// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)pragmasolidity ^0.8.0;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
}
Contract Source Code
File 3 of 12: DefaultOperatorFilterer.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.13;import {OperatorFilterer} from"./OperatorFilterer.sol";
import {CANONICAL_CORI_SUBSCRIPTION} from"./lib/Constants.sol";
/**
* @title DefaultOperatorFilterer
* @notice Inherits from OperatorFilterer and automatically subscribes to the default OpenSea subscription.
* @dev Please note that if your token contract does not provide an owner with EIP-173, it must provide
* administration methods on the contract itself to interact with the registry otherwise the subscription
* will be locked to the options set during construction.
*/abstractcontractDefaultOperatorFiltererisOperatorFilterer{
/// @dev The constructor that is called when the contract is being deployed.constructor() OperatorFilterer(CANONICAL_CORI_SUBSCRIPTION, true) {}
}
Contract Source Code
File 4 of 12: IERC165.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/interfaceIERC165{
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/functionsupportsInterface(bytes4 interfaceId) externalviewreturns (bool);
}
Contract Source Code
File 5 of 12: IERC2981.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)pragmasolidity ^0.8.0;import"../utils/introspection/IERC165.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/interfaceIERC2981isIERC165{
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/functionroyaltyInfo(uint256 tokenId, uint256 salePrice)
externalviewreturns (address receiver, uint256 royaltyAmount);
}
Contract Source Code
File 6 of 12: IERC721.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)pragmasolidity ^0.8.0;import"../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/interfaceIERC721isIERC165{
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/eventApproval(addressindexed owner, addressindexed approved, uint256indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/eventApprovalForAll(addressindexed owner, addressindexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/functionbalanceOf(address owner) externalviewreturns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/functionownerOf(uint256 tokenId) externalviewreturns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId,
bytescalldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/functionsafeTransferFrom(addressfrom,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/functionapprove(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/functionsetApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/functiongetApproved(uint256 tokenId) externalviewreturns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/functionisApprovedForAll(address owner, address operator) externalviewreturns (bool);
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)pragmasolidity ^0.8.0;/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/interfaceIERC721Receiver{
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/functiononERC721Received(address operator,
addressfrom,
uint256 tokenId,
bytescalldata data
) externalreturns (bytes4);
}
Contract Source Code
File 9 of 12: IOperatorFilterRegistry.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.13;interfaceIOperatorFilterRegistry{
/**
* @notice Returns true if operator is not filtered for a given token, either by address or codeHash. Also returns
* true if supplied registrant address is not registered.
*/functionisOperatorAllowed(address registrant, address operator) externalviewreturns (bool);
/**
* @notice Registers an address with the registry. May be called by address itself or by EIP-173 owner.
*/functionregister(address registrant) external;
/**
* @notice Registers an address with the registry and "subscribes" to another address's filtered operators and codeHashes.
*/functionregisterAndSubscribe(address registrant, address subscription) external;
/**
* @notice Registers an address with the registry and copies the filtered operators and codeHashes from another
* address without subscribing.
*/functionregisterAndCopyEntries(address registrant, address registrantToCopy) external;
/**
* @notice Unregisters an address with the registry and removes its subscription. May be called by address itself or by EIP-173 owner.
* Note that this does not remove any filtered addresses or codeHashes.
* Also note that any subscriptions to this registrant will still be active and follow the existing filtered addresses and codehashes.
*/functionunregister(address addr) external;
/**
* @notice Update an operator address for a registered address - when filtered is true, the operator is filtered.
*/functionupdateOperator(address registrant, address operator, bool filtered) external;
/**
* @notice Update multiple operators for a registered address - when filtered is true, the operators will be filtered. Reverts on duplicates.
*/functionupdateOperators(address registrant, address[] calldata operators, bool filtered) external;
/**
* @notice Update a codeHash for a registered address - when filtered is true, the codeHash is filtered.
*/functionupdateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
/**
* @notice Update multiple codeHashes for a registered address - when filtered is true, the codeHashes will be filtered. Reverts on duplicates.
*/functionupdateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
/**
* @notice Subscribe an address to another registrant's filtered operators and codeHashes. Will remove previous
* subscription if present.
* Note that accounts with subscriptions may go on to subscribe to other accounts - in this case,
* subscriptions will not be forwarded. Instead the former subscription's existing entries will still be
* used.
*/functionsubscribe(address registrant, address registrantToSubscribe) external;
/**
* @notice Unsubscribe an address from its current subscribed registrant, and optionally copy its filtered operators and codeHashes.
*/functionunsubscribe(address registrant, bool copyExistingEntries) external;
/**
* @notice Get the subscription address of a given registrant, if any.
*/functionsubscriptionOf(address addr) externalreturns (address registrant);
/**
* @notice Get the set of addresses subscribed to a given registrant.
* Note that order is not guaranteed as updates are made.
