)
}
revert(abi.decode(result, (string)));
}
results[i] = result;
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.0;
pragma abicoder v2;
import '../interfaces/IZebraV3Pool.sol';
import './TickMath.sol';
import './BitMath.sol';
import './FullMath.sol';
import '@openzeppelin/contracts/utils/Strings.sol';
import '@openzeppelin/contracts/math/SafeMath.sol';
import '@openzeppelin/contracts/math/SignedSafeMath.sol';
import 'base64-sol/base64.sol';
import './HexStrings.sol';
import './NFTSVG.sol';
library NFTDescriptor {
using TickMath for int24;
using Strings for uint256;
using SafeMath for uint256;
using SafeMath for uint160;
using SafeMath for uint8;
using SignedSafeMath for int256;
using HexStrings for uint256;
uint256 constant sqrt10X128 = 1076067327063303206878105757264492625226;
struct ConstructTokenURIParams {
uint256 tokenId;
address quoteTokenAddress;
address baseTokenAddress;
string quoteTokenSymbol;
string baseTokenSymbol;
uint8 quoteTokenDecimals;
uint8 baseTokenDecimals;
bool flipRatio;
int24 tickLower;
int24 tickUpper;
int24 tickCurrent;
int24 tickSpacing;
uint24 fee;
address poolAddress;
}
function constructTokenURI(ConstructTokenURIParams memory params) public pure returns (string memory) {
string memory name = generateName(params, feeToPercentString(params.fee));
string memory descriptionPartOne =
generateDescriptionPartOne(
escapeQuotes(params.quoteTokenSymbol),
escapeQuotes(params.baseTokenSymbol),
addressToString(params.poolAddress)
);
string memory descriptionPartTwo =
generateDescriptionPartTwo(
params.tokenId.toString(),
escapeQuotes(params.baseTokenSymbol),
addressToString(params.quoteTokenAddress),
addressToString(params.baseTokenAddress),
feeToPercentString(params.fee)
);
string memory image = Base64.encode(bytes(generateSVGImage(params)));
return
string(
abi.encodePacked(
'data:application/json;base64,',
Base64.encode(
bytes(
abi.encodePacked(
'{"name":"',
name,
'", "description":"',
descriptionPartOne,
descriptionPartTwo,
'", "image": "',
'data:image/svg+xml;base64,',
image,
'"}'
)
)
)
)
);
}
function escapeQuotes(string memory symbol) internal pure returns (string memory) {
bytes memory symbolBytes = bytes(symbol);
uint8 quotesCount = 0;
for (uint8 i = 0; i < symbolBytes.length; i++) {
if (symbolBytes[i] == '"') {
quotesCount++;
}
}
if (quotesCount > 0) {
bytes memory escapedBytes = new bytes(symbolBytes.length + (quotesCount));
uint256 index;
for (uint8 i = 0; i < symbolBytes.length; i++) {
if (symbolBytes[i] == '"') {
escapedBytes[index++] = '\\';
}
escapedBytes[index++] = symbolBytes[i];
}
return string(escapedBytes);
}
return symbol;
}
function generateDescriptionPartOne(
string memory quoteTokenSymbol,
string memory baseTokenSymbol,
string memory poolAddress
) private pure returns (string memory) {
return
string(
abi.encodePacked(
'This NFT represents a liquidity position in a Zebra V3 ',
quoteTokenSymbol,
'-',
baseTokenSymbol,
' pool. ',
'The owner of this NFT can modify or redeem the position.\\n',
'\\nPool Address: ',
poolAddress,
'\\n',
quoteTokenSymbol
)
);
}
function generateDescriptionPartTwo(
string memory tokenId,
string memory baseTokenSymbol,
string memory quoteTokenAddress,
string memory baseTokenAddress,
string memory feeTier
) private pure returns (string memory) {
return
string(
abi.encodePacked(
' Address: ',
quoteTokenAddress,
'\\n',
baseTokenSymbol,
' Address: ',
baseTokenAddress,
'\\nFee Tier: ',
feeTier,
'\\nToken ID: ',
tokenId,
'\\n\\n',
unicode'⚠️ DISCLAIMER: Due diligence is imperative when assessing this NFT. Make sure token addresses match the expected tokens, as token symbols may be imitated.'
)
);
}
function generateName(ConstructTokenURIParams memory params, string memory feeTier)
private
pure
returns (string memory)
{
return
string(
abi.encodePacked(
'Zebra - ',
feeTier,
' - ',
escapeQuotes(params.quoteTokenSymbol),
'/',
escapeQuotes(params.baseTokenSymbol),
' - ',
tickToDecimalString(
!params.flipRatio ? params.tickLower : params.tickUpper,
params.tickSpacing,
params.baseTokenDecimals,
params.quoteTokenDecimals,
params.flipRatio
),
'<>',
tickToDecimalString(
!params.flipRatio ? params.tickUpper : params.tickLower,
params.tickSpacing,
params.baseTokenDecimals,
params.quoteTokenDecimals,
params.flipRatio
)
)
);
}
struct DecimalStringParams {
// significant figures of decimal
uint256 sigfigs;
// length of decimal string
uint8 bufferLength;
// ending index for significant figures (funtion works backwards when copying sigfigs)
uint8 sigfigIndex;
// index of decimal place (0 if no decimal)
uint8 decimalIndex;
// start index for trailing/leading 0's for very small/large numbers
uint8 zerosStartIndex;
// end index for trailing/leading 0's for very small/large numbers
uint8 zerosEndIndex;
// true if decimal number is less than one
bool isLessThanOne;
// true if string should include "%"
bool isPercent;
}
function generateDecimalString(DecimalStringParams memory params) private pure returns (string memory) {
bytes memory buffer = new bytes(params.bufferLength);
if (params.isPercent) {
buffer[buffer.length - 1] = '%';
}
if (params.isLessThanOne) {
buffer[0] = '0';
buffer[1] = '.';
}
// add leading/trailing 0's
for (uint256 zerosCursor = params.zerosStartIndex; zerosCursor < params.zerosEndIndex.add(1); zerosCursor++) {
buffer[zerosCursor] = bytes1(uint8(48));
}
// add sigfigs
while (params.sigfigs > 0) {
if (params.decimalIndex > 0 && params.sigfigIndex == params.decimalIndex) {
buffer[params.sigfigIndex--] = '.';
}
buffer[params.sigfigIndex--] = bytes1(uint8(uint256(48).add(params.sigfigs % 10)));
params.sigfigs /= 10;
}
return string(buffer);
}
function tickToDecimalString(
int24 tick,
int24 tickSpacing,
uint8 baseTokenDecimals,
uint8 quoteTokenDecimals,
bool flipRatio
) internal pure returns (string memory) {
if (tick == (TickMath.MIN_TICK / tickSpacing) * tickSpacing) {
return !flipRatio ? 'MIN' : 'MAX';
} else if (tick == (TickMath.MAX_TICK / tickSpacing) * tickSpacing) {
return !flipRatio ? 'MAX' : 'MIN';
} else {
uint160 sqrtRatioX96 = TickMath.getSqrtRatioAtTick(tick);
if (flipRatio) {
sqrtRatioX96 = uint160(uint256(1 << 192).div(sqrtRatioX96));
}
return fixedPointToDecimalString(sqrtRatioX96, baseTokenDecimals, quoteTokenDecimals);
}
}
function sigfigsRounded(uint256 value, uint8 digits) private pure returns (uint256, bool) {
bool extraDigit;
if (digits > 5) {
value = value.div((10**(digits - 5)));
}
bool roundUp = value % 10 > 4;
value = value.div(10);
if (roundUp) {
value = value + 1;
}
// 99999 -> 100000 gives an extra sigfig
if (value == 100000) {
value /= 10;
extraDigit = true;
}
return (value, extraDigit);
}
function adjustForDecimalPrecision(
uint160 sqrtRatioX96,
uint8 baseTokenDecimals,
uint8 quoteTokenDecimals
) private pure returns (uint256 adjustedSqrtRatioX96) {
uint256 difference = abs(int256(baseTokenDecimals).sub(int256(quoteTokenDecimals)));
if (difference > 0 && difference <= 18) {
if (baseTokenDecimals > quoteTokenDecimals) {
adjustedSqrtRatioX96 = sqrtRatioX96.mul(10**(difference.div(2)));
if (difference % 2 == 1) {
adjustedSqrtRatioX96 = FullMath.mulDiv(adjustedSqrtRatioX96, sqrt10X128, 1 << 128);
}
} else {
adjustedSqrtRatioX96 = sqrtRatioX96.div(10**(difference.div(2)));
if (difference % 2 == 1) {
adjustedSqrtRatioX96 = FullMath.mulDiv(adjustedSqrtRatioX96, 1 << 128, sqrt10X128);
}
}
} else {
adjustedSqrtRatioX96 = uint256(sqrtRatioX96);
}
}
function abs(int256 x) private pure returns (uint256) {
return uint256(x >= 0 ? x : -x);
}
// @notice Returns string that includes first 5 significant figures of a decimal number
// @param sqrtRatioX96 a sqrt price
function fixedPointToDecimalString(
uint160 sqrtRatioX96,
uint8 baseTokenDecimals,
uint8 quoteTokenDecimals
) internal pure returns (string memory) {
uint256 adjustedSqrtRatioX96 = adjustForDecimalPrecision(sqrtRatioX96, baseTokenDecimals, quoteTokenDecimals);
uint256 value = FullMath.mulDiv(adjustedSqrtRatioX96, adjustedSqrtRatioX96, 1 << 64);
bool priceBelow1 = adjustedSqrtRatioX96 < 2**96;
if (priceBelow1) {
// 10 ** 43 is precision needed to retreive 5 sigfigs of smallest possible price + 1 for rounding
value = FullMath.mulDiv(value, 10**44, 1 << 128);
} else {
// leave precision for 4 decimal places + 1 place for rounding
value = FullMath.mulDiv(value, 10**5, 1 << 128);
}
// get digit count
uint256 temp = value;
uint8 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
// don't count extra digit kept for rounding
digits = digits - 1;
// address rounding
(uint256 sigfigs, bool extraDigit) = sigfigsRounded(value, digits);
if (extraDigit) {
digits++;
}
DecimalStringParams memory params;
if (priceBelow1) {
// 7 bytes ( "0." and 5 sigfigs) + leading 0's bytes
params.bufferLength = uint8(uint8(7).add(uint8(43).sub(digits)));
params.zerosStartIndex = 2;
params.zerosEndIndex = uint8(uint256(43).sub(digits).add(1));
params.sigfigIndex = uint8(params.bufferLength.sub(1));
} else if (digits >= 9) {
// no decimal in price string
params.bufferLength = uint8(digits.sub(4));
params.zerosStartIndex = 5;
params.zerosEndIndex = uint8(params.bufferLength.sub(1));
params.sigfigIndex = 4;
} else {
// 5 sigfigs surround decimal
params.bufferLength = 6;
params.sigfigIndex = 5;
params.decimalIndex = uint8(digits.sub(5).add(1));
}
params.sigfigs = sigfigs;
params.isLessThanOne = priceBelow1;
params.isPercent = false;
return generateDecimalString(params);
}
// @notice Returns string as decimal percentage of fee amount.
// @param fee fee amount
function feeToPercentString(uint24 fee) internal pure returns (string memory) {
if (fee == 0) {
return '0%';
}
uint24 temp = fee;
uint256 digits;
uint8 numSigfigs;
while (temp != 0) {
if (numSigfigs > 0) {
// count all digits preceding least significant figure
numSigfigs++;
} else if (temp % 10 != 0) {
numSigfigs++;
}
digits++;
temp /= 10;
}
DecimalStringParams memory params;
uint256 nZeros;
if (digits >= 5) {
// if decimal > 1 (5th digit is the ones place)
uint256 decimalPlace = digits.sub(numSigfigs) >= 4 ? 0 : 1;
nZeros = digits.sub(5) < (numSigfigs.sub(1)) ? 0 : digits.sub(5).sub(numSigfigs.sub(1));
params.zerosStartIndex = numSigfigs;
params.zerosEndIndex = uint8(params.zerosStartIndex.add(nZeros).sub(1));
params.sigfigIndex = uint8(params.zerosStartIndex.sub(1).add(decimalPlace));
params.bufferLength = uint8(nZeros.add(numSigfigs.add(1)).add(decimalPlace));
} else {
// else if decimal < 1
nZeros = uint256(5).sub(digits);
params.zerosStartIndex = 2;
params.zerosEndIndex = uint8(nZeros.add(params.zerosStartIndex).sub(1));
params.bufferLength = uint8(nZeros.add(numSigfigs.add(2)));
params.sigfigIndex = uint8((params.bufferLength).sub(2));
params.isLessThanOne = true;
}
params.sigfigs = uint256(fee).div(10**(digits.sub(numSigfigs)));
params.isPercent = true;
params.decimalIndex = digits > 4 ? uint8(digits.sub(4)) : 0;
return generateDecimalString(params);
}
function addressToString(address addr) internal pure returns (string memory) {
return (uint256(addr)).toHexString(20);
}
function generateSVGImage(ConstructTokenURIParams memory params) internal pure returns (string memory svg) {
NFTSVG.SVGParams memory svgParams =
NFTSVG.SVGParams({
quoteToken: addressToString(params.quoteTokenAddress),
baseToken: addressToString(params.baseTokenAddress),
poolAddress: params.poolAddress,
quoteTokenSymbol: params.quoteTokenSymbol,
baseTokenSymbol: params.baseTokenSymbol,
feeTier: feeToPercentString(params.fee),
tickLower: params.tickLower,
tickUpper: params.tickUpper,
tickSpacing: params.tickSpacing,
overRange: overRange(params.tickLower, params.tickUpper, params.tickCurrent),
tokenId: params.tokenId,
color0: tokenToColorHex(uint256(params.quoteTokenAddress), 136),
color1: tokenToColorHex(uint256(params.baseTokenAddress), 136),
color2: tokenToColorHex(uint256(params.quoteTokenAddress), 0),
color3: tokenToColorHex(uint256(params.baseTokenAddress), 0),
x1: scale(getCircleCoord(uint256(params.quoteTokenAddress), 16, params.tokenId), 0, 255, 16, 274),
y1: scale(getCircleCoord(uint256(params.baseTokenAddress), 16, params.tokenId), 0, 255, 100, 484),
x2: scale(getCircleCoord(uint256(params.quoteTokenAddress), 32, params.tokenId), 0, 255, 16, 274),
y2: scale(getCircleCoord(uint256(params.baseTokenAddress), 32, params.tokenId), 0, 255, 100, 484),
x3: scale(getCircleCoord(uint256(params.quoteTokenAddress), 48, params.tokenId), 0, 255, 16, 274),
y3: scale(getCircleCoord(uint256(params.baseTokenAddress), 48, params.tokenId), 0, 255, 100, 484)
});
return NFTSVG.generateSVG(svgParams);
}
function overRange(
int24 tickLower,
int24 tickUpper,
int24 tickCurrent
) private pure returns (int8) {
if (tickCurrent < tickLower) {
return -1;
} else if (tickCurrent > tickUpper) {
return 1;
} else {
return 0;
}
}
function scale(
uint256 n,
uint256 inMn,
uint256 inMx,
uint256 outMn,
uint256 outMx
) private pure returns (string memory) {
return (n.sub(inMn).mul(outMx.sub(outMn)).div(inMx.sub(inMn)).add(outMn)).toString();
}
function tokenToColorHex(uint256 token, uint256 offset) internal pure returns (string memory str) {
return string((token >> offset).toHexStringNoPrefix(3));
}
function getCircleCoord(
uint256 tokenAddress,
uint256 offset,
uint256 tokenId
) internal pure returns (uint256) {
return (sliceTokenHex(tokenAddress, offset) * tokenId) % 255;
}
function sliceTokenHex(uint256 token, uint256 offset) internal pure returns (uint256) {
return uint256(uint8(token >> offset));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.6;
import '@openzeppelin/contracts/utils/Strings.sol';
import './BitMath.sol';
import 'base64-sol/base64.sol';
/// @title NFTSVG
/// @notice Provides a function for generating an SVG associated with a Zebra NFT
library NFTSVG {
using Strings for uint256;
string constant curve1 = 'M1 1C41 41 105 105 145 145';
string constant curve2 = 'M1 1C33 49 97 113 145 145';
string constant curve3 = 'M1 1C33 57 89 113 145 145';
string constant curve4 = 'M1 1C25 65 81 121 145 145';
string constant curve5 = 'M1 1C17 73 73 129 145 145';
string constant curve6 = 'M1 1C9 81 65 137 145 145';
string constant curve7 = 'M1 1C1 89 57.5 145 145 145';
string constant curve8 = 'M1 1C1 97 49 145 145 145';
struct SVGParams {
string quoteToken;
string baseToken;
address poolAddress;
string quoteTokenSymbol;
string baseTokenSymbol;
string feeTier;
int24 tickLower;
int24 tickUpper;
int24 tickSpacing;
int8 overRange;
uint256 tokenId;
string color0;
string color1;
string color2;
string color3;
string x1;
string y1;
string x2;
string y2;
string x3;
string y3;
}
function generateSVG(SVGParams memory params) internal pure returns (string memory svg) {
return
string(
abi.encodePacked(
generateSVGDefs(params),
generateSVGBorderText(
params.quoteToken,
params.baseToken,
params.quoteTokenSymbol,
params.baseTokenSymbol
),
generateSVGCardMantle(params.quoteTokenSymbol, params.baseTokenSymbol, params.feeTier),
generageSvgCurve(params.tickLower, params.tickUpper, params.tickSpacing, params.overRange),
generateSVGPositionDataAndLocationCurve(
params.tokenId.toString(),
params.tickLower,
params.tickUpper
),
generateSVGRareSparkle(params.tokenId, params.poolAddress),
'</svg>'
)
);
}
function generateSVGDefs(SVGParams memory params) private pure returns (string memory svg) {
svg = string(
abi.encodePacked(
'<svg width="290" height="500" viewBox="0 0 290 500" xmlns="http://www.w3.org/2000/svg"',
" xmlns:xlink='http://www.w3.org/1999/xlink'>",
'<defs>',
'<filter id="f1"><feImage result="p0" xlink:href="data:image/svg+xml;base64,',
Base64.encode(
bytes(
abi.encodePacked(
"<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><rect width='290px' height='500px' fill='#",
params.color0,
"'/></svg>"
)
)
),
'"/><feImage result="p1" xlink:href="data:image/svg+xml;base64,',
Base64.encode(
bytes(
abi.encodePacked(
"<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><circle cx='",
params.x1,
"' cy='",
params.y1,
"' r='120px' fill='#",
params.color1,
"'/></svg>"
)
)
),
'"/><feImage result="p2" xlink:href="data:image/svg+xml;base64,',
Base64.encode(
bytes(
abi.encodePacked(
"<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><circle cx='",
params.x2,
"' cy='",
params.y2,
"' r='120px' fill='#",
params.color2,
"'/></svg>"
)
)
),
'" />',
'<feImage result="p3" xlink:href="data:image/svg+xml;base64,',
Base64.encode(
bytes(
abi.encodePacked(
"<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><circle cx='",
params.x3,
"' cy='",
params.y3,
"' r='100px' fill='#",
params.color3,
"'/></svg>"
)
)
),
'" /><feBlend mode="overlay" in="p0" in2="p1" /><feBlend mode="exclusion" in2="p2" /><feBlend mode="overlay" in2="p3" result="blendOut" /><feGaussianBlur ',
'in="blendOut" stdDeviation="42" /></filter> <clipPath id="corners"><rect width="290" height="500" rx="42" ry="42" /></clipPath>',
'<path id="text-path-a" d="M40 12 H250 A28 28 0 0 1 278 40 V460 A28 28 0 0 1 250 488 H40 A28 28 0 0 1 12 460 V40 A28 28 0 0 1 40 12 z" />',
'<path id="minimap" d="M234 444C234 457.949 242.21 463 253 463" />',
'<filter id="top-region-blur"><feGaussianBlur in="SourceGraphic" stdDeviation="24" /></filter>',
'<linearGradient id="grad-up" x1="1" x2="0" y1="1" y2="0"><stop offset="0.0" stop-color="white" stop-opacity="1" />',
'<stop offset=".9" stop-color="white" stop-opacity="0" /></linearGradient>',
'<linearGradient id="grad-down" x1="0" x2="1" y1="0" y2="1"><stop offset="0.0" stop-color="white" stop-opacity="1" /><stop offset="0.9" stop-color="white" stop-opacity="0" /></linearGradient>',
'<mask id="fade-up" maskContentUnits="objectBoundingBox"><rect width="1" height="1" fill="url(#grad-up)" /></mask>',
'<mask id="fade-down" maskContentUnits="objectBoundingBox"><rect width="1" height="1" fill="url(#grad-down)" /></mask>',
'<mask id="none" maskContentUnits="objectBoundingBox"><rect width="1" height="1" fill="white" /></mask>',
'<linearGradient id="grad-symbol"><stop offset="0.7" stop-color="white" stop-opacity="1" /><stop offset=".95" stop-color="white" stop-opacity="0" /></linearGradient>',
'<mask id="fade-symbol" maskContentUnits="userSpaceOnUse"><rect width="290px" height="200px" fill="url(#grad-symbol)" /></mask></defs>',
'<g clip-path="url(#corners)">',
'<rect fill="',
params.color0,
'" x="0px" y="0px" width="290px" height="500px" />',
'<rect style="filter: url(#f1)" x="0px" y="0px" width="290px" height="500px" />',
' <g style="filter:url(#top-region-blur); transform:scale(1.5); transform-origin:center top;">',
'<rect fill="none" x="0px" y="0px" width="290px" height="500px" />',
'<ellipse cx="50%" cy="0px" rx="180px" ry="120px" fill="#000" opacity="0.85" /></g>',
'<rect x="0" y="0" width="290" height="500" rx="42" ry="42" fill="rgba(0,0,0,0)" stroke="rgba(255,255,255,0.2)" /></g>'
)
);
}
function generateSVGBorderText(
string memory quoteToken,
string memory baseToken,
string memory quoteTokenSymbol,
string memory baseTokenSymbol
) private pure returns (string memory svg) {
svg = string(
abi.encodePacked(
'<text text-rendering="optimizeSpeed">',
'<textPath startOffset="-100%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">',
baseToken,
unicode' • ',
baseTokenSymbol,
' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s" repeatCount="indefinite" />',
'</textPath> <textPath startOffset="0%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">',
baseToken,
unicode' • ',
baseTokenSymbol,
' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s" repeatCount="indefinite" /> </textPath>',
'<textPath startOffset="50%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">',
quoteToken,
unicode' • ',
quoteTokenSymbol,
' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s"',
' repeatCount="indefinite" /></textPath><textPath startOffset="-50%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">',
quoteToken,
unicode' • ',
quoteTokenSymbol,
' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s" repeatCount="indefinite" /></textPath></text>'
)
);
}
function generateSVGCardMantle(
string memory quoteTokenSymbol,
string memory baseTokenSymbol,
string memory feeTier
) private pure returns (string memory svg) {
