// File: @openzeppelin\contracts\math\SafeMath.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.6.12;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
// File: @openzeppelin\contracts\token\ERC20\IERC20.sol
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File: node_modules\@openzeppelin\contracts\utils\Address.sol
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// File: @openzeppelin\contracts\token\ERC20\SafeERC20.sol
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
// File: node_modules\@openzeppelin\contracts\GSN\Context.sol
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// File: @openzeppelin\contracts\utils\Pausable.sol
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
require(!_paused, "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
require(_paused, "Pausable: not paused");
_;
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// File: @openzeppelin\contracts\utils\ReentrancyGuard.sol
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor () internal {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
// File: @openzeppelin\contracts\access\Ownable.sol
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
/**
* @dev Internal function that forces an ownership change. Can be used to
* implement custom ownership management logic in childs contracts.
*/
function _setOwner(address newOwner) internal virtual {
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: @openzeppelin\contracts\proxy\Initializable.sol
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
// extcodesize checks the size of the code stored in an address, and
// address returns the current address. Since the code is still not
// deployed when running a constructor, any checks on its code size will
// yield zero, making it an effective way to detect if a contract is
// under construction or not.
address self = address(this);
uint256 cs;
// solhint-disable-next-line no-inline-assembly
assembly { cs := extcodesize(self) }
return cs == 0;
}
}
// File: node_modules\@openzeppelin\contracts\proxy\Proxy.sol
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internall call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal {
// solhint-disable-next-line no-inline-assembly
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 { revert(0, returndatasize()) }
default { return(0, returndatasize()) }
}
}
/**
* @dev This is a virtual function that should be overriden so it returns the address to which the fallback function
* and {_fallback} should delegate.
*/
function _implementation() internal virtual view returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internall call site, it will return directly to the external caller.
*/
function _fallback() internal {
_beforeFallback();
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback () payable external {
_fallback();
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
* is empty.
*/
receive () payable external {
_fallback();
}
/**
* @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
* call, or as part of the Solidity `fallback` or `receive` functions.
*
* If overriden should call `super._beforeFallback()`.
*/
function _beforeFallback() internal virtual {
}
}
// File: node_modules\@openzeppelin\contracts\proxy\UpgradeableProxy.sol
/**
* @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
* implementation address that can be changed. This address is stored in storage in the location specified by
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
* implementation behind the proxy.
*
* Upgradeability is only provided internally through {_upgradeTo}. For an externally upgradeable proxy see
* {TransparentUpgradeableProxy}.
*/
contract UpgradeableProxy is Proxy {
/**
* @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
*
* If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
* function call, and allows initializating the storage of the proxy like a Solidity constructor.
*/
constructor(address _logic, bytes memory _data) public payable {
assert(_IMPLEMENTATION_SLOT == bytes32(uint256(keccak256("eip1967.proxy.implementation")) - 1));
_setImplementation(_logic);
if(_data.length > 0) {
// solhint-disable-next-line avoid-low-level-calls
(bool success,) = _logic.delegatecall(_data);
require(success);
}
}
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 private constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev Returns the current implementation address.
*/
function _implementation() internal override view returns (address impl) {
bytes32 slot = _IMPLEMENTATION_SLOT;
// solhint-disable-next-line no-inline-assembly
assembly {
impl := sload(slot)
}
}
/**
* @dev Upgrades the proxy to a new implementation.
*
* Emits an {Upgraded} event.
*/
function _upgradeTo(address newImplementation) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
}
/**
* @dev Stores a new address in the EIP1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
require(Address.isContract(newImplementation), "UpgradeableProxy: new implementation is not a contract");
bytes32 slot = _IMPLEMENTATION_SLOT;
// solhint-disable-next-line no-inline-assembly
assembly {
sstore(slot, newImplementation)
}
}
}
// File: node_modules\@openzeppelin\contracts\proxy\TransparentUpgradeableProxy.sol
/**
* @dev This contract implements a proxy that is upgradeable by an admin.
*
* To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
* clashing], which can potentially be used in an attack, this contract uses the
* https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
* things that go hand in hand:
*
* 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
* that call matches one of the admin functions exposed by the proxy itself.
* 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
* implementation. If the admin tries to call a function on the implementation it will fail with an error that says
* "admin cannot fallback to proxy target".
*
* These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
* the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
* to sudden errors when trying to call a function from the proxy implementation.
*
* Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
* you should think of the `ProxyAdmin` instance as the real administrative inerface of your proxy.