*/functionsubscribers(address registrant) externalreturns (address[] memory);
/**
* @notice Get the subscriber at a given index in the set of addresses subscribed to a given registrant.
* Note that order is not guaranteed as updates are made.
*/functionsubscriberAt(address registrant, uint256 index) externalreturns (address);
/**
* @notice Copy filtered operators and codeHashes from a different registrantToCopy to addr.
*/functioncopyEntriesOf(address registrant, address registrantToCopy) external;
/**
* @notice Returns true if operator is filtered by a given address or its subscription.
*/functionisOperatorFiltered(address registrant, address operator) externalreturns (bool);
/**
* @notice Returns true if the hash of an address's code is filtered by a given address or its subscription.
*/functionisCodeHashOfFiltered(address registrant, address operatorWithCode) externalreturns (bool);
/**
* @notice Returns true if a codeHash is filtered by a given address or its subscription.
*/functionisCodeHashFiltered(address registrant, bytes32 codeHash) externalreturns (bool);
/**
* @notice Returns a list of filtered operators for a given address or its subscription.
*/functionfilteredOperators(address addr) externalreturns (address[] memory);
/**
* @notice Returns the set of filtered codeHashes for a given address or its subscription.
* Note that order is not guaranteed as updates are made.
*/functionfilteredCodeHashes(address addr) externalreturns (bytes32[] memory);
/**
* @notice Returns the filtered operator at the given index of the set of filtered operators for a given address or
* its subscription.
* Note that order is not guaranteed as updates are made.
*/functionfilteredOperatorAt(address registrant, uint256 index) externalreturns (address);
/**
* @notice Returns the filtered codeHash at the given index of the list of filtered codeHashes for a given address or
* its subscription.
* Note that order is not guaranteed as updates are made.
*/functionfilteredCodeHashAt(address registrant, uint256 index) externalreturns (bytes32);
/**
* @notice Returns true if an address has registered
*/functionisRegistered(address addr) externalreturns (bool);
/**
* @dev Convenience method to compute the code hash of an arbitrary contract
*/functioncodeHashOf(address addr) externalreturns (bytes32);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.8.13;import {IOperatorFilterRegistry} from"./IOperatorFilterRegistry.sol";
import {CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS} from"./lib/Constants.sol";
/**
* @title OperatorFilterer
* @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
* registrant's entries in the OperatorFilterRegistry.
* @dev This smart contract is meant to be inherited by token contracts so they can use the following:
* - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
* - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
* Please note that if your token contract does not provide an owner with EIP-173, it must provide
* administration methods on the contract itself to interact with the registry otherwise the subscription
* will be locked to the options set during construction.
*/abstractcontractOperatorFilterer{
/// @dev Emitted when an operator is not allowed.errorOperatorNotAllowed(address operator);
IOperatorFilterRegistry publicconstant OPERATOR_FILTER_REGISTRY =
IOperatorFilterRegistry(CANONICAL_OPERATOR_FILTER_REGISTRY_ADDRESS);
/// @dev The constructor that is called when the contract is being deployed.constructor(address subscriptionOrRegistrantToCopy, bool subscribe) {
// If an inheriting token contract is deployed to a network without the registry deployed, the modifier// will not revert, but the contract will need to be registered with the registry once it is deployed in// order for the modifier to filter addresses.if (address(OPERATOR_FILTER_REGISTRY).code.length>0) {
if (subscribe) {
OPERATOR_FILTER_REGISTRY.registerAndSubscribe(address(this), subscriptionOrRegistrantToCopy);
} else {
if (subscriptionOrRegistrantToCopy !=address(0)) {
OPERATOR_FILTER_REGISTRY.registerAndCopyEntries(address(this), subscriptionOrRegistrantToCopy);
} else {
OPERATOR_FILTER_REGISTRY.register(address(this));
}
}
}
}
/**
* @dev A helper function to check if an operator is allowed.
*/modifieronlyAllowedOperator(addressfrom) virtual{
// Allow spending tokens from addresses with balance// Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred// from an EOA.if (from!=msg.sender) {
_checkFilterOperator(msg.sender);
}
_;
}
/**
* @dev A helper function to check if an operator approval is allowed.
*/modifieronlyAllowedOperatorApproval(address operator) virtual{
_checkFilterOperator(operator);
_;
}
/**
* @dev A helper function to check if an operator is allowed.
*/function_checkFilterOperator(address operator) internalviewvirtual{
// Check registry code length to facilitate testing in environments without a deployed registry.if (address(OPERATOR_FILTER_REGISTRY).code.length>0) {
// under normal circumstances, this function will revert rather than return false, but inheriting contracts// may specify their own OperatorFilterRegistry implementations, which may behave differentlyif (!OPERATOR_FILTER_REGISTRY.isOperatorAllowed(address(this), operator)) {
revert OperatorNotAllowed(operator);
}
}
}
}
Contract Source Code
File 12 of 12: Ownable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)pragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}