svg = string(
abi.encodePacked(
'<g mask="url(#fade-symbol)"><rect fill="none" x="0px" y="0px" width="290px" height="200px" /> <text y="70px" x="32px" fill="white" font-family="\'Courier New\', monospace" font-weight="200" font-size="36px">',
quoteTokenSymbol,
'/',
baseTokenSymbol,
'</text><text y="115px" x="32px" fill="white" font-family="\'Courier New\', monospace" font-weight="200" font-size="36px">',
feeTier,
'</text></g>',
'<rect x="16" y="16" width="258" height="468" rx="26" ry="26" fill="rgba(0,0,0,0)" stroke="rgba(255,255,255,0.2)" />'
)
);
}
function generageSvgCurve(
int24 tickLower,
int24 tickUpper,
int24 tickSpacing,
int8 overRange
) private pure returns (string memory svg) {
string memory fade = overRange == 1 ? '#fade-up' : overRange == -1 ? '#fade-down' : '#none';
string memory curve = getCurve(tickLower, tickUpper, tickSpacing);
svg = string(
abi.encodePacked(
'<g mask="url(',
fade,
')"',
' style="transform:translate(72px,189px)">'
'<rect x="-16px" y="-16px" width="180px" height="180px" fill="none" />'
'<path d="',
curve,
'" stroke="rgba(0,0,0,0.3)" stroke-width="32px" fill="none" stroke-linecap="round" />',
'</g><g mask="url(',
fade,
')"',
' style="transform:translate(72px,189px)">',
'<rect x="-16px" y="-16px" width="180px" height="180px" fill="none" />',
'<path d="',
curve,
'" stroke="rgba(255,255,255,1)" fill="none" stroke-linecap="round" /></g>',
generateSVGCurveCircle(overRange)
)
);
}
function getCurve(
int24 tickLower,
int24 tickUpper,
int24 tickSpacing
) internal pure returns (string memory curve) {
int24 tickRange = (tickUpper - tickLower) / tickSpacing;
if (tickRange <= 4) {
curve = curve1;
} else if (tickRange <= 8) {
curve = curve2;
} else if (tickRange <= 16) {
curve = curve3;
} else if (tickRange <= 32) {
curve = curve4;
} else if (tickRange <= 64) {
curve = curve5;
} else if (tickRange <= 128) {
curve = curve6;
} else if (tickRange <= 256) {
curve = curve7;
} else {
curve = curve8;
}
}
function generateSVGCurveCircle(int8 overRange) internal pure returns (string memory svg) {
string memory curvex1 = '73';
string memory curvey1 = '190';
string memory curvex2 = '217';
string memory curvey2 = '334';
if (overRange == 1 || overRange == -1) {
svg = string(
abi.encodePacked(
'<circle cx="',
overRange == -1 ? curvex1 : curvex2,
'px" cy="',
overRange == -1 ? curvey1 : curvey2,
'px" r="4px" fill="white" /><circle cx="',
overRange == -1 ? curvex1 : curvex2,
'px" cy="',
overRange == -1 ? curvey1 : curvey2,
'px" r="24px" fill="none" stroke="white" />'
)
);
} else {
svg = string(
abi.encodePacked(
'<circle cx="',
curvex1,
'px" cy="',
curvey1,
'px" r="4px" fill="white" />',
'<circle cx="',
curvex2,
'px" cy="',
curvey2,
'px" r="4px" fill="white" />'
)
);
}
}
function generateSVGPositionDataAndLocationCurve(
string memory tokenId,
int24 tickLower,
int24 tickUpper
) private pure returns (string memory svg) {
string memory tickLowerStr = tickToString(tickLower);
string memory tickUpperStr = tickToString(tickUpper);
uint256 str1length = bytes(tokenId).length + 4;
uint256 str2length = bytes(tickLowerStr).length + 10;
uint256 str3length = bytes(tickUpperStr).length + 10;
(string memory xCoord, string memory yCoord) = rangeLocation(tickLower, tickUpper);
svg = string(
abi.encodePacked(
' <g style="transform:translate(29px, 384px)">',
'<rect width="',
uint256(7 * (str1length + 4)).toString(),
'px" height="26px" rx="8px" ry="8px" fill="rgba(0,0,0,0.6)" />',
'<text x="12px" y="17px" font-family="\'Courier New\', monospace" font-size="12px" fill="white"><tspan fill="rgba(255,255,255,0.6)">ID: </tspan>',
tokenId,
'</text></g>',
' <g style="transform:translate(29px, 414px)">',
'<rect width="',
uint256(7 * (str2length + 4)).toString(),
'px" height="26px" rx="8px" ry="8px" fill="rgba(0,0,0,0.6)" />',
'<text x="12px" y="17px" font-family="\'Courier New\', monospace" font-size="12px" fill="white"><tspan fill="rgba(255,255,255,0.6)">Min Tick: </tspan>',
tickLowerStr,
'</text></g>',
' <g style="transform:translate(29px, 444px)">',
'<rect width="',
uint256(7 * (str3length + 4)).toString(),
'px" height="26px" rx="8px" ry="8px" fill="rgba(0,0,0,0.6)" />',
'<text x="12px" y="17px" font-family="\'Courier New\', monospace" font-size="12px" fill="white"><tspan fill="rgba(255,255,255,0.6)">Max Tick: </tspan>',
tickUpperStr,
'</text></g>'
'<g style="transform:translate(226px, 433px)">',
'<rect width="36px" height="36px" rx="8px" ry="8px" fill="none" stroke="rgba(255,255,255,0.2)" />',
'<path stroke-linecap="round" d="M8 9C8.00004 22.9494 16.2099 28 27 28" fill="none" stroke="white" />',
'<circle style="transform:translate3d(',
xCoord,
'px, ',
yCoord,
'px, 0px)" cx="0px" cy="0px" r="4px" fill="white"/></g>'
)
);
}
function tickToString(int24 tick) private pure returns (string memory) {
string memory sign = '';
if (tick < 0) {
tick = tick * -1;
sign = '-';
}
return string(abi.encodePacked(sign, uint256(tick).toString()));
}
function rangeLocation(int24 tickLower, int24 tickUpper) internal pure returns (string memory, string memory) {
int24 midPoint = (tickLower + tickUpper) / 2;
if (midPoint < -125_000) {
return ('8', '7');
} else if (midPoint < -75_000) {
return ('8', '10.5');
} else if (midPoint < -25_000) {
return ('8', '14.25');
} else if (midPoint < -5_000) {
return ('10', '18');
} else if (midPoint < 0) {
return ('11', '21');
} else if (midPoint < 5_000) {
return ('13', '23');
} else if (midPoint < 25_000) {
return ('15', '25');
} else if (midPoint < 75_000) {
return ('18', '26');
} else if (midPoint < 125_000) {
return ('21', '27');
} else {
return ('24', '27');
}
}
function generateSVGRareSparkle(uint256 tokenId, address poolAddress) private pure returns (string memory svg) {
if (isRare(tokenId, poolAddress)) {
svg = string(
abi.encodePacked(
'<g style="transform:translate(226px, 392px)"><rect width="36px" height="36px" rx="8px" ry="8px" fill="none" stroke="rgba(255,255,255,0.2)" />',
'<g><path style="transform:translate(6px,6px)" d="M12 0L12.6522 9.56587L18 1.6077L13.7819 10.2181L22.3923 6L14.4341 ',
'11.3478L24 12L14.4341 12.6522L22.3923 18L13.7819 13.7819L18 22.3923L12.6522 14.4341L12 24L11.3478 14.4341L6 22.39',
'23L10.2181 13.7819L1.6077 18L9.56587 12.6522L0 12L9.56587 11.3478L1.6077 6L10.2181 10.2181L6 1.6077L11.3478 9.56587L12 0Z" fill="white" />',
'<animateTransform attributeName="transform" type="rotate" from="0 18 18" to="360 18 18" dur="10s" repeatCount="indefinite"/></g></g>'
)
);
} else {
svg = '';
}
}
function isRare(uint256 tokenId, address poolAddress) internal pure returns (bool) {
bytes32 h = keccak256(abi.encodePacked(tokenId, poolAddress));
return uint256(h) < type(uint256).max / (1 + BitMath.mostSignificantBit(tokenId) * 2);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
/// @title Prevents delegatecall to a contract
/// @notice Base contract that provides a modifier for preventing delegatecall to methods in a child contract
abstract contract NoDelegateCall {
/// @dev The original address of this contract
address private immutable original;
constructor() {
// Immutables are computed in the init code of the contract, and then inlined into the deployed bytecode.
// In other words, this variable won't change when it's checked at runtime.
original = address(this);
}
/// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
/// and the use of immutable means the address bytes are copied in every place the modifier is used.
function checkNotDelegateCall() private view {
require(address(this) == original);
}
/// @notice Prevents delegatecall into the modified method
modifier noDelegateCall() {
checkNotDelegateCall();
_;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import './interfaces/IZebraV3Pool.sol';
import './libraries/FixedPoint128.sol';
import './libraries/FullMath.sol';
import './interfaces/INonfungiblePositionManager.sol';
import './interfaces/INonfungibleTokenPositionDescriptor.sol';
import './libraries/PositionKey.sol';
import './libraries/PoolAddress.sol';
import './base/LiquidityManagement.sol';
import './base/PeripheryImmutableState.sol';
import './base/Multicall.sol';
import './base/ERC721Permit.sol';
import './base/PeripheryValidation.sol';
import './base/SelfPermit.sol';
import './base/PoolInitializer.sol';
/// @title NFT positions
/// @notice Wraps Zebra V3 positions in the ERC721 non-fungible token interface
contract NonfungiblePositionManager is
INonfungiblePositionManager,
Multicall,
ERC721Permit,
PeripheryImmutableState,
PoolInitializer,
LiquidityManagement,
PeripheryValidation,
SelfPermit
{
// details about the Zebra position
struct Position {
// the nonce for permits
uint96 nonce;
// the address that is approved for spending this token
address operator;
// the ID of the pool with which this token is connected
uint80 poolId;
// the tick range of the position
int24 tickLower;
int24 tickUpper;
// the liquidity of the position
uint128 liquidity;
// the fee growth of the aggregate position as of the last action on the individual position
uint256 feeGrowthInside0LastX128;
uint256 feeGrowthInside1LastX128;
// how many uncollected tokens are owed to the position, as of the last computation
uint128 tokensOwed0;
uint128 tokensOwed1;
}
/// @dev IDs of pools assigned by this contract
mapping(address => uint80) private _poolIds;
/// @dev Pool keys by pool ID, to save on SSTOREs for position data
mapping(uint80 => PoolAddress.PoolKey) private _poolIdToPoolKey;
/// @dev The token ID position data
mapping(uint256 => Position) private _positions;
/// @dev The ID of the next token that will be minted. Skips 0
uint176 private _nextId = 1;
/// @dev The ID of the next pool that is used for the first time. Skips 0
uint80 private _nextPoolId = 1;
/// @dev The address of the token descriptor contract, which handles generating token URIs for position tokens
address private immutable _tokenDescriptor;
constructor(
address _factory,
address _WETH9,
address _tokenDescriptor_
) ERC721Permit('Zebra Positions NFT', 'ZEBRA-POS', '1') PeripheryImmutableState(_factory, _WETH9) {
_tokenDescriptor = _tokenDescriptor_;
}
/// @inheritdoc INonfungiblePositionManager
function positions(uint256 tokenId)
external
view
override
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
)
{
Position memory position = _positions[tokenId];
require(position.poolId != 0, 'Invalid token ID');
PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId];
return (
position.nonce,
position.operator,
poolKey.token0,
poolKey.token1,
poolKey.fee,
position.tickLower,
position.tickUpper,
position.liquidity,
position.feeGrowthInside0LastX128,
position.feeGrowthInside1LastX128,
position.tokensOwed0,
position.tokensOwed1
);
}
/// @dev Caches a pool key
function cachePoolKey(address pool, PoolAddress.PoolKey memory poolKey) private returns (uint80 poolId) {
poolId = _poolIds[pool];
if (poolId == 0) {
_poolIds[pool] = (poolId = _nextPoolId++);
_poolIdToPoolKey[poolId] = poolKey;
}
}
/// @inheritdoc INonfungiblePositionManager
function mint(MintParams calldata params)
external
payable
override
checkDeadline(params.deadline)
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
)
{
IZebraV3Pool pool;
(liquidity, amount0, amount1, pool) = addLiquidity(
AddLiquidityParams({
token0: params.token0,
token1: params.token1,
fee: params.fee,
recipient: address(this),
tickLower: params.tickLower,
tickUpper: params.tickUpper,
amount0Desired: params.amount0Desired,
amount1Desired: params.amount1Desired,
amount0Min: params.amount0Min,
amount1Min: params.amount1Min
})
);
_mint(params.recipient, (tokenId = _nextId++));
bytes32 positionKey = PositionKey.compute(address(this), params.tickLower, params.tickUpper);
(, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(positionKey);
// idempotent set
uint80 poolId =
cachePoolKey(
address(pool),
PoolAddress.PoolKey({token0: params.token0, token1: params.token1, fee: params.fee})
);
_positions[tokenId] = Position({
nonce: 0,
operator: address(0),
poolId: poolId,
tickLower: params.tickLower,
tickUpper: params.tickUpper,
liquidity: liquidity,
feeGrowthInside0LastX128: feeGrowthInside0LastX128,
feeGrowthInside1LastX128: feeGrowthInside1LastX128,
tokensOwed0: 0,
tokensOwed1: 0
});
emit IncreaseLiquidity(tokenId, liquidity, amount0, amount1);
}
modifier isAuthorizedForToken(uint256 tokenId) {
require(_isApprovedOrOwner(msg.sender, tokenId), 'Not approved');
_;
}
function tokenURI(uint256 tokenId) public view override(ERC721, IERC721Metadata) returns (string memory) {
require(_exists(tokenId));
return INonfungibleTokenPositionDescriptor(_tokenDescriptor).tokenURI(this, tokenId);
}
// save bytecode by removing implementation of unused method
function baseURI() public pure override returns (string memory) {}
/// @inheritdoc INonfungiblePositionManager
function increaseLiquidity(IncreaseLiquidityParams calldata params)
external
payable
override
checkDeadline(params.deadline)
returns (
uint128 liquidity,
uint256 amount0,
uint256 amount1
)
{
Position storage position = _positions[params.tokenId];
PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId];
IZebraV3Pool pool;
(liquidity, amount0, amount1, pool) = addLiquidity(
AddLiquidityParams({
token0: poolKey.token0,
token1: poolKey.token1,
fee: poolKey.fee,
tickLower: position.tickLower,
tickUpper: position.tickUpper,
amount0Desired: params.amount0Desired,
amount1Desired: params.amount1Desired,
amount0Min: params.amount0Min,
amount1Min: params.amount1Min,
recipient: address(this)
})
);
bytes32 positionKey = PositionKey.compute(address(this), position.tickLower, position.tickUpper);
// this is now updated to the current transaction
(, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(positionKey);
position.tokensOwed0 += uint128(
FullMath.mulDiv(
feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128,
position.liquidity,
FixedPoint128.Q128
)
);
position.tokensOwed1 += uint128(
FullMath.mulDiv(
feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128,
position.liquidity,
FixedPoint128.Q128
)
);
position.feeGrowthInside0LastX128 = feeGrowthInside0LastX128;
position.feeGrowthInside1LastX128 = feeGrowthInside1LastX128;
position.liquidity += liquidity;
emit IncreaseLiquidity(params.tokenId, liquidity, amount0, amount1);
}
/// @inheritdoc INonfungiblePositionManager
function decreaseLiquidity(DecreaseLiquidityParams calldata params)
external
payable
override
isAuthorizedForToken(params.tokenId)
checkDeadline(params.deadline)
returns (uint256 amount0, uint256 amount1)
{
require(params.liquidity > 0);
Position storage position = _positions[params.tokenId];
uint128 positionLiquidity = position.liquidity;
require(positionLiquidity >= params.liquidity);
PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId];
IZebraV3Pool pool = IZebraV3Pool(PoolAddress.computeAddress(factory, poolKey));
(amount0, amount1) = pool.burn(position.tickLower, position.tickUpper, params.liquidity);
require(amount0 >= params.amount0Min && amount1 >= params.amount1Min, 'Price slippage check');
bytes32 positionKey = PositionKey.compute(address(this), position.tickLower, position.tickUpper);
// this is now updated to the current transaction
(, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) = pool.positions(positionKey);
position.tokensOwed0 +=
uint128(amount0) +
uint128(
FullMath.mulDiv(
feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128,
positionLiquidity,
FixedPoint128.Q128
)
);
position.tokensOwed1 +=
uint128(amount1) +
uint128(
FullMath.mulDiv(
feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128,
positionLiquidity,
FixedPoint128.Q128
)
);
position.feeGrowthInside0LastX128 = feeGrowthInside0LastX128;
position.feeGrowthInside1LastX128 = feeGrowthInside1LastX128;
// subtraction is safe because we checked positionLiquidity is gte params.liquidity
position.liquidity = positionLiquidity - params.liquidity;
emit DecreaseLiquidity(params.tokenId, params.liquidity, amount0, amount1);
}
/// @inheritdoc INonfungiblePositionManager
function collect(CollectParams calldata params)
external
payable
override
isAuthorizedForToken(params.tokenId)
returns (uint256 amount0, uint256 amount1)
{
require(params.amount0Max > 0 || params.amount1Max > 0);
// allow collecting to the nft position manager address with address 0
address recipient = params.recipient == address(0) ? address(this) : params.recipient;
Position storage position = _positions[params.tokenId];
PoolAddress.PoolKey memory poolKey = _poolIdToPoolKey[position.poolId];
IZebraV3Pool pool = IZebraV3Pool(PoolAddress.computeAddress(factory, poolKey));
(uint128 tokensOwed0, uint128 tokensOwed1) = (position.tokensOwed0, position.tokensOwed1);
// trigger an update of the position fees owed and fee growth snapshots if it has any liquidity
if (position.liquidity > 0) {
pool.burn(position.tickLower, position.tickUpper, 0);
(, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, , ) =
pool.positions(PositionKey.compute(address(this), position.tickLower, position.tickUpper));
tokensOwed0 += uint128(
FullMath.mulDiv(
feeGrowthInside0LastX128 - position.feeGrowthInside0LastX128,
position.liquidity,
FixedPoint128.Q128
)
);
tokensOwed1 += uint128(
FullMath.mulDiv(
feeGrowthInside1LastX128 - position.feeGrowthInside1LastX128,
position.liquidity,
FixedPoint128.Q128
)
);
position.feeGrowthInside0LastX128 = feeGrowthInside0LastX128;
position.feeGrowthInside1LastX128 = feeGrowthInside1LastX128;
}
// compute the arguments to give to the pool#collect method
(uint128 amount0Collect, uint128 amount1Collect) =
(
params.amount0Max > tokensOwed0 ? tokensOwed0 : params.amount0Max,
params.amount1Max > tokensOwed1 ? tokensOwed1 : params.amount1Max
);
// the actual amounts collected are returned
(amount0, amount1) = pool.collect(
recipient,
position.tickLower,
position.tickUpper,
amount0Collect,
amount1Collect
);
// sometimes there will be a few less wei than expected due to rounding down in core, but we just subtract the full amount expected
// instead of the actual amount so we can burn the token
(position.tokensOwed0, position.tokensOwed1) = (tokensOwed0 - amount0Collect, tokensOwed1 - amount1Collect);
emit Collect(params.tokenId, recipient, amount0Collect, amount1Collect);
}
/// @inheritdoc INonfungiblePositionManager
function burn(uint256 tokenId) external payable override isAuthorizedForToken(tokenId) {
Position storage position = _positions[tokenId];
require(position.liquidity == 0 && position.tokensOwed0 == 0 && position.tokensOwed1 == 0, 'Not cleared');
delete _positions[tokenId];
_burn(tokenId);
}
function _getAndIncrementNonce(uint256 tokenId) internal override returns (uint256) {
return uint256(_positions[tokenId].nonce++);
}
/// @inheritdoc IERC721
function getApproved(uint256 tokenId) public view override(ERC721, IERC721) returns (address) {
require(_exists(tokenId), 'ERC721: approved query for nonexistent token');
return _positions[tokenId].operator;
}
/// @dev Overrides _approve to use the operator in the position, which is packed with the position permit nonce
function _approve(address to, uint256 tokenId) internal override(ERC721) {
_positions[tokenId].operator = to;
emit Approval(ownerOf(tokenId), to, tokenId);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import './interfaces/IZebraV3Pool.sol';
import './libraries/SafeERC20Namer.sol';
import './libraries/ChainId.sol';
import './interfaces/INonfungiblePositionManager.sol';
import './interfaces/INonfungibleTokenPositionDescriptor.sol';
import './interfaces/IERC20Metadata.sol';
import './libraries/PoolAddress.sol';
import './libraries/NFTDescriptor.sol';
import './libraries/TokenRatioSortOrder.sol';
/// @title Describes NFT token positions
/// @notice Produces a string containing the data URI for a JSON metadata string
contract NonfungibleTokenPositionDescriptor is INonfungibleTokenPositionDescriptor {
address private constant DAI = 0xcA77eB3fEFe3725Dc33bccB54eDEFc3D9f764f97;
address private constant USDC = 0x06eFdBFf2a14a7c8E15944D1F4A48F9F95F663A4;
address private constant USDT = 0xf55BEC9cafDbE8730f096Aa55dad6D22d44099Df;