*/
contract TransparentUpgradeableProxy is UpgradeableProxy {
/**
* @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
* optionally initialized with `_data` as explained in {UpgradeableProxy-constructor}.
*/
constructor(address _logic, address _admin, bytes memory _data) public payable UpgradeableProxy(_logic, _data) {
assert(_ADMIN_SLOT == bytes32(uint256(keccak256("eip1967.proxy.admin")) - 1));
_setAdmin(_admin);
}
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
* validated in the constructor.
*/
bytes32 private constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
*/
modifier ifAdmin() {
if (msg.sender == _admin()) {
_;
} else {
_fallback();
}
}
/**
* @dev Returns the current admin.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyAdmin}.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
* https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function admin() external ifAdmin returns (address) {
return _admin();
}
/**
* @dev Returns the current implementation.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-getProxyImplementation}.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
* https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
*/
function implementation() external ifAdmin returns (address) {
return _implementation();
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {AdminChanged} event.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-changeProxyAdmin}.
*/
function changeAdmin(address newAdmin) external ifAdmin {
require(newAdmin != address(0), "TransparentUpgradeableProxy: new admin is the zero address");
emit AdminChanged(_admin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev Upgrade the implementation of the proxy.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-upgrade}.
*/
function upgradeTo(address newImplementation) external ifAdmin {
_upgradeTo(newImplementation);
}
/**
* @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
* by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
* proxied contract.
*
* NOTE: Only the admin can call this function. See {ProxyAdmin-upgradeAndCall}.
*/
function upgradeToAndCall(address newImplementation, bytes calldata data) external payable ifAdmin {
_upgradeTo(newImplementation);
// solhint-disable-next-line avoid-low-level-calls
(bool success,) = newImplementation.delegatecall(data);
require(success);
}
/**
* @dev Returns the current admin.
*/
function _admin() internal view returns (address adm) {
bytes32 slot = _ADMIN_SLOT;
// solhint-disable-next-line no-inline-assembly
assembly {
adm := sload(slot)
}
}
/**
* @dev Stores a new address in the EIP1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
bytes32 slot = _ADMIN_SLOT;
// solhint-disable-next-line no-inline-assembly
assembly {
sstore(slot, newAdmin)
}
}
/**
* @dev Makes sure the admin cannot access the fallback function. See {Proxy-_beforeFallback}.
*/
function _beforeFallback() internal override virtual {
require(msg.sender != _admin(), "TransparentUpgradeableProxy: admin cannot fallback to proxy target");
super._beforeFallback();
}
}
// File: @openzeppelin\contracts\proxy\ProxyAdmin.sol
/**
* @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
* explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
*/
contract ProxyAdmin is Ownable {
/**
* @dev Returns the current implementation of `proxy`.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function getProxyImplementation(TransparentUpgradeableProxy proxy) public view returns (address) {
// We need to manually run the static call since the getter cannot be flagged as view
// bytes4(keccak256("implementation()")) == 0x5c60da1b
(bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
require(success);
return abi.decode(returndata, (address));
}
/**
* @dev Returns the current admin of `proxy`.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function getProxyAdmin(TransparentUpgradeableProxy proxy) public view returns (address) {
// We need to manually run the static call since the getter cannot be flagged as view
// bytes4(keccak256("admin()")) == 0xf851a440
(bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
require(success);
return abi.decode(returndata, (address));
}
/**
* @dev Changes the admin of `proxy` to `newAdmin`.
*
* Requirements:
*
* - This contract must be the current admin of `proxy`.
*/
function changeProxyAdmin(TransparentUpgradeableProxy proxy, address newAdmin) public onlyOwner {
proxy.changeAdmin(newAdmin);
}
/**
* @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function upgrade(TransparentUpgradeableProxy proxy, address implementation) public onlyOwner {
proxy.upgradeTo(implementation);
}
/**
* @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
* {TransparentUpgradeableProxy-upgradeToAndCall}.
*
* Requirements:
*
* - This contract must be the admin of `proxy`.