address private constant TBTC = 0x0000000000000000000000000000000000000000;
address private constant WBTC = 0x3C1BCa5a656e69edCD0D4E36BEbb3FcDAcA60Cf1;
address public immutable WETH9;
constructor(address _WETH9) {
WETH9 = _WETH9;
}
/// @inheritdoc INonfungibleTokenPositionDescriptor
function tokenURI(INonfungiblePositionManager positionManager, uint256 tokenId)
external
view
override
returns (string memory)
{
(, , address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, , , , , ) =
positionManager.positions(tokenId);
IZebraV3Pool pool =
IZebraV3Pool(
PoolAddress.computeAddress(
positionManager.factory(),
PoolAddress.PoolKey({token0: token0, token1: token1, fee: fee})
)
);
bool _flipRatio = flipRatio(token0, token1, ChainId.get());
address quoteTokenAddress = !_flipRatio ? token1 : token0;
address baseTokenAddress = !_flipRatio ? token0 : token1;
(, int24 tick, , , , , ) = pool.slot0();
return
NFTDescriptor.constructTokenURI(
NFTDescriptor.ConstructTokenURIParams({
tokenId: tokenId,
quoteTokenAddress: quoteTokenAddress,
baseTokenAddress: baseTokenAddress,
quoteTokenSymbol: SafeERC20Namer.tokenSymbol(quoteTokenAddress),
baseTokenSymbol: SafeERC20Namer.tokenSymbol(baseTokenAddress),
quoteTokenDecimals: IERC20Metadata(quoteTokenAddress).decimals(),
baseTokenDecimals: IERC20Metadata(baseTokenAddress).decimals(),
flipRatio: _flipRatio,
tickLower: tickLower,
tickUpper: tickUpper,
tickCurrent: tick,
tickSpacing: pool.tickSpacing(),
fee: fee,
poolAddress: address(pool)
})
);
}
function flipRatio(
address token0,
address token1,
uint256 chainId
) public view returns (bool) {
return tokenRatioPriority(token0, chainId) > tokenRatioPriority(token1, chainId);
}
function tokenRatioPriority(address token, uint256 chainId) public view returns (int256) {
if (token == WETH9) {
return TokenRatioSortOrder.DENOMINATOR;
}
if (chainId == 1) {
if (token == USDC) {
return TokenRatioSortOrder.NUMERATOR_MOST;
} else if (token == USDT) {
return TokenRatioSortOrder.NUMERATOR_MORE;
} else if (token == DAI) {
return TokenRatioSortOrder.NUMERATOR;
} else if (token == TBTC) {
return TokenRatioSortOrder.DENOMINATOR_MORE;
} else if (token == WBTC) {
return TokenRatioSortOrder.DENOMINATOR_MOST;
} else {
return 0;
}
}
return 0;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import './interfaces/IZebraV3Pool.sol';
import './libraries/SafeERC20Namer.sol';
import './libraries/ChainId.sol';
import './interfaces/INonfungiblePositionManager.sol';
import './interfaces/INonfungibleTokenPositionDescriptor.sol';
import './interfaces/IERC20Metadata.sol';
import './libraries/PoolAddress.sol';
import './libraries/NFTDescriptor.sol';
import './libraries/TokenRatioSortOrder.sol';
/// @title Describes NFT token positions
/// @notice Produces a string containing the data URI for a JSON metadata string
contract NonfungibleTokenPositionDescriptor_test is INonfungibleTokenPositionDescriptor {
address private constant DAI = 0x0000000000000000000000000000000000000000;
address private constant USDC = 0xc0CC181BAedc547eF3427D3642671e0C4ff09941;
address private constant USDT = 0xCd8EE7570c5382144D1c442b6c3563A40a5e3C4a;
address private constant TBTC = 0x0000000000000000000000000000000000000000;
address private constant WBTC = 0x62B8a1eF640B96E86d6927824E5FE682d07D3b46;
address public immutable WETH9;
constructor(address _WETH9) {
WETH9 = _WETH9;
}
/// @inheritdoc INonfungibleTokenPositionDescriptor
function tokenURI(INonfungiblePositionManager positionManager, uint256 tokenId)
external
view
override
returns (string memory)
{
(, , address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, , , , , ) =
positionManager.positions(tokenId);
IZebraV3Pool pool =
IZebraV3Pool(
PoolAddress.computeAddress(
positionManager.factory(),
PoolAddress.PoolKey({token0: token0, token1: token1, fee: fee})
)
);
bool _flipRatio = flipRatio(token0, token1, ChainId.get());
address quoteTokenAddress = !_flipRatio ? token1 : token0;
address baseTokenAddress = !_flipRatio ? token0 : token1;
(, int24 tick, , , , , ) = pool.slot0();
return
NFTDescriptor.constructTokenURI(
NFTDescriptor.ConstructTokenURIParams({
tokenId: tokenId,
quoteTokenAddress: quoteTokenAddress,
baseTokenAddress: baseTokenAddress,
quoteTokenSymbol: SafeERC20Namer.tokenSymbol(quoteTokenAddress),
baseTokenSymbol: SafeERC20Namer.tokenSymbol(baseTokenAddress),
quoteTokenDecimals: IERC20Metadata(quoteTokenAddress).decimals(),
baseTokenDecimals: IERC20Metadata(baseTokenAddress).decimals(),
flipRatio: _flipRatio,
tickLower: tickLower,
tickUpper: tickUpper,
tickCurrent: tick,
tickSpacing: pool.tickSpacing(),
fee: fee,
poolAddress: address(pool)
})
);
}
function flipRatio(
address token0,
address token1,
uint256 chainId
) public view returns (bool) {
return tokenRatioPriority(token0, chainId) > tokenRatioPriority(token1, chainId);
}
function tokenRatioPriority(address token, uint256 chainId) public view returns (int256) {
if (token == WETH9) {
return TokenRatioSortOrder.DENOMINATOR;
}
if (chainId == 1) {
if (token == USDC) {
return TokenRatioSortOrder.NUMERATOR_MOST;
} else if (token == USDT) {
return TokenRatioSortOrder.NUMERATOR_MORE;
} else if (token == DAI) {
return TokenRatioSortOrder.NUMERATOR;
} else if (token == TBTC) {
return TokenRatioSortOrder.DENOMINATOR_MORE;
} else if (token == WBTC) {
return TokenRatioSortOrder.DENOMINATOR_MOST;
} else {
return 0;
}
}
return 0;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.8.0;
/// @title Oracle
/// @notice Provides price and liquidity data useful for a wide variety of system designs
/// @dev Instances of stored oracle data, "observations", are collected in the oracle array
/// Every pool is initialized with an oracle array length of 1. Anyone can pay the SSTOREs to increase the
/// maximum length of the oracle array. New slots will be added when the array is fully populated.
/// Observations are overwritten when the full length of the oracle array is populated.
/// The most recent observation is available, independent of the length of the oracle array, by passing 0 to observe()
library Oracle {
struct Observation {
// the block timestamp of the observation
uint32 blockTimestamp;
// the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
int56 tickCumulative;
// the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
uint160 secondsPerLiquidityCumulativeX128;
// whether or not the observation is initialized
bool initialized;
}
/// @notice Transforms a previous observation into a new observation, given the passage of time and the current tick and liquidity values
/// @dev blockTimestamp _must_ be chronologically equal to or greater than last.blockTimestamp, safe for 0 or 1 overflows
/// @param last The specified observation to be transformed
/// @param blockTimestamp The timestamp of the new observation
/// @param tick The active tick at the time of the new observation
/// @param liquidity The total in-range liquidity at the time of the new observation
/// @return Observation The newly populated observation
function transform(
Observation memory last,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity
) private pure returns (Observation memory) {
uint32 delta = blockTimestamp - last.blockTimestamp;
return
Observation({
blockTimestamp: blockTimestamp,
tickCumulative: last.tickCumulative + int56(tick) * delta,
secondsPerLiquidityCumulativeX128: last.secondsPerLiquidityCumulativeX128 +
((uint160(delta) << 128) / (liquidity > 0 ? liquidity : 1)),
initialized: true
});
}
/// @notice Initialize the oracle array by writing the first slot. Called once for the lifecycle of the observations array
/// @param self The stored oracle array
/// @param time The time of the oracle initialization, via block.timestamp truncated to uint32
/// @return cardinality The number of populated elements in the oracle array
/// @return cardinalityNext The new length of the oracle array, independent of population
function initialize(Observation[65535] storage self, uint32 time)
internal
returns (uint16 cardinality, uint16 cardinalityNext)
{
self[0] = Observation({
blockTimestamp: time,
tickCumulative: 0,
secondsPerLiquidityCumulativeX128: 0,
initialized: true
});
return (1, 1);
}
/// @notice Writes an oracle observation to the array
/// @dev Writable at most once per block. Index represents the most recently written element. cardinality and index must be tracked externally.
/// If the index is at the end of the allowable array length (according to cardinality), and the next cardinality
/// is greater than the current one, cardinality may be increased. This restriction is created to preserve ordering.
/// @param self The stored oracle array
/// @param index The index of the observation that was most recently written to the observations array
/// @param blockTimestamp The timestamp of the new observation
/// @param tick The active tick at the time of the new observation
/// @param liquidity The total in-range liquidity at the time of the new observation
/// @param cardinality The number of populated elements in the oracle array
/// @param cardinalityNext The new length of the oracle array, independent of population
/// @return indexUpdated The new index of the most recently written element in the oracle array
/// @return cardinalityUpdated The new cardinality of the oracle array
function write(
Observation[65535] storage self,
uint16 index,
uint32 blockTimestamp,
int24 tick,
uint128 liquidity,
uint16 cardinality,
uint16 cardinalityNext
) internal returns (uint16 indexUpdated, uint16 cardinalityUpdated) {
Observation memory last = self[index];
// early return if we've already written an observation this block
if (last.blockTimestamp == blockTimestamp) return (index, cardinality);
// if the conditions are right, we can bump the cardinality
if (cardinalityNext > cardinality && index == (cardinality - 1)) {
cardinalityUpdated = cardinalityNext;
} else {
cardinalityUpdated = cardinality;
}
indexUpdated = (index + 1) % cardinalityUpdated;
self[indexUpdated] = transform(last, blockTimestamp, tick, liquidity);
}
/// @notice Prepares the oracle array to store up to `next` observations
/// @param self The stored oracle array
/// @param current The current next cardinality of the oracle array
/// @param next The proposed next cardinality which will be populated in the oracle array
/// @return next The next cardinality which will be populated in the oracle array
function grow(
Observation[65535] storage self,
uint16 current,
uint16 next
) internal returns (uint16) {
require(current > 0, 'I');
// no-op if the passed next value isn't greater than the current next value
if (next <= current) return current;
// store in each slot to prevent fresh SSTOREs in swaps
// this data will not be used because the initialized boolean is still false
for (uint16 i = current; i < next; i++) self[i].blockTimestamp = 1;
return next;
}
/// @notice comparator for 32-bit timestamps
/// @dev safe for 0 or 1 overflows, a and b _must_ be chronologically before or equal to time
/// @param time A timestamp truncated to 32 bits
/// @param a A comparison timestamp from which to determine the relative position of `time`
/// @param b From which to determine the relative position of `time`
/// @return bool Whether `a` is chronologically <= `b`
function lte(
uint32 time,
uint32 a,
uint32 b
) private pure returns (bool) {
// if there hasn't been overflow, no need to adjust
if (a <= time && b <= time) return a <= b;
uint256 aAdjusted = a > time ? a : a + 2**32;
uint256 bAdjusted = b > time ? b : b + 2**32;
return aAdjusted <= bAdjusted;
}
/// @notice Fetches the observations beforeOrAt and atOrAfter a target, i.e. where [beforeOrAt, atOrAfter] is satisfied.
/// The result may be the same observation, or adjacent observations.
/// @dev The answer must be contained in the array, used when the target is located within the stored observation
/// boundaries: older than the most recent observation and younger, or the same age as, the oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param index The index of the observation that was most recently written to the observations array
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation recorded before, or at, the target
/// @return atOrAfter The observation recorded at, or after, the target
function binarySearch(
Observation[65535] storage self,
uint32 time,
uint32 target,
uint16 index,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
uint256 l = (index + 1) % cardinality; // oldest observation
uint256 r = l + cardinality - 1; // newest observation
uint256 i;
while (true) {
i = (l + r) / 2;
beforeOrAt = self[i % cardinality];
// we've landed on an uninitialized tick, keep searching higher (more recently)
if (!beforeOrAt.initialized) {
l = i + 1;
continue;
}
atOrAfter = self[(i + 1) % cardinality];
bool targetAtOrAfter = lte(time, beforeOrAt.blockTimestamp, target);
// check if we've found the answer!
if (targetAtOrAfter && lte(time, target, atOrAfter.blockTimestamp)) break;
if (!targetAtOrAfter) r = i - 1;
else l = i + 1;
}
}
/// @notice Fetches the observations beforeOrAt and atOrAfter a given target, i.e. where [beforeOrAt, atOrAfter] is satisfied
/// @dev Assumes there is at least 1 initialized observation.
/// Used by observeSingle() to compute the counterfactual accumulator values as of a given block timestamp.
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param target The timestamp at which the reserved observation should be for
/// @param tick The active tick at the time of the returned or simulated observation
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The total pool liquidity at the time of the call
/// @param cardinality The number of populated elements in the oracle array
/// @return beforeOrAt The observation which occurred at, or before, the given timestamp
/// @return atOrAfter The observation which occurred at, or after, the given timestamp
function getSurroundingObservations(
Observation[65535] storage self,
uint32 time,
uint32 target,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) private view returns (Observation memory beforeOrAt, Observation memory atOrAfter) {
// optimistically set before to the newest observation
beforeOrAt = self[index];
// if the target is chronologically at or after the newest observation, we can early return
if (lte(time, beforeOrAt.blockTimestamp, target)) {
if (beforeOrAt.blockTimestamp == target) {
// if newest observation equals target, we're in the same block, so we can ignore atOrAfter
return (beforeOrAt, atOrAfter);
} else {
// otherwise, we need to transform
return (beforeOrAt, transform(beforeOrAt, target, tick, liquidity));
}
}
// now, set before to the oldest observation
beforeOrAt = self[(index + 1) % cardinality];
if (!beforeOrAt.initialized) beforeOrAt = self[0];
// ensure that the target is chronologically at or after the oldest observation
require(lte(time, beforeOrAt.blockTimestamp, target), 'OLD');
// if we've reached this point, we have to binary search
return binarySearch(self, time, target, index, cardinality);
}
/// @dev Reverts if an observation at or before the desired observation timestamp does not exist.
/// 0 may be passed as `secondsAgo' to return the current cumulative values.
/// If called with a timestamp falling between two observations, returns the counterfactual accumulator values
/// at exactly the timestamp between the two observations.
/// @param self The stored oracle array
/// @param time The current block timestamp
/// @param secondsAgo The amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulative The tick * time elapsed since the pool was first initialized, as of `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128 The time elapsed / max(1, liquidity) since the pool was first initialized, as of `secondsAgo`
function observeSingle(
Observation[65535] storage self,
uint32 time,
uint32 secondsAgo,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) {
if (secondsAgo == 0) {
Observation memory last = self[index];
if (last.blockTimestamp != time) last = transform(last, time, tick, liquidity);
return (last.tickCumulative, last.secondsPerLiquidityCumulativeX128);
}
uint32 target = time - secondsAgo;
(Observation memory beforeOrAt, Observation memory atOrAfter) =
getSurroundingObservations(self, time, target, tick, index, liquidity, cardinality);
if (target == beforeOrAt.blockTimestamp) {
// we're at the left boundary
return (beforeOrAt.tickCumulative, beforeOrAt.secondsPerLiquidityCumulativeX128);
} else if (target == atOrAfter.blockTimestamp) {
// we're at the right boundary
return (atOrAfter.tickCumulative, atOrAfter.secondsPerLiquidityCumulativeX128);
} else {
// we're in the middle
uint32 observationTimeDelta = atOrAfter.blockTimestamp - beforeOrAt.blockTimestamp;
uint32 targetDelta = target - beforeOrAt.blockTimestamp;
return (
beforeOrAt.tickCumulative +
((atOrAfter.tickCumulative - beforeOrAt.tickCumulative) / observationTimeDelta) *
targetDelta,
beforeOrAt.secondsPerLiquidityCumulativeX128 +
uint160(
(uint256(
atOrAfter.secondsPerLiquidityCumulativeX128 - beforeOrAt.secondsPerLiquidityCumulativeX128
) * targetDelta) / observationTimeDelta
)
);
}
}
/// @notice Returns the accumulator values as of each time seconds ago from the given time in the array of `secondsAgos`
/// @dev Reverts if `secondsAgos` > oldest observation
/// @param self The stored oracle array
/// @param time The current block.timestamp
/// @param secondsAgos Each amount of time to look back, in seconds, at which point to return an observation
/// @param tick The current tick
/// @param index The index of the observation that was most recently written to the observations array
/// @param liquidity The current in-range pool liquidity
/// @param cardinality The number of populated elements in the oracle array
/// @return tickCumulatives The tick * time elapsed since the pool was first initialized, as of each `secondsAgo`
/// @return secondsPerLiquidityCumulativeX128s The cumulative seconds / max(1, liquidity) since the pool was first initialized, as of each `secondsAgo`
function observe(
Observation[65535] storage self,
uint32 time,
uint32[] memory secondsAgos,
int24 tick,
uint16 index,
uint128 liquidity,
uint16 cardinality
) internal view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) {
require(cardinality > 0, 'I');
tickCumulatives = new int56[](secondsAgos.length);
secondsPerLiquidityCumulativeX128s = new uint160[](secondsAgos.length);
for (uint256 i = 0; i < secondsAgos.length; i++) {
(tickCumulatives[i], secondsPerLiquidityCumulativeX128s[i]) = observeSingle(
self,
time,
secondsAgos[i],
tick,
index,
liquidity,
cardinality
);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import './BytesLib.sol';
/// @title Functions for manipulating path data for multihop swaps
library Path {
using BytesLib for bytes;
/// @dev The length of the bytes encoded address
uint256 private constant ADDR_SIZE = 20;
/// @dev The length of the bytes encoded fee
uint256 private constant FEE_SIZE = 3;
/// @dev The offset of a single token address and pool fee
uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE;
/// @dev The offset of an encoded pool key
uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
/// @dev The minimum length of an encoding that contains 2 or more pools
uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET;
/// @notice Returns true iff the path contains two or more pools
/// @param path The encoded swap path
/// @return True if path contains two or more pools, otherwise false
function hasMultiplePools(bytes memory path) internal pure returns (bool) {
return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
}
/// @notice Returns the number of pools in the path
/// @param path The encoded swap path
/// @return The number of pools in the path
function numPools(bytes memory path) internal pure returns (uint256) {
// Ignore the first token address. From then on every fee and token offset indicates a pool.
return ((path.length - ADDR_SIZE) / NEXT_OFFSET);
}
/// @notice Decodes the first pool in path
/// @param path The bytes encoded swap path
/// @return tokenA The first token of the given pool
/// @return tokenB The second token of the given pool
/// @return fee The fee level of the pool
function decodeFirstPool(bytes memory path)
internal
pure
returns (
address tokenA,
address tokenB,
uint24 fee
)
{
tokenA = path.toAddress(0);
fee = path.toUint24(ADDR_SIZE);
tokenB = path.toAddress(NEXT_OFFSET);
}
/// @notice Gets the segment corresponding to the first pool in the path
/// @param path The bytes encoded swap path
/// @return The segment containing all data necessary to target the first pool in the path
function getFirstPool(bytes memory path) internal pure returns (bytes memory) {
return path.slice(0, POP_OFFSET);
}
/// @notice Skips a token + fee element from the buffer and returns the remainder
/// @param path The swap path
/// @return The remaining token + fee elements in the path
function skipToken(bytes memory path) internal pure returns (bytes memory) {
return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import '../interfaces/IPeripheryImmutableState.sol';
/// @title Immutable state
/// @notice Immutable state used by periphery contracts
abstract contract PeripheryImmutableState is IPeripheryImmutableState {
/// @inheritdoc IPeripheryImmutableState
address public immutable override factory;
/// @inheritdoc IPeripheryImmutableState
address public immutable override WETH9;
constructor(address _factory, address _WETH9) {
factory = _factory;
WETH9 = _WETH9;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '../interfaces/IPeripheryPayments.sol';
import '../interfaces/external/IWETH9.sol';
import '../libraries/TransferHelper.sol';
import './PeripheryImmutableState.sol';
abstract contract PeripheryPayments is IPeripheryPayments, PeripheryImmutableState {
receive() external payable {
require(msg.sender == WETH9, 'Not WETH9');
}
/// @inheritdoc IPeripheryPayments
function unwrapWETH9(uint256 amountMinimum, address recipient) public payable override {
uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this));
require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9');
if (balanceWETH9 > 0) {
IWETH9(WETH9).withdraw(balanceWETH9);
TransferHelper.safeTransferETH(recipient, balanceWETH9);
}
}
/// @inheritdoc IPeripheryPayments
function sweepToken(
address token,
uint256 amountMinimum,
address recipient
) public payable override {
uint256 balanceToken = IERC20(token).balanceOf(address(this));
require(balanceToken >= amountMinimum, 'Insufficient token');
if (balanceToken > 0) {
TransferHelper.safeTransfer(token, recipient, balanceToken);
}
}
/// @inheritdoc IPeripheryPayments
function refundETH() external payable override {
if (address(this).balance > 0) TransferHelper.safeTransferETH(msg.sender, address(this).balance);
}
/// @param token The token to pay
/// @param payer The entity that must pay
/// @param recipient The entity that will receive payment
/// @param value The amount to pay
function pay(
address token,
address payer,
address recipient,
uint256 value
) internal {
if (token == WETH9 && address(this).balance >= value) {
// pay with WETH9
IWETH9(WETH9).deposit{value: value}(); // wrap only what is needed to pay
IWETH9(WETH9).transfer(recipient, value);
} else if (payer == address(this)) {
// pay with tokens already in the contract (for the exact input multihop case)
TransferHelper.safeTransfer(token, recipient, value);
} else {
// pull payment
TransferHelper.safeTransferFrom(token, payer, recipient, value);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '../libraries/LowGasSafeMath.sol';
import './PeripheryPayments.sol';
import '../interfaces/IPeripheryPaymentsWithFee.sol';
import '../interfaces/external/IWETH9.sol';
import '../libraries/TransferHelper.sol';
abstract contract PeripheryPaymentsWithFee is PeripheryPayments, IPeripheryPaymentsWithFee {
using LowGasSafeMath for uint256;
/// @inheritdoc IPeripheryPaymentsWithFee
function unwrapWETH9WithFee(
uint256 amountMinimum,
address recipient,
uint256 feeBips,
address feeRecipient
) public payable override {
require(feeBips > 0 && feeBips <= 100);
uint256 balanceWETH9 = IWETH9(WETH9).balanceOf(address(this));
require(balanceWETH9 >= amountMinimum, 'Insufficient WETH9');
if (balanceWETH9 > 0) {
IWETH9(WETH9).withdraw(balanceWETH9);
uint256 feeAmount = balanceWETH9.mul(feeBips) / 10_000;
if (feeAmount > 0) TransferHelper.safeTransferETH(feeRecipient, feeAmount);
TransferHelper.safeTransferETH(recipient, balanceWETH9 - feeAmount);
}
}
/// @inheritdoc IPeripheryPaymentsWithFee
function sweepTokenWithFee(
address token,
uint256 amountMinimum,
address recipient,
uint256 feeBips,
address feeRecipient
) public payable override {
require(feeBips > 0 && feeBips <= 100);
uint256 balanceToken = IERC20(token).balanceOf(address(this));
require(balanceToken >= amountMinimum, 'Insufficient token');
if (balanceToken > 0) {
uint256 feeAmount = balanceToken.mul(feeBips) / 10_000;
if (feeAmount > 0) TransferHelper.safeTransfer(token, feeRecipient, feeAmount);
TransferHelper.safeTransfer(token, recipient, balanceToken - feeAmount);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import './BlockTimestamp.sol';
abstract contract PeripheryValidation is BlockTimestamp {
modifier checkDeadline(uint256 deadline) {
require(_blockTimestamp() <= deadline, 'Transaction too old');
_;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
bytes32 internal constant POOL_INIT_CODE_HASH = 0xcf0b3414328c2bd327a4f093539d0d7d82fb94f893a2965c75cb470289cb5ac7;
/// @notice The identifying key of the pool
struct PoolKey {
address token0;
address token1;
uint24 fee;
}
/// @notice Returns PoolKey: the ordered tokens with the matched fee levels
/// @param tokenA The first token of a pool, unsorted
/// @param tokenB The second token of a pool, unsorted
/// @param fee The fee level of the pool
/// @return Poolkey The pool details with ordered token0 and token1 assignments
function getPoolKey(
address tokenA,
address tokenB,
uint24 fee
) internal pure returns (PoolKey memory) {
if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
}
/// @notice Deterministically computes the pool address given the factory and PoolKey
/// @param factory The Zebra V3 factory contract address
/// @param key The PoolKey
/// @return pool The contract address of the V3 pool
function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
require(key.token0 < key.token1);
pool = address(
uint256(
keccak256(
abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
POOL_INIT_CODE_HASH
)
)
)
);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import '../interfaces/IZebraV3Factory.sol';
import '../interfaces/IZebraV3Pool.sol';
import './PeripheryImmutableState.sol';
import '../interfaces/IPoolInitializer.sol';
/// @title Creates and initializes V3 Pools
abstract contract PoolInitializer is IPoolInitializer, PeripheryImmutableState {
/// @inheritdoc IPoolInitializer
function createAndInitializePoolIfNecessary(
address token0,
address token1,
uint24 fee,
uint160 sqrtPriceX96
) external payable override returns (address pool) {
require(token0 < token1);
pool = IZebraV3Factory(factory).getPool(token0, token1, fee);
if (pool == address(0)) {
pool = IZebraV3Factory(factory).createPool(token0, token1, fee);
IZebraV3Pool(pool).initialize(sqrtPriceX96);
} else {
(uint160 sqrtPriceX96Existing, , , , , , ) = IZebraV3Pool(pool).slot0();
if (sqrtPriceX96Existing == 0) {
IZebraV3Pool(pool).initialize(sqrtPriceX96);
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import '../interfaces/IZebraV3Pool.sol';
library PoolTicksCounter {
/// @dev This function counts the number of initialized ticks that would incur a gas cost between tickBefore and tickAfter.
/// When tickBefore and/or tickAfter themselves are initialized, the logic over whether we should count them depends on the
/// direction of the swap. If we are swapping upwards (tickAfter > tickBefore) we don't want to count tickBefore but we do
/// want to count tickAfter. The opposite is true if we are swapping downwards.
function countInitializedTicksCrossed(
IZebraV3Pool self,
int24 tickBefore,
int24 tickAfter
) internal view returns (uint32 initializedTicksCrossed) {
int16 wordPosLower;
int16 wordPosHigher;
uint8 bitPosLower;
uint8 bitPosHigher;
bool tickBeforeInitialized;
bool tickAfterInitialized;
{
// Get the key and offset in the tick bitmap of the active tick before and after the swap.
int16 wordPos = int16((tickBefore / self.tickSpacing()) >> 8);
uint8 bitPos = uint8((tickBefore / self.tickSpacing()) % 256);
int16 wordPosAfter = int16((tickAfter / self.tickSpacing()) >> 8);
uint8 bitPosAfter = uint8((tickAfter / self.tickSpacing()) % 256);
// In the case where tickAfter is initialized, we only want to count it if we are swapping downwards.
// If the initializable tick after the swap is initialized, our original tickAfter is a
// multiple of tick spacing, and we are swapping downwards we know that tickAfter is initialized
// and we shouldn't count it.
tickAfterInitialized =
((self.tickBitmap(wordPosAfter) & (1 << bitPosAfter)) > 0) &&
((tickAfter % self.tickSpacing()) == 0) &&
(tickBefore > tickAfter);
// In the case where tickBefore is initialized, we only want to count it if we are swapping upwards.
// Use the same logic as above to decide whether we should count tickBefore or not.
tickBeforeInitialized =
((self.tickBitmap(wordPos) & (1 << bitPos)) > 0) &&
((tickBefore % self.tickSpacing()) == 0) &&
(tickBefore < tickAfter);
if (wordPos < wordPosAfter || (wordPos == wordPosAfter && bitPos <= bitPosAfter)) {
wordPosLower = wordPos;
bitPosLower = bitPos;
wordPosHigher = wordPosAfter;
bitPosHigher = bitPosAfter;
} else {
wordPosLower = wordPosAfter;
bitPosLower = bitPosAfter;
wordPosHigher = wordPos;
bitPosHigher = bitPos;
}
}
// Count the number of initialized ticks crossed by iterating through the tick bitmap.
// Our first mask should include the lower tick and everything to its left.
uint256 mask = type(uint256).max << bitPosLower;
while (wordPosLower <= wordPosHigher) {
// If we're on the final tick bitmap page, ensure we only count up to our
// ending tick.
if (wordPosLower == wordPosHigher) {
mask = mask & (type(uint256).max >> (255 - bitPosHigher));
}
uint256 masked = self.tickBitmap(wordPosLower) & mask;
initializedTicksCrossed += countOneBits(masked);
wordPosLower++;
// Reset our mask so we consider all bits on the next iteration.
mask = type(uint256).max;
}
if (tickAfterInitialized) {
initializedTicksCrossed -= 1;
}
if (tickBeforeInitialized) {
initializedTicksCrossed -= 1;
}
return initializedTicksCrossed;
}
function countOneBits(uint256 x) private pure returns (uint16) {
uint16 bits = 0;
while (x != 0) {
bits++;
x &= (x - 1);
}
return bits;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.8.0;
import './FullMath.sol';
import './FixedPoint128.sol';
import './LiquidityMath.sol';
/// @title Position
/// @notice Positions represent an owner address' liquidity between a lower and upper tick boundary
/// @dev Positions store additional state for tracking fees owed to the position
library Position {
// info stored for each user's position
struct Info {
// the amount of liquidity owned by this position
uint128 liquidity;
// fee growth per unit of liquidity as of the last update to liquidity or fees owed
uint256 feeGrowthInside0LastX128;
uint256 feeGrowthInside1LastX128;
// the fees owed to the position owner in token0/token1
uint128 tokensOwed0;
uint128 tokensOwed1;
}
/// @notice Returns the Info struct of a position, given an owner and position boundaries
/// @param self The mapping containing all user positions
/// @param owner The address of the position owner
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @return position The position info struct of the given owners' position
function get(
mapping(bytes32 => Info) storage self,
address owner,
int24 tickLower,
int24 tickUpper
) internal view returns (Position.Info storage position) {
position = self[keccak256(abi.encodePacked(owner, tickLower, tickUpper))];
}
/// @notice Credits accumulated fees to a user's position
/// @param self The individual position to update
/// @param liquidityDelta The change in pool liquidity as a result of the position update
/// @param feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @param feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function update(
Info storage self,
int128 liquidityDelta,
uint256 feeGrowthInside0X128,
uint256 feeGrowthInside1X128
) internal {
Info memory _self = self;
uint128 liquidityNext;
if (liquidityDelta == 0) {
require(_self.liquidity > 0, 'NP'); // disallow pokes for 0 liquidity positions
liquidityNext = _self.liquidity;
} else {
liquidityNext = LiquidityMath.addDelta(_self.liquidity, liquidityDelta);
}
// calculate accumulated fees
uint128 tokensOwed0 =
uint128(
FullMath.mulDiv(
feeGrowthInside0X128 - _self.feeGrowthInside0LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
uint128 tokensOwed1 =
uint128(
FullMath.mulDiv(
feeGrowthInside1X128 - _self.feeGrowthInside1LastX128,
_self.liquidity,
FixedPoint128.Q128
)
);
// update the position
if (liquidityDelta != 0) self.liquidity = liquidityNext;
self.feeGrowthInside0LastX128 = feeGrowthInside0X128;
self.feeGrowthInside1LastX128 = feeGrowthInside1X128;
if (tokensOwed0 > 0 || tokensOwed1 > 0) {
// overflow is acceptable, have to withdraw before you hit type(uint128).max fees
self.tokensOwed0 += tokensOwed0;
self.tokensOwed1 += tokensOwed1;
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
library PositionKey {
/// @dev Returns the key of the position in the core library
function compute(
address owner,
int24 tickLower,
int24 tickUpper
) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(owner, tickLower, tickUpper));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import '../libraries/SafeCast.sol';
import '../libraries/TickMath.sol';
import '../libraries/TickBitmap.sol';
import '../interfaces/IZebraV3Pool.sol';
import '../interfaces/callback/IZebraV3SwapCallback.sol';
import '../interfaces/IQuoterV2.sol';
import '../base/PeripheryImmutableState.sol';
import '../libraries/Path.sol';
import '../libraries/PoolAddress.sol';
import '../libraries/CallbackValidation.sol';
import '../libraries/PoolTicksCounter.sol';
/// @title Provides quotes for swaps
/// @notice Allows getting the expected amount out or amount in for a given swap without executing the swap
/// @dev These functions are not gas efficient and should _not_ be called on chain. Instead, optimistically execute
/// the swap and check the amounts in the callback.
contract QuoterV2 is IQuoterV2, IZebraV3SwapCallback, PeripheryImmutableState {
using Path for bytes;
using SafeCast for uint256;
using PoolTicksCounter for IZebraV3Pool;
/// @dev Transient storage variable used to check a safety condition in exact output swaps.
uint256 private amountOutCached;
constructor(address _factory, address _WETH9) PeripheryImmutableState(_factory, _WETH9) {}
function getPool(
address tokenA,
address tokenB,
uint24 fee
) private view returns (IZebraV3Pool) {
return IZebraV3Pool(PoolAddress.computeAddress(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee)));
}
/// @inheritdoc IZebraV3SwapCallback
function zebraV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes memory path
) external view override {
require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
(address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool();
CallbackValidation.verifyCallback(factory, tokenIn, tokenOut, fee);
(bool isExactInput, uint256 amountToPay, uint256 amountReceived) =
amount0Delta > 0
? (tokenIn < tokenOut, uint256(amount0Delta), uint256(-amount1Delta))
: (tokenOut < tokenIn, uint256(amount1Delta), uint256(-amount0Delta));
IZebraV3Pool pool = getPool(tokenIn, tokenOut, fee);
(uint160 sqrtPriceX96After, int24 tickAfter, , , , , ) = pool.slot0();
if (isExactInput) {
assembly {
let ptr := mload(0x40)
mstore(ptr, amountReceived)
mstore(add(ptr, 0x20), sqrtPriceX96After)
mstore(add(ptr, 0x40), tickAfter)
revert(ptr, 96)
}
} else {
// if the cache has been populated, ensure that the full output amount has been received
if (amountOutCached != 0) require(amountReceived == amountOutCached);
assembly {
let ptr := mload(0x40)
mstore(ptr, amountToPay)
mstore(add(ptr, 0x20), sqrtPriceX96After)
mstore(add(ptr, 0x40), tickAfter)
revert(ptr, 96)
}
}
}
/// @dev Parses a revert reason that should contain the numeric quote
function parseRevertReason(bytes memory reason)
private
pure
returns (
uint256 amount,
uint160 sqrtPriceX96After,
int24 tickAfter
)
{
if (reason.length != 96) {
if (reason.length < 68) revert('Unexpected error');
assembly {
reason := add(reason, 0x04)
}
revert(abi.decode(reason, (string)));
}
return abi.decode(reason, (uint256, uint160, int24));
}
function handleRevert(
bytes memory reason,
IZebraV3Pool pool,
uint256 gasEstimate
)
private
view
returns (
uint256 amount,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256
)
{
int24 tickBefore;
int24 tickAfter;
(, tickBefore, , , , , ) = pool.slot0();
(amount, sqrtPriceX96After, tickAfter) = parseRevertReason(reason);
initializedTicksCrossed = pool.countInitializedTicksCrossed(tickBefore, tickAfter);
return (amount, sqrtPriceX96After, initializedTicksCrossed, gasEstimate);
}
function quoteExactInputSingle(QuoteExactInputSingleParams memory params)
public
override
returns (
uint256 amountOut,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
)
{
bool zeroForOne = params.tokenIn < params.tokenOut;
IZebraV3Pool pool = getPool(params.tokenIn, params.tokenOut, params.fee);
uint256 gasBefore = gasleft();
try
pool.swap(
address(this), // address(0) might cause issues with some tokens
zeroForOne,
params.amountIn.toInt256(),
params.sqrtPriceLimitX96 == 0
? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
: params.sqrtPriceLimitX96,
abi.encodePacked(params.tokenIn, params.fee, params.tokenOut)
)
{} catch (bytes memory reason) {
gasEstimate = gasBefore - gasleft();
return handleRevert(reason, pool, gasEstimate);
}
}
function quoteExactInput(bytes memory path, uint256 amountIn)
public
override
returns (
uint256 amountOut,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
)
{
sqrtPriceX96AfterList = new uint160[](path.numPools());
initializedTicksCrossedList = new uint32[](path.numPools());
uint256 i = 0;
while (true) {
(address tokenIn, address tokenOut, uint24 fee) = path.decodeFirstPool();
// the outputs of prior swaps become the inputs to subsequent ones
(uint256 _amountOut, uint160 _sqrtPriceX96After, uint32 _initializedTicksCrossed, uint256 _gasEstimate) =
quoteExactInputSingle(
QuoteExactInputSingleParams({
tokenIn: tokenIn,
tokenOut: tokenOut,
fee: fee,
amountIn: amountIn,
sqrtPriceLimitX96: 0
})
);
sqrtPriceX96AfterList[i] = _sqrtPriceX96After;
initializedTicksCrossedList[i] = _initializedTicksCrossed;
amountIn = _amountOut;
gasEstimate += _gasEstimate;
i++;
// decide whether to continue or terminate
if (path.hasMultiplePools()) {
path = path.skipToken();
} else {
return (amountIn, sqrtPriceX96AfterList, initializedTicksCrossedList, gasEstimate);
}
}
}
function quoteExactOutputSingle(QuoteExactOutputSingleParams memory params)
public
override
returns (
uint256 amountIn,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
)
{
bool zeroForOne = params.tokenIn < params.tokenOut;
IZebraV3Pool pool = getPool(params.tokenIn, params.tokenOut, params.fee);
// if no price limit has been specified, cache the output amount for comparison in the swap callback
if (params.sqrtPriceLimitX96 == 0) amountOutCached = params.amount;
uint256 gasBefore = gasleft();
try
pool.swap(
address(this), // address(0) might cause issues with some tokens
zeroForOne,
-params.amount.toInt256(),
params.sqrtPriceLimitX96 == 0
? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
: params.sqrtPriceLimitX96,
abi.encodePacked(params.tokenOut, params.fee, params.tokenIn)
)
{} catch (bytes memory reason) {
gasEstimate = gasBefore - gasleft();
if (params.sqrtPriceLimitX96 == 0) delete amountOutCached; // clear cache
return handleRevert(reason, pool, gasEstimate);
}
}
function quoteExactOutput(bytes memory path, uint256 amountOut)
public
override
returns (
uint256 amountIn,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
)
{
sqrtPriceX96AfterList = new uint160[](path.numPools());
initializedTicksCrossedList = new uint32[](path.numPools());
uint256 i = 0;
while (true) {
(address tokenOut, address tokenIn, uint24 fee) = path.decodeFirstPool();
// the inputs of prior swaps become the outputs of subsequent ones
(uint256 _amountIn, uint160 _sqrtPriceX96After, uint32 _initializedTicksCrossed, uint256 _gasEstimate) =
quoteExactOutputSingle(
QuoteExactOutputSingleParams({
tokenIn: tokenIn,
tokenOut: tokenOut,
amount: amountOut,
fee: fee,
sqrtPriceLimitX96: 0
})
);
sqrtPriceX96AfterList[i] = _sqrtPriceX96After;
initializedTicksCrossedList[i] = _initializedTicksCrossed;
amountOut = _amountIn;
gasEstimate += _gasEstimate;
i++;
// decide whether to continue or terminate
if (path.hasMultiplePools()) {
path = path.skipToken();
} else {
return (amountOut, sqrtPriceX96AfterList, initializedTicksCrossedList, gasEstimate);
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
/// @notice Cast a uint256 to a uint160, revert on overflow
/// @param y The uint256 to be downcasted
/// @return z The downcasted integer, now type uint160
function toUint160(uint256 y) internal pure returns (uint160 z) {
require((z = uint160(y)) == y);
}
/// @notice Cast a int256 to a int128, revert on overflow or underflow
/// @param y The int256 to be downcasted
/// @return z The downcasted integer, now type int128
function toInt128(int256 y) internal pure returns (int128 z) {
require((z = int128(y)) == y);
}
/// @notice Cast a uint256 to a int256, revert on overflow
/// @param y The uint256 to be casted
/// @return z The casted integer, now type int256
function toInt256(uint256 y) internal pure returns (int256 z) {
require(y < 2**255);
z = int256(y);
}
}
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.5.0;
import './AddressStringUtil.sol';
// produces token descriptors from inconsistent or absent ERC20 symbol implementations that can return string or bytes32
// this library will always produce a string symbol to represent the token
library SafeERC20Namer {
function bytes32ToString(bytes32 x) private pure returns (string memory) {
bytes memory bytesString = new bytes(32);
uint256 charCount = 0;
for (uint256 j = 0; j < 32; j++) {
bytes1 char = x[j];
if (char != 0) {
bytesString[charCount] = char;
charCount++;
}
}
bytes memory bytesStringTrimmed = new bytes(charCount);
for (uint256 j = 0; j < charCount; j++) {
bytesStringTrimmed[j] = bytesString[j];
}
return string(bytesStringTrimmed);
}
// assumes the data is in position 2
function parseStringData(bytes memory b) private pure returns (string memory) {
uint256 charCount = 0;
// first parse the charCount out of the data
for (uint256 i = 32; i < 64; i++) {
charCount <<= 8;
charCount += uint8(b[i]);
}
bytes memory bytesStringTrimmed = new bytes(charCount);
for (uint256 i = 0; i < charCount; i++) {
bytesStringTrimmed[i] = b[i + 64];
}
return string(bytesStringTrimmed);
}
// uses a heuristic to produce a token name from the address
// the heuristic returns the full hex of the address string in upper case
function addressToName(address token) private pure returns (string memory) {
return AddressStringUtil.toAsciiString(token, 40);
}
// uses a heuristic to produce a token symbol from the address
// the heuristic returns the first 6 hex of the address string in upper case
function addressToSymbol(address token) private pure returns (string memory) {
return AddressStringUtil.toAsciiString(token, 6);
}
// calls an external view token contract method that returns a symbol or name, and parses the output into a string
function callAndParseStringReturn(address token, bytes4 selector) private view returns (string memory) {
(bool success, bytes memory data) = token.staticcall(abi.encodeWithSelector(selector));
// if not implemented, or returns empty data, return empty string
if (!success || data.length == 0) {
return '';
}
// bytes32 data always has length 32
if (data.length == 32) {
bytes32 decoded = abi.decode(data, (bytes32));
return bytes32ToString(decoded);
} else if (data.length > 64) {
return abi.decode(data, (string));
}
return '';
}
// attempts to extract the token symbol. if it does not implement symbol, returns a symbol derived from the address
function tokenSymbol(address token) internal view returns (string memory) {
// 0x95d89b41 = bytes4(keccak256("symbol()"))
string memory symbol = callAndParseStringReturn(token, 0x95d89b41);
if (bytes(symbol).length == 0) {
// fallback to 6 uppercase hex of address
return addressToSymbol(token);
}
return symbol;
}
// attempts to extract the token name. if it does not implement name, returns a name derived from the address
function tokenName(address token) internal view returns (string memory) {
// 0x06fdde03 = bytes4(keccak256("name()"))
string memory name = callAndParseStringReturn(token, 0x06fdde03);
if (bytes(name).length == 0) {
// fallback to full hex of address
return addressToName(token);
}
return name;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '@openzeppelin/contracts/drafts/IERC20Permit.sol';
import '../interfaces/ISelfPermit.sol';
import '../interfaces/external/IERC20PermitAllowed.sol';
/// @title Self Permit
/// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route
/// @dev These functions are expected to be embedded in multicalls to allow EOAs to approve a contract and call a function
/// that requires an approval in a single transaction.
abstract contract SelfPermit is ISelfPermit {
/// @inheritdoc ISelfPermit
function selfPermit(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public payable override {
IERC20Permit(token).permit(msg.sender, address(this), value, deadline, v, r, s);
}
/// @inheritdoc ISelfPermit
function selfPermitIfNecessary(
address token,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external payable override {
if (IERC20(token).allowance(msg.sender, address(this)) < value) selfPermit(token, value, deadline, v, r, s);
}
/// @inheritdoc ISelfPermit
function selfPermitAllowed(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) public payable override {
IERC20PermitAllowed(token).permit(msg.sender, address(this), nonce, expiry, true, v, r, s);
}
/// @inheritdoc ISelfPermit
function selfPermitAllowedIfNecessary(
address token,
uint256 nonce,
uint256 expiry,
uint8 v,
bytes32 r,
bytes32 s
) external payable override {
if (IERC20(token).allowance(msg.sender, address(this)) < type(uint256).max)
selfPermitAllowed(token, nonce, expiry, v, r, s);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @title SignedSafeMath
* @dev Signed math operations with safety checks that revert on error.
*/
library SignedSafeMath {
int256 constant private _INT256_MIN = -2**255;
/**
* @dev Returns the multiplication of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(int256 a, int256 b) internal pure returns (int256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow");
int256 c = a * b;
require(c / a == b, "SignedSafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two signed integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(int256 a, int256 b) internal pure returns (int256) {
require(b != 0, "SignedSafeMath: division by zero");
require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow");
int256 c = a / b;
return c;
}
/**
* @dev Returns the subtraction of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(int256 a, int256 b) internal pure returns (int256) {
int256 c = a - b;
require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");
return c;
}
/**
* @dev Returns the addition of two signed integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(int256 a, int256 b) internal pure returns (int256) {
int256 c = a + b;
require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");
return c;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './LowGasSafeMath.sol';
import './SafeCast.sol';
import './FullMath.sol';
import './UnsafeMath.sol';
import './FixedPoint96.sol';
/// @title Functions based on Q64.96 sqrt price and liquidity
/// @notice Contains the math that uses square root of price as a Q64.96 and liquidity to compute deltas
library SqrtPriceMath {
using LowGasSafeMath for uint256;
using SafeCast for uint256;
/// @notice Gets the next sqrt price given a delta of token0
/// @dev Always rounds up, because in the exact output case (increasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (decreasing price) we need to move the
/// price less in order to not send too much output.
/// The most precise formula for this is liquidity * sqrtPX96 / (liquidity +- amount * sqrtPX96),
/// if this is impossible because of overflow, we calculate liquidity / (liquidity / sqrtPX96 +- amount).
/// @param sqrtPX96 The starting price, i.e. before accounting for the token0 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token0 to add or remove from virtual reserves
/// @param add Whether to add or remove the amount of token0
/// @return The price after adding or removing amount, depending on add
function getNextSqrtPriceFromAmount0RoundingUp(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// we short circuit amount == 0 because the result is otherwise not guaranteed to equal the input price
if (amount == 0) return sqrtPX96;
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
if (add) {
uint256 product;
if ((product = amount * sqrtPX96) / amount == sqrtPX96) {
uint256 denominator = numerator1 + product;
if (denominator >= numerator1)
// always fits in 160 bits
return uint160(FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator));
}
return uint160(UnsafeMath.divRoundingUp(numerator1, (numerator1 / sqrtPX96).add(amount)));
} else {
uint256 product;
// if the product overflows, we know the denominator underflows
// in addition, we must check that the denominator does not underflow
require((product = amount * sqrtPX96) / amount == sqrtPX96 && numerator1 > product);
uint256 denominator = numerator1 - product;
return FullMath.mulDivRoundingUp(numerator1, sqrtPX96, denominator).toUint160();
}
}
/// @notice Gets the next sqrt price given a delta of token1
/// @dev Always rounds down, because in the exact output case (decreasing price) we need to move the price at least
/// far enough to get the desired output amount, and in the exact input case (increasing price) we need to move the
/// price less in order to not send too much output.
/// The formula we compute is within <1 wei of the lossless version: sqrtPX96 +- amount / liquidity
/// @param sqrtPX96 The starting price, i.e., before accounting for the token1 delta
/// @param liquidity The amount of usable liquidity
/// @param amount How much of token1 to add, or remove, from virtual reserves
/// @param add Whether to add, or remove, the amount of token1
/// @return The price after adding or removing `amount`
function getNextSqrtPriceFromAmount1RoundingDown(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amount,
bool add
) internal pure returns (uint160) {
// if we're adding (subtracting), rounding down requires rounding the quotient down (up)
// in both cases, avoid a mulDiv for most inputs
if (add) {
uint256 quotient =
(
amount <= type(uint160).max
? (amount << FixedPoint96.RESOLUTION) / liquidity
: FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)
);
return uint256(sqrtPX96).add(quotient).toUint160();
} else {
uint256 quotient =
(
amount <= type(uint160).max
? UnsafeMath.divRoundingUp(amount << FixedPoint96.RESOLUTION, liquidity)
: FullMath.mulDivRoundingUp(amount, FixedPoint96.Q96, liquidity)
);
require(sqrtPX96 > quotient);
// always fits 160 bits
return uint160(sqrtPX96 - quotient);
}
}
/// @notice Gets the next sqrt price given an input amount of token0 or token1
/// @dev Throws if price or liquidity are 0, or if the next price is out of bounds
/// @param sqrtPX96 The starting price, i.e., before accounting for the input amount
/// @param liquidity The amount of usable liquidity
/// @param amountIn How much of token0, or token1, is being swapped in
/// @param zeroForOne Whether the amount in is token0 or token1
/// @return sqrtQX96 The price after adding the input amount to token0 or token1
function getNextSqrtPriceFromInput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountIn,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we don't pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountIn, true)
: getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountIn, true);
}
/// @notice Gets the next sqrt price given an output amount of token0 or token1
/// @dev Throws if price or liquidity are 0 or the next price is out of bounds
/// @param sqrtPX96 The starting price before accounting for the output amount
/// @param liquidity The amount of usable liquidity
/// @param amountOut How much of token0, or token1, is being swapped out
/// @param zeroForOne Whether the amount out is token0 or token1
/// @return sqrtQX96 The price after removing the output amount of token0 or token1
function getNextSqrtPriceFromOutput(
uint160 sqrtPX96,
uint128 liquidity,
uint256 amountOut,
bool zeroForOne
) internal pure returns (uint160 sqrtQX96) {
require(sqrtPX96 > 0);
require(liquidity > 0);
// round to make sure that we pass the target price
return
zeroForOne
? getNextSqrtPriceFromAmount1RoundingDown(sqrtPX96, liquidity, amountOut, false)
: getNextSqrtPriceFromAmount0RoundingUp(sqrtPX96, liquidity, amountOut, false);
}
/// @notice Gets the amount0 delta between two prices
/// @dev Calculates liquidity / sqrt(lower) - liquidity / sqrt(upper),
/// i.e. liquidity * (sqrt(upper) - sqrt(lower)) / (sqrt(upper) * sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up or down
/// @return amount0 Amount of token0 required to cover a position of size liquidity between the two passed prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount0) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
uint256 numerator1 = uint256(liquidity) << FixedPoint96.RESOLUTION;
uint256 numerator2 = sqrtRatioBX96 - sqrtRatioAX96;
require(sqrtRatioAX96 > 0);
return
roundUp
? UnsafeMath.divRoundingUp(
FullMath.mulDivRoundingUp(numerator1, numerator2, sqrtRatioBX96),
sqrtRatioAX96
)
: FullMath.mulDiv(numerator1, numerator2, sqrtRatioBX96) / sqrtRatioAX96;
}
/// @notice Gets the amount1 delta between two prices
/// @dev Calculates liquidity * (sqrt(upper) - sqrt(lower))
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The amount of usable liquidity
/// @param roundUp Whether to round the amount up, or down
/// @return amount1 Amount of token1 required to cover a position of size liquidity between the two passed prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
uint128 liquidity,
bool roundUp
) internal pure returns (uint256 amount1) {
if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96);
return
roundUp
? FullMath.mulDivRoundingUp(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96)
: FullMath.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96);
}
/// @notice Helper that gets signed token0 delta
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The change in liquidity for which to compute the amount0 delta
/// @return amount0 Amount of token0 corresponding to the passed liquidityDelta between the two prices
function getAmount0Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
int128 liquidity
) internal pure returns (int256 amount0) {
return
liquidity < 0
? -getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
: getAmount0Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
}
/// @notice Helper that gets signed token1 delta
/// @param sqrtRatioAX96 A sqrt price
/// @param sqrtRatioBX96 Another sqrt price
/// @param liquidity The change in liquidity for which to compute the amount1 delta
/// @return amount1 Amount of token1 corresponding to the passed liquidityDelta between the two prices
function getAmount1Delta(
uint160 sqrtRatioAX96,
uint160 sqrtRatioBX96,
int128 liquidity
) internal pure returns (int256 amount1) {
return
liquidity < 0
? -getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(-liquidity), false).toInt256()
: getAmount1Delta(sqrtRatioAX96, sqrtRatioBX96, uint128(liquidity), true).toInt256();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev String operations.
*/
library Strings {
/**
* @dev Converts a `uint256` to its ASCII `string` representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
// Inspired by OraclizeAPI's implementation - MIT licence
// https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol
if (value == 0) {
return "0";
}
uint256 temp = value;
uint256 digits;
while (temp != 0) {
digits++;
temp /= 10;
}
bytes memory buffer = new bytes(digits);
uint256 index = digits - 1;
temp = value;
while (temp != 0) {
buffer[index--] = bytes1(uint8(48 + temp % 10));
temp /= 10;
}
return string(buffer);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './FullMath.sol';
import './SqrtPriceMath.sol';
/// @title Computes the result of a swap within ticks
/// @notice Contains methods for computing the result of a swap within a single tick price range, i.e., a single tick.
library SwapMath {
/// @notice Computes the result of swapping some amount in, or amount out, given the parameters of the swap
/// @dev The fee, plus the amount in, will never exceed the amount remaining if the swap's `amountSpecified` is positive
/// @param sqrtRatioCurrentX96 The current sqrt price of the pool
/// @param sqrtRatioTargetX96 The price that cannot be exceeded, from which the direction of the swap is inferred
/// @param liquidity The usable liquidity
/// @param amountRemaining How much input or output amount is remaining to be swapped in/out
/// @param feePips The fee taken from the input amount, expressed in hundredths of a bip
/// @return sqrtRatioNextX96 The price after swapping the amount in/out, not to exceed the price target
/// @return amountIn The amount to be swapped in, of either token0 or token1, based on the direction of the swap
/// @return amountOut The amount to be received, of either token0 or token1, based on the direction of the swap
/// @return feeAmount The amount of input that will be taken as a fee
function computeSwapStep(
uint160 sqrtRatioCurrentX96,
uint160 sqrtRatioTargetX96,
uint128 liquidity,
int256 amountRemaining,
uint24 feePips
)
internal
pure
returns (
uint160 sqrtRatioNextX96,
uint256 amountIn,
uint256 amountOut,
uint256 feeAmount
)
{
bool zeroForOne = sqrtRatioCurrentX96 >= sqrtRatioTargetX96;
bool exactIn = amountRemaining >= 0;
if (exactIn) {
uint256 amountRemainingLessFee = FullMath.mulDiv(uint256(amountRemaining), 1e6 - feePips, 1e6);
amountIn = zeroForOne
? SqrtPriceMath.getAmount0Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, true)
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, true);
if (amountRemainingLessFee >= amountIn) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(
sqrtRatioCurrentX96,
liquidity,
amountRemainingLessFee,
zeroForOne
);
} else {
amountOut = zeroForOne
? SqrtPriceMath.getAmount1Delta(sqrtRatioTargetX96, sqrtRatioCurrentX96, liquidity, false)
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioTargetX96, liquidity, false);
if (uint256(-amountRemaining) >= amountOut) sqrtRatioNextX96 = sqrtRatioTargetX96;
else
sqrtRatioNextX96 = SqrtPriceMath.getNextSqrtPriceFromOutput(
sqrtRatioCurrentX96,
liquidity,
uint256(-amountRemaining),
zeroForOne
);
}
bool max = sqrtRatioTargetX96 == sqrtRatioNextX96;
// get the input/output amounts
if (zeroForOne) {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount0Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount1Delta(sqrtRatioNextX96, sqrtRatioCurrentX96, liquidity, false);
} else {
amountIn = max && exactIn
? amountIn
: SqrtPriceMath.getAmount1Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, true);
amountOut = max && !exactIn
? amountOut
: SqrtPriceMath.getAmount0Delta(sqrtRatioCurrentX96, sqrtRatioNextX96, liquidity, false);
}
// cap the output amount to not exceed the remaining output amount
if (!exactIn && amountOut > uint256(-amountRemaining)) {
amountOut = uint256(-amountRemaining);
}
if (exactIn && sqrtRatioNextX96 != sqrtRatioTargetX96) {
// we didn't reach the target, so take the remainder of the maximum input as fee
feeAmount = uint256(amountRemaining) - amountIn;
} else {
feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips, 1e6 - feePips);
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import './libraries/SafeCast.sol';
import './libraries/TickMath.sol';
import './interfaces/IZebraV3Pool.sol';
import './interfaces/ISwapRouter.sol';
import './base/PeripheryImmutableState.sol';
import './base/PeripheryValidation.sol';
import './base/PeripheryPaymentsWithFee.sol';
import './base/Multicall.sol';
import './base/SelfPermit.sol';
import './libraries/Path.sol';
import './libraries/PoolAddress.sol';
import './libraries/CallbackValidation.sol';
import './interfaces/external/IWETH9.sol';
/// @title Zebra V3 Swap Router
/// @notice Router for stateless execution of swaps against Zebra V3
contract SwapRouter is
ISwapRouter,
PeripheryImmutableState,
PeripheryValidation,
PeripheryPaymentsWithFee,
Multicall,
SelfPermit
{
using Path for bytes;
using SafeCast for uint256;
/// @dev Used as the placeholder value for amountInCached, because the computed amount in for an exact output swap
/// can never actually be this value
uint256 private constant DEFAULT_AMOUNT_IN_CACHED = type(uint256).max;
/// @dev Transient storage variable used for returning the computed amount in for an exact output swap.
uint256 private amountInCached = DEFAULT_AMOUNT_IN_CACHED;
constructor(address _factory, address _WETH9) PeripheryImmutableState(_factory, _WETH9) {}
/// @dev Returns the pool for the given token pair and fee. The pool contract may or may not exist.
function getPool(
address tokenA,
address tokenB,
uint24 fee
) private view returns (IZebraV3Pool) {
return IZebraV3Pool(PoolAddress.computeAddress(factory, PoolAddress.getPoolKey(tokenA, tokenB, fee)));
}
struct SwapCallbackData {
bytes path;
address payer;
}
/// @inheritdoc IZebraV3SwapCallback
function zebraV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata _data
) external override {
require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
SwapCallbackData memory data = abi.decode(_data, (SwapCallbackData));
(address tokenIn, address tokenOut, uint24 fee) = data.path.decodeFirstPool();
CallbackValidation.verifyCallback(factory, tokenIn, tokenOut, fee);
(bool isExactInput, uint256 amountToPay) =
amount0Delta > 0
? (tokenIn < tokenOut, uint256(amount0Delta))
: (tokenOut < tokenIn, uint256(amount1Delta));
if (isExactInput) {
pay(tokenIn, data.payer, msg.sender, amountToPay);
} else {
// either initiate the next swap or pay
if (data.path.hasMultiplePools()) {
data.path = data.path.skipToken();
exactOutputInternal(amountToPay, msg.sender, 0, data);
} else {
amountInCached = amountToPay;
tokenIn = tokenOut; // swap in/out because exact output swaps are reversed
pay(tokenIn, data.payer, msg.sender, amountToPay);
}
}
}
/// @dev Performs a single exact input swap
function exactInputInternal(
uint256 amountIn,
address recipient,
uint160 sqrtPriceLimitX96,
SwapCallbackData memory data
) private returns (uint256 amountOut) {
// allow swapping to the router address with address 0
if (recipient == address(0)) recipient = address(this);
(address tokenIn, address tokenOut, uint24 fee) = data.path.decodeFirstPool();
bool zeroForOne = tokenIn < tokenOut;
(int256 amount0, int256 amount1) =
getPool(tokenIn, tokenOut, fee).swap(
recipient,
zeroForOne,
amountIn.toInt256(),
sqrtPriceLimitX96 == 0
? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
: sqrtPriceLimitX96,
abi.encode(data)
);
return uint256(-(zeroForOne ? amount1 : amount0));
}
/// @inheritdoc ISwapRouter
function exactInputSingle(ExactInputSingleParams calldata params)
external
payable
override
checkDeadline(params.deadline)
returns (uint256 amountOut)
{
amountOut = exactInputInternal(
params.amountIn,
params.recipient,
params.sqrtPriceLimitX96,
SwapCallbackData({path: abi.encodePacked(params.tokenIn, params.fee, params.tokenOut), payer: msg.sender})
);
require(amountOut >= params.amountOutMinimum, 'Too little received');
}
/// @inheritdoc ISwapRouter
function exactInput(ExactInputParams memory params)
external
payable
override
checkDeadline(params.deadline)
returns (uint256 amountOut)
{
address payer = msg.sender; // msg.sender pays for the first hop
while (true) {
bool hasMultiplePools = params.path.hasMultiplePools();
// the outputs of prior swaps become the inputs to subsequent ones
params.amountIn = exactInputInternal(
params.amountIn,
hasMultiplePools ? address(this) : params.recipient, // for intermediate swaps, this contract custodies
0,
SwapCallbackData({
path: params.path.getFirstPool(), // only the first pool in the path is necessary
payer: payer
})
);
// decide whether to continue or terminate
if (hasMultiplePools) {
payer = address(this); // at this point, the caller has paid
params.path = params.path.skipToken();
} else {
amountOut = params.amountIn;
break;
}
}
require(amountOut >= params.amountOutMinimum, 'Too little received');
}
/// @dev Performs a single exact output swap
function exactOutputInternal(
uint256 amountOut,
address recipient,
uint160 sqrtPriceLimitX96,
SwapCallbackData memory data
) private returns (uint256 amountIn) {
// allow swapping to the router address with address 0
if (recipient == address(0)) recipient = address(this);
(address tokenOut, address tokenIn, uint24 fee) = data.path.decodeFirstPool();
bool zeroForOne = tokenIn < tokenOut;
(int256 amount0Delta, int256 amount1Delta) =
getPool(tokenIn, tokenOut, fee).swap(
recipient,
zeroForOne,
-amountOut.toInt256(),
sqrtPriceLimitX96 == 0
? (zeroForOne ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1)
: sqrtPriceLimitX96,
abi.encode(data)
);
uint256 amountOutReceived;
(amountIn, amountOutReceived) = zeroForOne
? (uint256(amount0Delta), uint256(-amount1Delta))
: (uint256(amount1Delta), uint256(-amount0Delta));
// it's technically possible to not receive the full output amount,
// so if no price limit has been specified, require this possibility away
if (sqrtPriceLimitX96 == 0) require(amountOutReceived == amountOut);
}
/// @inheritdoc ISwapRouter
function exactOutputSingle(ExactOutputSingleParams calldata params)
external
payable
override
checkDeadline(params.deadline)
returns (uint256 amountIn)
{
// avoid an SLOAD by using the swap return data
amountIn = exactOutputInternal(
params.amountOut,
params.recipient,
params.sqrtPriceLimitX96,
SwapCallbackData({path: abi.encodePacked(params.tokenOut, params.fee, params.tokenIn), payer: msg.sender})
);
require(amountIn <= params.amountInMaximum, 'Too much requested');
// has to be reset even though we don't use it in the single hop case
amountInCached = DEFAULT_AMOUNT_IN_CACHED;
}
/// @inheritdoc ISwapRouter
function exactOutput(ExactOutputParams calldata params)
external
payable
override
checkDeadline(params.deadline)
returns (uint256 amountIn)
{
// it's okay that the payer is fixed to msg.sender here, as they're only paying for the "final" exact output
// swap, which happens first, and subsequent swaps are paid for within nested callback frames
exactOutputInternal(
params.amountOut,
params.recipient,
0,
SwapCallbackData({path: params.path, payer: msg.sender})
);
amountIn = amountInCached;
require(amountIn <= params.amountInMaximum, 'Too much requested');
amountInCached = DEFAULT_AMOUNT_IN_CACHED;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.8.0;
import './LowGasSafeMath.sol';
import './SafeCast.sol';
import './TickMath.sol';
import './LiquidityMath.sol';
/// @title Tick
/// @notice Contains functions for managing tick processes and relevant calculations
library Tick {
using LowGasSafeMath for int256;
using SafeCast for int256;
// info stored for each initialized individual tick
struct Info {
// the total position liquidity that references this tick
uint128 liquidityGross;
// amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
int128 liquidityNet;
// fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint256 feeGrowthOutside0X128;
uint256 feeGrowthOutside1X128;
// the cumulative tick value on the other side of the tick
int56 tickCumulativeOutside;
// the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint160 secondsPerLiquidityOutsideX128;
// the seconds spent on the other side of the tick (relative to the current tick)
// only has relative meaning, not absolute — the value depends on when the tick is initialized
uint32 secondsOutside;
// true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
// these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
bool initialized;
}
/// @notice Derives max liquidity per tick from given tick spacing
/// @dev Executed within the pool constructor
/// @param tickSpacing The amount of required tick separation, realized in multiples of `tickSpacing`
/// e.g., a tickSpacing of 3 requires ticks to be initialized every 3rd tick i.e., ..., -6, -3, 0, 3, 6, ...
/// @return The max liquidity per tick
function tickSpacingToMaxLiquidityPerTick(int24 tickSpacing) internal pure returns (uint128) {
int24 minTick = (TickMath.MIN_TICK / tickSpacing) * tickSpacing;
int24 maxTick = (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
uint24 numTicks = uint24((maxTick - minTick) / tickSpacing) + 1;
return type(uint128).max / numTicks;
}
/// @notice Retrieves fee growth data
/// @param self The mapping containing all tick information for initialized ticks
/// @param tickLower The lower tick boundary of the position
/// @param tickUpper The upper tick boundary of the position
/// @param tickCurrent The current tick
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @return feeGrowthInside0X128 The all-time fee growth in token0, per unit of liquidity, inside the position's tick boundaries
/// @return feeGrowthInside1X128 The all-time fee growth in token1, per unit of liquidity, inside the position's tick boundaries
function getFeeGrowthInside(
mapping(int24 => Tick.Info) storage self,
int24 tickLower,
int24 tickUpper,
int24 tickCurrent,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128
) internal view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) {
Info storage lower = self[tickLower];
Info storage upper = self[tickUpper];
// calculate fee growth below
uint256 feeGrowthBelow0X128;
uint256 feeGrowthBelow1X128;
if (tickCurrent >= tickLower) {
feeGrowthBelow0X128 = lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = lower.feeGrowthOutside1X128;
} else {
feeGrowthBelow0X128 = feeGrowthGlobal0X128 - lower.feeGrowthOutside0X128;
feeGrowthBelow1X128 = feeGrowthGlobal1X128 - lower.feeGrowthOutside1X128;
}
// calculate fee growth above
uint256 feeGrowthAbove0X128;
uint256 feeGrowthAbove1X128;
if (tickCurrent < tickUpper) {
feeGrowthAbove0X128 = upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = upper.feeGrowthOutside1X128;
} else {
feeGrowthAbove0X128 = feeGrowthGlobal0X128 - upper.feeGrowthOutside0X128;
feeGrowthAbove1X128 = feeGrowthGlobal1X128 - upper.feeGrowthOutside1X128;
}
feeGrowthInside0X128 = feeGrowthGlobal0X128 - feeGrowthBelow0X128 - feeGrowthAbove0X128;
feeGrowthInside1X128 = feeGrowthGlobal1X128 - feeGrowthBelow1X128 - feeGrowthAbove1X128;
}
/// @notice Updates a tick and returns true if the tick was flipped from initialized to uninitialized, or vice versa
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The tick that will be updated
/// @param tickCurrent The current tick
/// @param liquidityDelta A new amount of liquidity to be added (subtracted) when tick is crossed from left to right (right to left)
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The all-time seconds per max(1, liquidity) of the pool
/// @param tickCumulative The tick * time elapsed since the pool was first initialized
/// @param time The current block timestamp cast to a uint32
/// @param upper true for updating a position's upper tick, or false for updating a position's lower tick
/// @param maxLiquidity The maximum liquidity allocation for a single tick
/// @return flipped Whether the tick was flipped from initialized to uninitialized, or vice versa
function update(
mapping(int24 => Tick.Info) storage self,
int24 tick,
int24 tickCurrent,
int128 liquidityDelta,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time,
bool upper,
uint128 maxLiquidity
) internal returns (bool flipped) {
Tick.Info storage info = self[tick];
uint128 liquidityGrossBefore = info.liquidityGross;
uint128 liquidityGrossAfter = LiquidityMath.addDelta(liquidityGrossBefore, liquidityDelta);
require(liquidityGrossAfter <= maxLiquidity, 'LO');
flipped = (liquidityGrossAfter == 0) != (liquidityGrossBefore == 0);
if (liquidityGrossBefore == 0) {
// by convention, we assume that all growth before a tick was initialized happened _below_ the tick
if (tick <= tickCurrent) {
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128;
info.tickCumulativeOutside = tickCumulative;
info.secondsOutside = time;
}
info.initialized = true;
}
info.liquidityGross = liquidityGrossAfter;
// when the lower (upper) tick is crossed left to right (right to left), liquidity must be added (removed)
info.liquidityNet = upper
? int256(info.liquidityNet).sub(liquidityDelta).toInt128()
: int256(info.liquidityNet).add(liquidityDelta).toInt128();
}
/// @notice Clears tick data
/// @param self The mapping containing all initialized tick information for initialized ticks
/// @param tick The tick that will be cleared
function clear(mapping(int24 => Tick.Info) storage self, int24 tick) internal {
delete self[tick];
}
/// @notice Transitions to next tick as needed by price movement
/// @param self The mapping containing all tick information for initialized ticks
/// @param tick The destination tick of the transition
/// @param feeGrowthGlobal0X128 The all-time global fee growth, per unit of liquidity, in token0
/// @param feeGrowthGlobal1X128 The all-time global fee growth, per unit of liquidity, in token1
/// @param secondsPerLiquidityCumulativeX128 The current seconds per liquidity
/// @param tickCumulative The tick * time elapsed since the pool was first initialized
/// @param time The current block.timestamp
/// @return liquidityNet The amount of liquidity added (subtracted) when tick is crossed from left to right (right to left)
function cross(
mapping(int24 => Tick.Info) storage self,
int24 tick,
uint256 feeGrowthGlobal0X128,
uint256 feeGrowthGlobal1X128,
uint160 secondsPerLiquidityCumulativeX128,
int56 tickCumulative,
uint32 time
) internal returns (int128 liquidityNet) {
Tick.Info storage info = self[tick];
info.feeGrowthOutside0X128 = feeGrowthGlobal0X128 - info.feeGrowthOutside0X128;
info.feeGrowthOutside1X128 = feeGrowthGlobal1X128 - info.feeGrowthOutside1X128;
info.secondsPerLiquidityOutsideX128 = secondsPerLiquidityCumulativeX128 - info.secondsPerLiquidityOutsideX128;
info.tickCumulativeOutside = tickCumulative - info.tickCumulativeOutside;
info.secondsOutside = time - info.secondsOutside;
liquidityNet = info.liquidityNet;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import './BitMath.sol';
/// @title Packed tick initialized state library
/// @notice Stores a packed mapping of tick index to its initialized state
/// @dev The mapping uses int16 for keys since ticks are represented as int24 and there are 256 (2^8) values per word.
library TickBitmap {
/// @notice Computes the position in the mapping where the initialized bit for a tick lives
/// @param tick The tick for which to compute the position
/// @return wordPos The key in the mapping containing the word in which the bit is stored
/// @return bitPos The bit position in the word where the flag is stored
function position(int24 tick) private pure returns (int16 wordPos, uint8 bitPos) {
wordPos = int16(tick >> 8);
bitPos = uint8(tick % 256);
}
/// @notice Flips the initialized state for a given tick from false to true, or vice versa
/// @param self The mapping in which to flip the tick
/// @param tick The tick to flip
/// @param tickSpacing The spacing between usable ticks
function flipTick(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing
) internal {
require(tick % tickSpacing == 0); // ensure that the tick is spaced
(int16 wordPos, uint8 bitPos) = position(tick / tickSpacing);
uint256 mask = 1 << bitPos;
self[wordPos] ^= mask;
}
/// @notice Returns the next initialized tick contained in the same word (or adjacent word) as the tick that is either
/// to the left (less than or equal to) or right (greater than) of the given tick
/// @param self The mapping in which to compute the next initialized tick
/// @param tick The starting tick
/// @param tickSpacing The spacing between usable ticks
/// @param lte Whether to search for the next initialized tick to the left (less than or equal to the starting tick)
/// @return next The next initialized or uninitialized tick up to 256 ticks away from the current tick
/// @return initialized Whether the next tick is initialized, as the function only searches within up to 256 ticks
function nextInitializedTickWithinOneWord(
mapping(int16 => uint256) storage self,
int24 tick,
int24 tickSpacing,
bool lte
) internal view returns (int24 next, bool initialized) {
int24 compressed = tick / tickSpacing;
if (tick < 0 && tick % tickSpacing != 0) compressed--; // round towards negative infinity
if (lte) {
(int16 wordPos, uint8 bitPos) = position(compressed);
// all the 1s at or to the right of the current bitPos
uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the right of or at the current tick, return rightmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed - int24(bitPos - BitMath.mostSignificantBit(masked))) * tickSpacing
: (compressed - int24(bitPos)) * tickSpacing;
} else {
// start from the word of the next tick, since the current tick state doesn't matter
(int16 wordPos, uint8 bitPos) = position(compressed + 1);
// all the 1s at or to the left of the bitPos
uint256 mask = ~((1 << bitPos) - 1);
uint256 masked = self[wordPos] & mask;
// if there are no initialized ticks to the left of the current tick, return leftmost in the word
initialized = masked != 0;
// overflow/underflow is possible, but prevented externally by limiting both tickSpacing and tick
next = initialized
? (compressed + 1 + int24(BitMath.leastSignificantBit(masked) - bitPos)) * tickSpacing
: (compressed + 1 + int24(type(uint8).max - bitPos)) * tickSpacing;
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
pragma abicoder v2;
import '../interfaces/IZebraV3Pool.sol';
import '../interfaces/ITickLens.sol';
/// @title Tick Lens contract
contract TickLens is ITickLens {
/// @inheritdoc ITickLens
function getPopulatedTicksInWord(address pool, int16 tickBitmapIndex)
public
view
override
returns (PopulatedTick[] memory populatedTicks)
{
// fetch bitmap
uint256 bitmap = IZebraV3Pool(pool).tickBitmap(tickBitmapIndex);
// calculate the number of populated ticks
uint256 numberOfPopulatedTicks;
for (uint256 i = 0; i < 256; i++) {
if (bitmap & (1 << i) > 0) numberOfPopulatedTicks++;
}
// fetch populated tick data
int24 tickSpacing = IZebraV3Pool(pool).tickSpacing();
populatedTicks = new PopulatedTick[](numberOfPopulatedTicks);
for (uint256 i = 0; i < 256; i++) {
if (bitmap & (1 << i) > 0) {
int24 populatedTick = ((int24(tickBitmapIndex) << 8) + int24(i)) * tickSpacing;
(uint128 liquidityGross, int128 liquidityNet, , , , , , ) = IZebraV3Pool(pool).ticks(populatedTick);
populatedTicks[--numberOfPopulatedTicks] = PopulatedTick({
tick: populatedTick,
liquidityNet: liquidityNet,
liquidityGross: liquidityGross
});
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.8.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
require(absTick <= uint256(MAX_TICK), 'T');
uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
// second inequality must be < because the price can never reach the price at the max tick
require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
}
}
// SPDX-License-Identifier: MIT
pragma solidity =0.7.6;
library TokenRatioSortOrder {
int256 constant NUMERATOR_MOST = 300;
int256 constant NUMERATOR_MORE = 200;
int256 constant NUMERATOR = 100;
int256 constant DENOMINATOR_MOST = -300;
int256 constant DENOMINATOR_MORE = -200;
int256 constant DENOMINATOR = -100;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
library TransferHelper {
/// @notice Transfers tokens from the targeted address to the given destination
/// @notice Errors with 'STF' if transfer fails
/// @param token The contract address of the token to be transferred
/// @param from The originating address from which the tokens will be transferred
/// @param to The destination address of the transfer
/// @param value The amount to be transferred
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
(bool success, bytes memory data) =
token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
}
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Errors with ST if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
}
/// @notice Approves the stipulated contract to spend the given allowance in the given token
/// @dev Errors with 'SA' if transfer fails
/// @param token The contract address of the token to be approved
/// @param to The target of the approval
/// @param value The amount of the given token the target will be allowed to spend
function safeApprove(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
}
/// @notice Transfers ETH to the recipient address
/// @dev Fails with `STE`
/// @param to The destination of the transfer
/// @param value The value to be transferred
function safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, 'STE');
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math functions that do not check inputs or outputs
/// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
library UnsafeMath {
/// @notice Returns ceil(x / y)
/// @dev division by 0 has unspecified behavior, and must be checked externally
/// @param x The dividend
/// @param y The divisor
/// @return z The quotient, ceil(x / y)
function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly {
z := add(div(x, y), gt(mod(x, y), 0))
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
pragma abicoder v2;
import './libraries/LowGasSafeMath.sol';
import './interfaces/IZebraV2Pair.sol';
import './interfaces/INonfungiblePositionManager.sol';
import './libraries/TransferHelper.sol';
import './interfaces/IV3Migrator.sol';
import './base/PeripheryImmutableState.sol';
import './base/Multicall.sol';
import './base/SelfPermit.sol';
import './interfaces/external/IWETH9.sol';
import './base/PoolInitializer.sol';
/// @title Zebra V3 Migrator
contract V3Migrator is IV3Migrator, PeripheryImmutableState, PoolInitializer, Multicall, SelfPermit {
using LowGasSafeMath for uint256;
address public immutable nonfungiblePositionManager;
constructor(
address _factory,
address _WETH9,
address _nonfungiblePositionManager
) PeripheryImmutableState(_factory, _WETH9) {
nonfungiblePositionManager = _nonfungiblePositionManager;
}
receive() external payable {
require(msg.sender == WETH9, 'Not WETH9');
}
function migrate(MigrateParams calldata params) external override {
require(params.percentageToMigrate > 0, 'Percentage too small');
require(params.percentageToMigrate <= 100, 'Percentage too large');
// burn v2 liquidity to this address
IZebraV2Pair(params.pair).transferFrom(msg.sender, params.pair, params.liquidityToMigrate);
(uint256 amount0V2, uint256 amount1V2) = IZebraV2Pair(params.pair).burn(address(this));
// calculate the amounts to migrate to v3
uint256 amount0V2ToMigrate = amount0V2.mul(params.percentageToMigrate) / 100;
uint256 amount1V2ToMigrate = amount1V2.mul(params.percentageToMigrate) / 100;
// approve the position manager up to the maximum token amounts
TransferHelper.safeApprove(params.token0, nonfungiblePositionManager, amount0V2ToMigrate);
TransferHelper.safeApprove(params.token1, nonfungiblePositionManager, amount1V2ToMigrate);
// mint v3 position
(, , uint256 amount0V3, uint256 amount1V3) =
INonfungiblePositionManager(nonfungiblePositionManager).mint(
INonfungiblePositionManager.MintParams({
token0: params.token0,
token1: params.token1,
fee: params.fee,
tickLower: params.tickLower,
tickUpper: params.tickUpper,
amount0Desired: amount0V2ToMigrate,
amount1Desired: amount1V2ToMigrate,
amount0Min: params.amount0Min,
amount1Min: params.amount1Min,
recipient: params.recipient,
deadline: params.deadline
})
);
// if necessary, clear allowance and refund dust
if (amount0V3 < amount0V2) {
if (amount0V3 < amount0V2ToMigrate) {
TransferHelper.safeApprove(params.token0, nonfungiblePositionManager, 0);
}
uint256 refund0 = amount0V2 - amount0V3;
if (params.refundAsETH && params.token0 == WETH9) {
IWETH9(WETH9).withdraw(refund0);
TransferHelper.safeTransferETH(msg.sender, refund0);
} else {
TransferHelper.safeTransfer(params.token0, msg.sender, refund0);
}
}
if (amount1V3 < amount1V2) {
if (amount1V3 < amount1V2ToMigrate) {
TransferHelper.safeApprove(params.token1, nonfungiblePositionManager, 0);
}
uint256 refund1 = amount1V2 - amount1V3;
if (params.refundAsETH && params.token1 == WETH9) {
IWETH9(WETH9).withdraw(refund1);
TransferHelper.safeTransferETH(msg.sender, refund1);
} else {
TransferHelper.safeTransfer(params.token1, msg.sender, refund1);
}
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import './interfaces/IZebraV3Factory.sol';
import './ZebraV3PoolDeployer.sol';
import './NoDelegateCall.sol';
import './ZebraV3Pool.sol';
/// @title Canonical Zebra V3 factory
/// @notice Deploys Zebra V3 pools and manages ownership and control over pool protocol fees
contract ZebraV3Factory is IZebraV3Factory, ZebraV3PoolDeployer, NoDelegateCall {
// bytes32 public constant POOL_INIT_CODE_HASH =
// keccak256(abi.encodePacked(type(ZebraV3Pool).creationCode));
/// @inheritdoc IZebraV3Factory
address public override owner;
/// @inheritdoc IZebraV3Factory
mapping(uint24 => int24) public override feeAmountTickSpacing;
/// @inheritdoc IZebraV3Factory
mapping(address => mapping(address => mapping(uint24 => address))) public override getPool;
constructor() {
owner = msg.sender;
emit OwnerChanged(address(0), msg.sender);
feeAmountTickSpacing[500] = 10;
emit FeeAmountEnabled(500, 10);
feeAmountTickSpacing[3000] = 60;
emit FeeAmountEnabled(3000, 60);
feeAmountTickSpacing[10000] = 200;
emit FeeAmountEnabled(10000, 200);
}
/// @inheritdoc IZebraV3Factory
function createPool(
address tokenA,
address tokenB,
uint24 fee
) external override noDelegateCall returns (address pool) {
require(tokenA != tokenB);
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
require(token0 != address(0));
int24 tickSpacing = feeAmountTickSpacing[fee];
require(tickSpacing != 0);
require(getPool[token0][token1][fee] == address(0));
pool = deploy(address(this), token0, token1, fee, tickSpacing);
getPool[token0][token1][fee] = pool;
// populate mapping in the reverse direction, deliberate choice to avoid the cost of comparing addresses
getPool[token1][token0][fee] = pool;
emit PoolCreated(token0, token1, fee, tickSpacing, pool);
}
/// @inheritdoc IZebraV3Factory
function setOwner(address _owner) external override {
require(msg.sender == owner);
emit OwnerChanged(owner, _owner);
owner = _owner;
}
/// @inheritdoc IZebraV3Factory
function enableFeeAmount(uint24 fee, int24 tickSpacing) public override {
require(msg.sender == owner);
require(fee < 1000000);
// tick spacing is capped at 16384 to prevent the situation where tickSpacing is so large that
// TickBitmap#nextInitializedTickWithinOneWord overflows int24 container from a valid tick
// 16384 ticks represents a >5x price change with ticks of 1 bips
require(tickSpacing > 0 && tickSpacing < 16384);
require(feeAmountTickSpacing[fee] == 0);
feeAmountTickSpacing[fee] = tickSpacing;
emit FeeAmountEnabled(fee, tickSpacing);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import './interfaces/IZebraV3Pool.sol';
import './NoDelegateCall.sol';
import './libraries/LowGasSafeMath.sol';
import './libraries/SafeCast.sol';
import './libraries/Tick.sol';
import './libraries/TickBitmap.sol';
import './libraries/Position.sol';
import './libraries/Oracle.sol';
import './libraries/FullMath.sol';
import './libraries/FixedPoint128.sol';
import './libraries/TransferHelper.sol';
import './libraries/TickMath.sol';
import './libraries/LiquidityMath.sol';
import './libraries/SqrtPriceMath.sol';
import './libraries/SwapMath.sol';
import './interfaces/IZebraV3PoolDeployer.sol';
import './interfaces/IZebraV3Factory.sol';
import './interfaces/IERC20Minimal.sol';
import './interfaces/callback/IZebraV3MintCallback.sol';
import './interfaces/callback/IZebraV3SwapCallback.sol';
import './interfaces/callback/IZebraV3FlashCallback.sol';
contract ZebraV3Pool is IZebraV3Pool, NoDelegateCall {
using LowGasSafeMath for uint256;
using LowGasSafeMath for int256;
using SafeCast for uint256;
using SafeCast for int256;
using Tick for mapping(int24 => Tick.Info);
using TickBitmap for mapping(int16 => uint256);
using Position for mapping(bytes32 => Position.Info);
using Position for Position.Info;
using Oracle for Oracle.Observation[65535];
/// @inheritdoc IZebraV3PoolImmutables
address public immutable override factory;
/// @inheritdoc IZebraV3PoolImmutables
address public immutable override token0;
/// @inheritdoc IZebraV3PoolImmutables
address public immutable override token1;
/// @inheritdoc IZebraV3PoolImmutables
uint24 public immutable override fee;
/// @inheritdoc IZebraV3PoolImmutables
int24 public immutable override tickSpacing;
/// @inheritdoc IZebraV3PoolImmutables
uint128 public immutable override maxLiquidityPerTick;
struct Slot0 {
// the current price
uint160 sqrtPriceX96;
// the current tick
int24 tick;
// the most-recently updated index of the observations array
uint16 observationIndex;
// the current maximum number of observations that are being stored
uint16 observationCardinality;
// the next maximum number of observations to store, triggered in observations.write
uint16 observationCardinalityNext;
// the current protocol fee as a percentage of the swap fee taken on withdrawal
// represented as an integer denominator (1/x)%
uint8 feeProtocol;
// whether the pool is locked
bool unlocked;
}
/// @inheritdoc IZebraV3PoolState
Slot0 public override slot0;
/// @inheritdoc IZebraV3PoolState
uint256 public override feeGrowthGlobal0X128;
/// @inheritdoc IZebraV3PoolState
uint256 public override feeGrowthGlobal1X128;
// accumulated protocol fees in token0/token1 units
struct ProtocolFees {
uint128 token0;
uint128 token1;
}
/// @inheritdoc IZebraV3PoolState
ProtocolFees public override protocolFees;
/// @inheritdoc IZebraV3PoolState
uint128 public override liquidity;
/// @inheritdoc IZebraV3PoolState
mapping(int24 => Tick.Info) public override ticks;
/// @inheritdoc IZebraV3PoolState
mapping(int16 => uint256) public override tickBitmap;
/// @inheritdoc IZebraV3PoolState
mapping(bytes32 => Position.Info) public override positions;
/// @inheritdoc IZebraV3PoolState
Oracle.Observation[65535] public override observations;
/// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
/// to a function before the pool is initialized. The reentrancy guard is required throughout the contract because
/// we use balance checks to determine the payment status of interactions such as mint, swap and flash.
modifier lock() {
require(slot0.unlocked, 'LOK');
slot0.unlocked = false;
_;
slot0.unlocked = true;
}
/// @dev Prevents calling a function from anyone except the address returned by IZebraV3Factory#owner()
modifier onlyFactoryOwner() {
require(msg.sender == IZebraV3Factory(factory).owner());
_;
}
constructor() {
int24 _tickSpacing;
(factory, token0, token1, fee, _tickSpacing) = IZebraV3PoolDeployer(msg.sender).parameters();
tickSpacing = _tickSpacing;
maxLiquidityPerTick = Tick.tickSpacingToMaxLiquidityPerTick(_tickSpacing);
}
/// @dev Common checks for valid tick inputs.
function checkTicks(int24 tickLower, int24 tickUpper) private pure {
require(tickLower < tickUpper, 'TLU');
require(tickLower >= TickMath.MIN_TICK, 'TLM');
require(tickUpper <= TickMath.MAX_TICK, 'TUM');
}
/// @dev Returns the block timestamp truncated to 32 bits, i.e. mod 2**32. This method is overridden in tests.
function _blockTimestamp() internal view virtual returns (uint32) {
return uint32(block.timestamp); // truncation is desired
}
/// @dev Get the pool's balance of token0
/// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
/// check
function balance0() private view returns (uint256) {
(bool success, bytes memory data) =
token0.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
require(success && data.length >= 32);
return abi.decode(data, (uint256));
}
/// @dev Get the pool's balance of token1
/// @dev This function is gas optimized to avoid a redundant extcodesize check in addition to the returndatasize
/// check
function balance1() private view returns (uint256) {
(bool success, bytes memory data) =
token1.staticcall(abi.encodeWithSelector(IERC20Minimal.balanceOf.selector, address(this)));
require(success && data.length >= 32);
return abi.decode(data, (uint256));
}
/// @inheritdoc IZebraV3PoolDerivedState
function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
external
view
override
noDelegateCall
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
)
{
checkTicks(tickLower, tickUpper);
int56 tickCumulativeLower;
int56 tickCumulativeUpper;
uint160 secondsPerLiquidityOutsideLowerX128;
uint160 secondsPerLiquidityOutsideUpperX128;
uint32 secondsOutsideLower;
uint32 secondsOutsideUpper;
{
Tick.Info storage lower = ticks[tickLower];
Tick.Info storage upper = ticks[tickUpper];
bool initializedLower;
(tickCumulativeLower, secondsPerLiquidityOutsideLowerX128, secondsOutsideLower, initializedLower) = (
lower.tickCumulativeOutside,
lower.secondsPerLiquidityOutsideX128,
lower.secondsOutside,
lower.initialized
);
require(initializedLower);
bool initializedUpper;
(tickCumulativeUpper, secondsPerLiquidityOutsideUpperX128, secondsOutsideUpper, initializedUpper) = (
upper.tickCumulativeOutside,
upper.secondsPerLiquidityOutsideX128,
upper.secondsOutside,
upper.initialized
);
require(initializedUpper);
}
Slot0 memory _slot0 = slot0;
if (_slot0.tick < tickLower) {
return (
tickCumulativeLower - tickCumulativeUpper,
secondsPerLiquidityOutsideLowerX128 - secondsPerLiquidityOutsideUpperX128,
secondsOutsideLower - secondsOutsideUpper
);
} else if (_slot0.tick < tickUpper) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
_slot0.tick,
_slot0.observationIndex,
liquidity,
_slot0.observationCardinality
);
return (
tickCumulative - tickCumulativeLower - tickCumulativeUpper,
secondsPerLiquidityCumulativeX128 -
secondsPerLiquidityOutsideLowerX128 -
secondsPerLiquidityOutsideUpperX128,
time - secondsOutsideLower - secondsOutsideUpper
);
} else {
return (
tickCumulativeUpper - tickCumulativeLower,
secondsPerLiquidityOutsideUpperX128 - secondsPerLiquidityOutsideLowerX128,
secondsOutsideUpper - secondsOutsideLower
);
}
}
/// @inheritdoc IZebraV3PoolDerivedState
function observe(uint32[] calldata secondsAgos)
external
view
override
noDelegateCall
returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s)
{
return
observations.observe(
_blockTimestamp(),
secondsAgos,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
}
/// @inheritdoc IZebraV3PoolActions
function increaseObservationCardinalityNext(uint16 observationCardinalityNext)
external
override
lock
noDelegateCall
{
uint16 observationCardinalityNextOld = slot0.observationCardinalityNext; // for the event
uint16 observationCardinalityNextNew =
observations.grow(observationCardinalityNextOld, observationCardinalityNext);
slot0.observationCardinalityNext = observationCardinalityNextNew;
if (observationCardinalityNextOld != observationCardinalityNextNew)
emit IncreaseObservationCardinalityNext(observationCardinalityNextOld, observationCardinalityNextNew);
}
/// @inheritdoc IZebraV3PoolActions
/// @dev not locked because it initializes unlocked
function initialize(uint160 sqrtPriceX96) external override {
require(slot0.sqrtPriceX96 == 0, 'AI');
int24 tick = TickMath.getTickAtSqrtRatio(sqrtPriceX96);
(uint16 cardinality, uint16 cardinalityNext) = observations.initialize(_blockTimestamp());
slot0 = Slot0({
sqrtPriceX96: sqrtPriceX96,
tick: tick,
observationIndex: 0,
observationCardinality: cardinality,
observationCardinalityNext: cardinalityNext,
feeProtocol: 0,
unlocked: true
});
emit Initialize(sqrtPriceX96, tick);
}
struct ModifyPositionParams {
// the address that owns the position
address owner;
// the lower and upper tick of the position
int24 tickLower;
int24 tickUpper;
// any change in liquidity
int128 liquidityDelta;
}
/// @dev Effect some changes to a position
/// @param params the position details and the change to the position's liquidity to effect
/// @return position a storage pointer referencing the position with the given owner and tick range
/// @return amount0 the amount of token0 owed to the pool, negative if the pool should pay the recipient
/// @return amount1 the amount of token1 owed to the pool, negative if the pool should pay the recipient
function _modifyPosition(ModifyPositionParams memory params)
private
noDelegateCall
returns (
Position.Info storage position,
int256 amount0,
int256 amount1
)
{
checkTicks(params.tickLower, params.tickUpper);
Slot0 memory _slot0 = slot0; // SLOAD for gas optimization
position = _updatePosition(
params.owner,
params.tickLower,
params.tickUpper,
params.liquidityDelta,
_slot0.tick
);
if (params.liquidityDelta != 0) {
if (_slot0.tick < params.tickLower) {
// current tick is below the passed range; liquidity can only become in range by crossing from left to
// right, when we'll need _more_ token0 (it's becoming more valuable) so user must provide it
amount0 = SqrtPriceMath.getAmount0Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
} else if (_slot0.tick < params.tickUpper) {
// current tick is inside the passed range
uint128 liquidityBefore = liquidity; // SLOAD for gas optimization
// write an oracle entry
(slot0.observationIndex, slot0.observationCardinality) = observations.write(
_slot0.observationIndex,
_blockTimestamp(),
_slot0.tick,
liquidityBefore,
_slot0.observationCardinality,
_slot0.observationCardinalityNext
);
amount0 = SqrtPriceMath.getAmount0Delta(
_slot0.sqrtPriceX96,
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
_slot0.sqrtPriceX96,
params.liquidityDelta
);
liquidity = LiquidityMath.addDelta(liquidityBefore, params.liquidityDelta);
} else {
// current tick is above the passed range; liquidity can only become in range by crossing from right to
// left, when we'll need _more_ token1 (it's becoming more valuable) so user must provide it
amount1 = SqrtPriceMath.getAmount1Delta(
TickMath.getSqrtRatioAtTick(params.tickLower),
TickMath.getSqrtRatioAtTick(params.tickUpper),
params.liquidityDelta
);
}
}
}
/// @dev Gets and updates a position with the given liquidity delta
/// @param owner the owner of the position
/// @param tickLower the lower tick of the position's tick range
/// @param tickUpper the upper tick of the position's tick range
/// @param tick the current tick, passed to avoid sloads
function _updatePosition(
address owner,
int24 tickLower,
int24 tickUpper,
int128 liquidityDelta,
int24 tick
) private returns (Position.Info storage position) {
position = positions.get(owner, tickLower, tickUpper);
uint256 _feeGrowthGlobal0X128 = feeGrowthGlobal0X128; // SLOAD for gas optimization
uint256 _feeGrowthGlobal1X128 = feeGrowthGlobal1X128; // SLOAD for gas optimization
// if we need to update the ticks, do it
bool flippedLower;
bool flippedUpper;
if (liquidityDelta != 0) {
uint32 time = _blockTimestamp();
(int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128) =
observations.observeSingle(
time,
0,
slot0.tick,
slot0.observationIndex,
liquidity,
slot0.observationCardinality
);
flippedLower = ticks.update(
tickLower,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
false,
maxLiquidityPerTick
);
flippedUpper = ticks.update(
tickUpper,
tick,
liquidityDelta,
_feeGrowthGlobal0X128,
_feeGrowthGlobal1X128,
secondsPerLiquidityCumulativeX128,
tickCumulative,
time,
true,
maxLiquidityPerTick
);
if (flippedLower) {
tickBitmap.flipTick(tickLower, tickSpacing);
}
if (flippedUpper) {
tickBitmap.flipTick(tickUpper, tickSpacing);
}
}
(uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) =
ticks.getFeeGrowthInside(tickLower, tickUpper, tick, _feeGrowthGlobal0X128, _feeGrowthGlobal1X128);
position.update(liquidityDelta, feeGrowthInside0X128, feeGrowthInside1X128);
// clear any tick data that is no longer needed
if (liquidityDelta < 0) {
if (flippedLower) {
ticks.clear(tickLower);
}
if (flippedUpper) {
ticks.clear(tickUpper);
}
}
}
/// @inheritdoc IZebraV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external override lock returns (uint256 amount0, uint256 amount1) {
require(amount > 0);
(, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: recipient,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: int256(amount).toInt128()
})
);
amount0 = uint256(amount0Int);
amount1 = uint256(amount1Int);
uint256 balance0Before;
uint256 balance1Before;
if (amount0 > 0) balance0Before = balance0();
if (amount1 > 0) balance1Before = balance1();
IZebraV3MintCallback(msg.sender).zebraV3MintCallback(amount0, amount1, data);
if (amount0 > 0) require(balance0Before.add(amount0) <= balance0(), 'M0');
if (amount1 > 0) require(balance1Before.add(amount1) <= balance1(), 'M1');
emit Mint(msg.sender, recipient, tickLower, tickUpper, amount, amount0, amount1);
}
/// @inheritdoc IZebraV3PoolActions
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock returns (uint128 amount0, uint128 amount1) {
// we don't need to checkTicks here, because invalid positions will never have non-zero tokensOwed{0,1}
Position.Info storage position = positions.get(msg.sender, tickLower, tickUpper);
amount0 = amount0Requested > position.tokensOwed0 ? position.tokensOwed0 : amount0Requested;
amount1 = amount1Requested > position.tokensOwed1 ? position.tokensOwed1 : amount1Requested;
if (amount0 > 0) {
position.tokensOwed0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
position.tokensOwed1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit Collect(msg.sender, recipient, tickLower, tickUpper, amount0, amount1);
}
/// @inheritdoc IZebraV3PoolActions
/// @dev noDelegateCall is applied indirectly via _modifyPosition
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external override lock returns (uint256 amount0, uint256 amount1) {
(Position.Info storage position, int256 amount0Int, int256 amount1Int) =
_modifyPosition(
ModifyPositionParams({
owner: msg.sender,
tickLower: tickLower,
tickUpper: tickUpper,
liquidityDelta: -int256(amount).toInt128()
})
);
amount0 = uint256(-amount0Int);
amount1 = uint256(-amount1Int);
if (amount0 > 0 || amount1 > 0) {
(position.tokensOwed0, position.tokensOwed1) = (
position.tokensOwed0 + uint128(amount0),
position.tokensOwed1 + uint128(amount1)
);
}
emit Burn(msg.sender, tickLower, tickUpper, amount, amount0, amount1);
}
struct SwapCache {
// the protocol fee for the input token
uint8 feeProtocol;
// liquidity at the beginning of the swap
uint128 liquidityStart;
// the timestamp of the current block
uint32 blockTimestamp;
// the current value of the tick accumulator, computed only if we cross an initialized tick
int56 tickCumulative;
// the current value of seconds per liquidity accumulator, computed only if we cross an initialized tick
uint160 secondsPerLiquidityCumulativeX128;
// whether we've computed and cached the above two accumulators
bool computedLatestObservation;
}
// the top level state of the swap, the results of which are recorded in storage at the end
struct SwapState {
// the amount remaining to be swapped in/out of the input/output asset
int256 amountSpecifiedRemaining;
// the amount already swapped out/in of the output/input asset
int256 amountCalculated;
// current sqrt(price)
uint160 sqrtPriceX96;
// the tick associated with the current price
int24 tick;
// the global fee growth of the input token
uint256 feeGrowthGlobalX128;
// amount of input token paid as protocol fee
uint128 protocolFee;
// the current liquidity in range
uint128 liquidity;
}
struct StepComputations {
// the price at the beginning of the step
uint160 sqrtPriceStartX96;
// the next tick to swap to from the current tick in the swap direction
int24 tickNext;
// whether tickNext is initialized or not
bool initialized;
// sqrt(price) for the next tick (1/0)
uint160 sqrtPriceNextX96;
// how much is being swapped in in this step
uint256 amountIn;
// how much is being swapped out
uint256 amountOut;
// how much fee is being paid in
uint256 feeAmount;
}
/// @inheritdoc IZebraV3PoolActions
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external override noDelegateCall returns (int256 amount0, int256 amount1) {
require(amountSpecified != 0, 'AS');
Slot0 memory slot0Start = slot0;
require(slot0Start.unlocked, 'LOK');
require(
zeroForOne
? sqrtPriceLimitX96 < slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 > TickMath.MIN_SQRT_RATIO
: sqrtPriceLimitX96 > slot0Start.sqrtPriceX96 && sqrtPriceLimitX96 < TickMath.MAX_SQRT_RATIO,
'SPL'
);
slot0.unlocked = false;
SwapCache memory cache =
SwapCache({
liquidityStart: liquidity,
blockTimestamp: _blockTimestamp(),
feeProtocol: zeroForOne ? (slot0Start.feeProtocol % 16) : (slot0Start.feeProtocol >> 4),
secondsPerLiquidityCumulativeX128: 0,
tickCumulative: 0,
computedLatestObservation: false
});
bool exactInput = amountSpecified > 0;
SwapState memory state =
SwapState({
amountSpecifiedRemaining: amountSpecified,
amountCalculated: 0,
sqrtPriceX96: slot0Start.sqrtPriceX96,
tick: slot0Start.tick,
feeGrowthGlobalX128: zeroForOne ? feeGrowthGlobal0X128 : feeGrowthGlobal1X128,
protocolFee: 0,
liquidity: cache.liquidityStart
});
// continue swapping as long as we haven't used the entire input/output and haven't reached the price limit
while (state.amountSpecifiedRemaining != 0 && state.sqrtPriceX96 != sqrtPriceLimitX96) {
StepComputations memory step;
step.sqrtPriceStartX96 = state.sqrtPriceX96;
(step.tickNext, step.initialized) = tickBitmap.nextInitializedTickWithinOneWord(
state.tick,
tickSpacing,
zeroForOne
);
// ensure that we do not overshoot the min/max tick, as the tick bitmap is not aware of these bounds
if (step.tickNext < TickMath.MIN_TICK) {
step.tickNext = TickMath.MIN_TICK;
} else if (step.tickNext > TickMath.MAX_TICK) {
step.tickNext = TickMath.MAX_TICK;
}
// get the price for the next tick
step.sqrtPriceNextX96 = TickMath.getSqrtRatioAtTick(step.tickNext);
// compute values to swap to the target tick, price limit, or point where input/output amount is exhausted
(state.sqrtPriceX96, step.amountIn, step.amountOut, step.feeAmount) = SwapMath.computeSwapStep(
state.sqrtPriceX96,
(zeroForOne ? step.sqrtPriceNextX96 < sqrtPriceLimitX96 : step.sqrtPriceNextX96 > sqrtPriceLimitX96)
? sqrtPriceLimitX96
: step.sqrtPriceNextX96,
state.liquidity,
state.amountSpecifiedRemaining,
fee
);
if (exactInput) {
state.amountSpecifiedRemaining -= (step.amountIn + step.feeAmount).toInt256();
state.amountCalculated = state.amountCalculated.sub(step.amountOut.toInt256());
} else {
state.amountSpecifiedRemaining += step.amountOut.toInt256();
state.amountCalculated = state.amountCalculated.add((step.amountIn + step.feeAmount).toInt256());
}
// if the protocol fee is on, calculate how much is owed, decrement feeAmount, and increment protocolFee
if (cache.feeProtocol > 0) {
uint256 delta = step.feeAmount / cache.feeProtocol;
step.feeAmount -= delta;
state.protocolFee += uint128(delta);
}
// update global fee tracker
if (state.liquidity > 0)
state.feeGrowthGlobalX128 += FullMath.mulDiv(step.feeAmount, FixedPoint128.Q128, state.liquidity);
// shift tick if we reached the next price
if (state.sqrtPriceX96 == step.sqrtPriceNextX96) {
// if the tick is initialized, run the tick transition
if (step.initialized) {
// check for the placeholder value, which we replace with the actual value the first time the swap
// crosses an initialized tick
if (!cache.computedLatestObservation) {
(cache.tickCumulative, cache.secondsPerLiquidityCumulativeX128) = observations.observeSingle(
cache.blockTimestamp,
0,
slot0Start.tick,
slot0Start.observationIndex,
cache.liquidityStart,
slot0Start.observationCardinality
);
cache.computedLatestObservation = true;
}
int128 liquidityNet =
ticks.cross(
step.tickNext,
(zeroForOne ? state.feeGrowthGlobalX128 : feeGrowthGlobal0X128),
(zeroForOne ? feeGrowthGlobal1X128 : state.feeGrowthGlobalX128),
cache.secondsPerLiquidityCumulativeX128,
cache.tickCumulative,
cache.blockTimestamp
);
// if we're moving leftward, we interpret liquidityNet as the opposite sign
// safe because liquidityNet cannot be type(int128).min
if (zeroForOne) liquidityNet = -liquidityNet;
state.liquidity = LiquidityMath.addDelta(state.liquidity, liquidityNet);
}
state.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;
} else if (state.sqrtPriceX96 != step.sqrtPriceStartX96) {
// recompute unless we're on a lower tick boundary (i.e. already transitioned ticks), and haven't moved
state.tick = TickMath.getTickAtSqrtRatio(state.sqrtPriceX96);
}
}
// update tick and write an oracle entry if the tick change
if (state.tick != slot0Start.tick) {
(uint16 observationIndex, uint16 observationCardinality) =
observations.write(
slot0Start.observationIndex,
cache.blockTimestamp,
slot0Start.tick,
cache.liquidityStart,
slot0Start.observationCardinality,
slot0Start.observationCardinalityNext
);
(slot0.sqrtPriceX96, slot0.tick, slot0.observationIndex, slot0.observationCardinality) = (
state.sqrtPriceX96,
state.tick,
observationIndex,
observationCardinality
);
} else {
// otherwise just update the price
slot0.sqrtPriceX96 = state.sqrtPriceX96;
}
// update liquidity if it changed
if (cache.liquidityStart != state.liquidity) liquidity = state.liquidity;
// update fee growth global and, if necessary, protocol fees
// overflow is acceptable, protocol has to withdraw before it hits type(uint128).max fees
if (zeroForOne) {
feeGrowthGlobal0X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token0 += state.protocolFee;
} else {
feeGrowthGlobal1X128 = state.feeGrowthGlobalX128;
if (state.protocolFee > 0) protocolFees.token1 += state.protocolFee;
}
(amount0, amount1) = zeroForOne == exactInput
? (amountSpecified - state.amountSpecifiedRemaining, state.amountCalculated)
: (state.amountCalculated, amountSpecified - state.amountSpecifiedRemaining);
// do the transfers and collect payment
if (zeroForOne) {
if (amount1 < 0) TransferHelper.safeTransfer(token1, recipient, uint256(-amount1));
uint256 balance0Before = balance0();
IZebraV3SwapCallback(msg.sender).zebraV3SwapCallback(amount0, amount1, data);
require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');
} else {
if (amount0 < 0) TransferHelper.safeTransfer(token0, recipient, uint256(-amount0));
uint256 balance1Before = balance1();
IZebraV3SwapCallback(msg.sender).zebraV3SwapCallback(amount0, amount1, data);
require(balance1Before.add(uint256(amount1)) <= balance1(), 'IIA');
}
emit Swap(msg.sender, recipient, amount0, amount1, state.sqrtPriceX96, state.liquidity, state.tick);
slot0.unlocked = true;
}
/// @inheritdoc IZebraV3PoolActions
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external override lock noDelegateCall {
uint128 _liquidity = liquidity;
require(_liquidity > 0, 'L');
uint256 fee0 = FullMath.mulDivRoundingUp(amount0, fee, 1e6);
uint256 fee1 = FullMath.mulDivRoundingUp(amount1, fee, 1e6);
uint256 balance0Before = balance0();
uint256 balance1Before = balance1();
if (amount0 > 0) TransferHelper.safeTransfer(token0, recipient, amount0);
if (amount1 > 0) TransferHelper.safeTransfer(token1, recipient, amount1);
IZebraV3FlashCallback(msg.sender).zebraV3FlashCallback(fee0, fee1, data);
uint256 balance0After = balance0();
uint256 balance1After = balance1();
require(balance0Before.add(fee0) <= balance0After, 'F0');
require(balance1Before.add(fee1) <= balance1After, 'F1');
// sub is safe because we know balanceAfter is gt balanceBefore by at least fee
uint256 paid0 = balance0After - balance0Before;
uint256 paid1 = balance1After - balance1Before;
if (paid0 > 0) {
uint8 feeProtocol0 = slot0.feeProtocol % 16;
uint256 fees0 = feeProtocol0 == 0 ? 0 : paid0 / feeProtocol0;
if (uint128(fees0) > 0) protocolFees.token0 += uint128(fees0);
feeGrowthGlobal0X128 += FullMath.mulDiv(paid0 - fees0, FixedPoint128.Q128, _liquidity);
}
if (paid1 > 0) {
uint8 feeProtocol1 = slot0.feeProtocol >> 4;
uint256 fees1 = feeProtocol1 == 0 ? 0 : paid1 / feeProtocol1;
if (uint128(fees1) > 0) protocolFees.token1 += uint128(fees1);
feeGrowthGlobal1X128 += FullMath.mulDiv(paid1 - fees1, FixedPoint128.Q128, _liquidity);
}
emit Flash(msg.sender, recipient, amount0, amount1, paid0, paid1);
}
/// @inheritdoc IZebraV3PoolOwnerActions
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external override lock onlyFactoryOwner {
require(
(feeProtocol0 == 0 || (feeProtocol0 >= 4 && feeProtocol0 <= 10)) &&
(feeProtocol1 == 0 || (feeProtocol1 >= 4 && feeProtocol1 <= 10))
);
uint8 feeProtocolOld = slot0.feeProtocol;
slot0.feeProtocol = feeProtocol0 + (feeProtocol1 << 4);
emit SetFeeProtocol(feeProtocolOld % 16, feeProtocolOld >> 4, feeProtocol0, feeProtocol1);
}
/// @inheritdoc IZebraV3PoolOwnerActions
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external override lock onlyFactoryOwner returns (uint128 amount0, uint128 amount1) {
amount0 = amount0Requested > protocolFees.token0 ? protocolFees.token0 : amount0Requested;
amount1 = amount1Requested > protocolFees.token1 ? protocolFees.token1 : amount1Requested;
if (amount0 > 0) {
if (amount0 == protocolFees.token0) amount0--; // ensure that the slot is not cleared, for gas savings
protocolFees.token0 -= amount0;
TransferHelper.safeTransfer(token0, recipient, amount0);
}
if (amount1 > 0) {
if (amount1 == protocolFees.token1) amount1--; // ensure that the slot is not cleared, for gas savings
protocolFees.token1 -= amount1;
TransferHelper.safeTransfer(token1, recipient, amount1);
}
emit CollectProtocol(msg.sender, recipient, amount0, amount1);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.7.6;
import './interfaces/IZebraV3PoolDeployer.sol';
import './ZebraV3Pool.sol';
contract ZebraV3PoolDeployer is IZebraV3PoolDeployer {
struct Parameters {
address factory;
address token0;
address token1;
uint24 fee;
int24 tickSpacing;
}
/// @inheritdoc IZebraV3PoolDeployer
Parameters public override parameters;
/// @dev Deploys a pool with the given parameters by transiently setting the parameters storage slot and then
/// clearing it after deploying the pool.
/// @param factory The contract address of the Zebra V3 factory
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @param tickSpacing The spacing between usable ticks
function deploy(
address factory,
address token0,
address token1,
uint24 fee,
int24 tickSpacing
) internal returns (address pool) {
parameters = Parameters({factory: factory, token0: token0, token1: token1, fee: fee, tickSpacing: tickSpacing});
pool = address(new ZebraV3Pool{salt: keccak256(abi.encode(token0, token1, fee))}());
delete parameters;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0;
/// @title Base64
/// @author Brecht Devos - <brecht@loopring.org>
/// @notice Provides functions for encoding/decoding base64
library Base64 {
string internal constant TABLE_ENCODE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
bytes internal constant TABLE_DECODE = hex"0000000000000000000000000000000000000000000000000000000000000000"
hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000"
hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000"
hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000";
function encode(bytes memory data) internal pure returns (string memory) {
if (data.length == 0) return '';
// load the table into memory
string memory table = TABLE_ENCODE;
// multiply by 4/3 rounded up
uint256 encodedLen = 4 * ((data.length + 2) / 3);
// add some extra buffer at the end required for the writing
string memory result = new string(encodedLen + 32);
assembly {
// set the actual output length
mstore(result, encodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 3 bytes at a time
for {} lt(dataPtr, endPtr) {}
{
// read 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// write 4 characters
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and(shr( 6, input), 0x3F))))
resultPtr := add(resultPtr, 1)
mstore8(resultPtr, mload(add(tablePtr, and( input, 0x3F))))
resultPtr := add(resultPtr, 1)
}
// padding with '='
switch mod(mload(data), 3)
case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
}
return result;
}
function decode(string memory _data) internal pure returns (bytes memory) {
bytes memory data = bytes(_data);
if (data.length == 0) return new bytes(0);
require(data.length % 4 == 0, "invalid base64 decoder input");
// load the table into memory
bytes memory table = TABLE_DECODE;
// every 4 characters represent 3 bytes
uint256 decodedLen = (data.length / 4) * 3;
// add some extra buffer at the end required for the writing
bytes memory result = new bytes(decodedLen + 32);
assembly {
// padding with '='
let lastBytes := mload(add(data, mload(data)))
if eq(and(lastBytes, 0xFF), 0x3d) {
decodedLen := sub(decodedLen, 1)
if eq(and(lastBytes, 0xFFFF), 0x3d3d) {
decodedLen := sub(decodedLen, 1)
}
}
// set the actual output length
mstore(result, decodedLen)
// prepare the lookup table
let tablePtr := add(table, 1)
// input ptr
let dataPtr := data
let endPtr := add(dataPtr, mload(data))
// result ptr, jump over length
let resultPtr := add(result, 32)
// run over the input, 4 characters at a time
for {} lt(dataPtr, endPtr) {}
{
// read 4 characters
dataPtr := add(dataPtr, 4)
let input := mload(dataPtr)
// write 3 bytes
let output := add(
add(
shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)),
shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF))),
add(
shl( 6, and(mload(add(tablePtr, and(shr( 8, input), 0xFF))), 0xFF)),
and(mload(add(tablePtr, and( input , 0xFF))), 0xFF)
)
)
mstore(resultPtr, shl(232, output))
resultPtr := add(resultPtr, 3)
}
}
return result;
}
}
{
"compilationTarget": {
"contracts/ZebraV3Pool.sol": "ZebraV3Pool"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"int24","name":"tickLower","type":"int24"},{"indexed":true,"internalType":"int24","name":"tickUpper","type":"int24"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Burn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":true,"internalType":"int24","name":"tickLower","type":"int24"},{"indexed":true,"internalType":"int24","name":"tickUpper","type":"int24"},{"indexed":false,"internalType":"uint128","name":"amount0","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"amount1","type":"uint128"}],"name":"Collect","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount0","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"amount1","type":"uint128"}],"name":"CollectProtocol","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"paid0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"paid1","type":"uint256"}],"name":"Flash","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"observationCardinalityNextOld","type":"uint16"},{"indexed":false,"internalType":"uint16","name":"observationCardinalityNextNew","type":"uint16"}],"name":"IncreaseObservationCardinalityNext","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"},{"indexed":false,"internalType":"int24","name":"tick","type":"int24"}],"name":"Initialize","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"int24","name":"tickLower","type":"int24"},{"indexed":true,"internalType":"int24","name":"tickUpper","type":"int24"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"feeProtocol0Old","type":"uint8"},{"indexed":false,"internalType":"uint8","name":"feeProtocol1Old","type":"uint8"},{"indexed":false,"internalType":"uint8","name":"feeProtocol0New","type":"uint8"},{"indexed":false,"internalType":"uint8","name":"feeProtocol1New","type":"uint8"}],"name":"SetFeeProtocol","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"int256","name":"amount0","type":"int256"},{"indexed":false,"internalType":"int256","name":"amount1","type":"int256"},{"indexed":false,"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"int24","name":"tick","type":"int24"}],"name":"Swap","type":"event"},{"inputs":[{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"burn","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"uint128","name":"amount0Requested","type":"uint128"},{"internalType":"uint128","name":"amount1Requested","type":"uint128"}],"name":"collect","outputs":[{"internalType":"uint128","name":"amount0","type":"uint128"},{"internalType":"uint128","name":"amount1","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"amount0Requested","type":"uint128"},{"internalType":"uint128","name":"amount1Requested","type":"uint128"}],"name":"collectProtocol","outputs":[{"internalType":"uint128","name":"amount0","type":"uint128"},{"internalType":"uint128","name":"amount1","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint24","name":"","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeGrowthGlobal0X128","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeGrowthGlobal1X128","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"flash","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"observationCardinalityNext","type":"uint16"}],"name":"increaseObservationCardinalityNext","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"liquidity","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxLiquidityPerTick","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"mint","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"observations","outputs":[{"internalType":"uint32","name":"blockTimestamp","type":"uint32"},{"internalType":"int56","name":"tickCumulative","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityCumulativeX128","type":"uint160"},{"internalType":"bool","name":"initialized","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32[]","name":"secondsAgos","type":"uint32[]"}],"name":"observe","outputs":[{"internalType":"int56[]","name":"tickCumulatives","type":"int56[]"},{"internalType":"uint160[]","name":"secondsPerLiquidityCumulativeX128s","type":"uint160[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"positions","outputs":[{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"feeGrowthInside0LastX128","type":"uint256"},{"internalType":"uint256","name":"feeGrowthInside1LastX128","type":"uint256"},{"internalType":"uint128","name":"tokensOwed0","type":"uint128"},{"internalType":"uint128","name":"tokensOwed1","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFees","outputs":[{"internalType":"uint128","name":"token0","type":"uint128"},{"internalType":"uint128","name":"token1","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"feeProtocol0","type":"uint8"},{"internalType":"uint8","name":"feeProtocol1","type":"uint8"}],"name":"setFeeProtocol","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"slot0","outputs":[{"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"},{"internalType":"int24","name":"tick","type":"int24"},{"internalType":"uint16","name":"observationIndex","type":"uint16"},{"internalType":"uint16","name":"observationCardinality","type":"uint16"},{"internalType":"uint16","name":"observationCardinalityNext","type":"uint16"},{"internalType":"uint8","name":"feeProtocol","type":"uint8"},{"internalType":"bool","name":"unlocked","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"name":"snapshotCumulativesInside","outputs":[{"internalType":"int56","name":"tickCumulativeInside","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityInsideX128","type":"uint160"},{"internalType":"uint32","name":"secondsInside","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bool","name":"zeroForOne","type":"bool"},{"internalType":"int256","name":"amountSpecified","type":"int256"},{"internalType":"uint160","name":"sqrtPriceLimitX96","type":"uint160"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"swap","outputs":[{"internalType":"int256","name":"amount0","type":"int256"},{"internalType":"int256","name":"amount1","type":"int256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int16","name":"","type":"int16"}],"name":"tickBitmap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tickSpacing","outputs":[{"internalType":"int24","name":"","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int24","name":"","type":"int24"}],"name":"ticks","outputs":[{"internalType":"uint128","name":"liquidityGross","type":"uint128"},{"internalType":"int128","name":"liquidityNet","type":"int128"},{"internalType":"uint256","name":"feeGrowthOutside0X128","type":"uint256"},{"internalType":"uint256","name":"feeGrowthOutside1X128","type":"uint256"},{"internalType":"int56","name":"tickCumulativeOutside","type":"int56"},{"internalType":"uint160","name":"secondsPerLiquidityOutsideX128","type":"uint160"},{"internalType":"uint32","name":"secondsOutside","type":"uint32"},{"internalType":"bool","name":"initialized","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token0","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token1","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]