*/
function upgradeAndCall(TransparentUpgradeableProxy proxy, address implementation, bytes memory data) public payable onlyOwner {
proxy.upgradeToAndCall{value: msg.value}(implementation, data);
}
}
// File: @openzeppelin\contracts\token\ERC20\ERC20.sol
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20 {
using SafeMath for uint256;
using Address for address;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor (string memory name, string memory symbol) public {
_name = name;
_symbol = symbol;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}
// File: contracts\SeeleToken.sol
contract SeeleERC20 is ERC20 {
uint256 MAX_UINT = 2**256 - 1;
constructor(
address bridgeAddress_,
string memory name_,
string memory symbol_,
uint8 decimals_
) public ERC20(name_, symbol_) {
_setupDecimals(decimals_);
_mint(bridgeAddress_, MAX_UINT);
}
}
// File: contracts\SeeleBridge.sol
pragma experimental ABIEncoderV2;
// This is being used purely to avoid stack too deep errors
struct LogicCallArgs {
// Transfers out to the logic contract
uint256[] transferAmounts;
address[] transferTokenContracts;
// The fees (transferred to msg.sender)
uint256[] feeAmounts;
address[] feeTokenContracts;
// The arbitrary logic call
address logicContractAddress;
bytes payload;
// Invalidation metadata
uint256 timeOut;
bytes32 invalidationId;
uint256 invalidationNonce;
}
contract SeeleBridge is Initializable, Pausable, Ownable, ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
// These are updated often
bytes32 public state_lastValsetCheckpoint;
mapping(address => uint256) public state_lastBatchNonces;
mapping(bytes32 => uint256) public state_invalidationMapping;
uint256 public state_lastValsetNonce = 0;
// event nonce zero is reserved by the bridge module as a special
// value indicating that no events have yet been submitted
uint256 public state_lastEventNonce = 1;
// These are set once at initialization
bytes32 public state_bridgeId;
uint256 public state_powerThreshold;
/*
* @notice mapping to keep track of whitelisted tokens
*/
mapping(address => bool) private _ethereumTokenWhiteList;
event WhiteListUpdateEvent(address _token, bool _value);
// TransactionBatchExecutedEvent and SendToSeeleEvent both include the field _eventNonce.
// This is incremented every time one of these events is emitted. It is checked by the
// bridge module to ensure that all events are received in order, and that none are lost.
//
// ValsetUpdatedEvent does not include the field _eventNonce because it is never submitted to the Bridge
// module. It is purely for the use of relayers to allow them to successfully submit batches.
event TransactionBatchExecutedEvent(
uint256 indexed _batchNonce,
address indexed _token,
uint256 _eventNonce
);
event SendToSeeleEvent(
address indexed _tokenContract,
address indexed _sender,
address indexed _destination,
uint256 _amount,
uint256 _eventNonce
);
event ERC20DeployedEvent(
// FYI: Can't index on a string without doing a bunch of weird stuff
string _seeleDenom,
address indexed _tokenContract,
string _name,
string _symbol,
uint8 _decimals,
uint256 _eventNonce
);
event ValsetUpdatedEvent(
uint256 indexed _newValsetNonce,
uint256 _eventNonce,
address[] _validators,
uint256[] _powers
);
event LogicCallEvent(
bytes32 _invalidationId,
uint256 _invalidationNonce,
bytes _returnData,
uint256 _eventNonce
);
function initialize() external initializer {
_setOwner(msg.sender);
}
function initialize(
// A unique identifier for this bridge instance to use in signatures
bytes32 _bridgeId,
// How much voting power is needed to approve operations
uint256 _powerThreshold,
// The validator set, not in valset args format since many of it's
// arguments would never be used in this case
address[] calldata _validators,
uint256[] memory _powers
) external onlyOwner {
// CHECKS
// Check that validators, powers, and signatures (v,r,s) set is well-formed
require(
_validators.length == _powers.length,
"Malformed current validator set"
);
// Check cumulative power to ensure the contract has sufficient power to actually
// pass a vote
uint256 cumulativePower = 0;
for (uint256 i = 0; i < _powers.length; i++) {
cumulativePower = cumulativePower + _powers[i];
if (cumulativePower > _powerThreshold) {
break;
}
}
require(
cumulativePower > _powerThreshold,
"Submitted validator set signatures do not have enough power."
);
bytes32 newCheckpoint = makeCheckpoint(
_validators,
_powers,
0,
_bridgeId
);
// ACTIONS
state_bridgeId = _bridgeId;
state_powerThreshold = _powerThreshold;
state_lastValsetCheckpoint = newCheckpoint;
//_ethereumTokenWhiteList[address(0)] = true;
// LOGS
emit ValsetUpdatedEvent(
state_lastValsetNonce,
state_lastEventNonce,
_validators,
_powers
);
}
function lastBatchNonce(address _erc20Address)
public
view
returns (uint256)
{
return state_lastBatchNonces[_erc20Address];
}
function lastLogicCallNonce(bytes32 _invalidation_id)
public
view
returns (uint256)
{
return state_invalidationMapping[_invalidation_id];
}
// Utility function to verify geth style signatures
function verifySig(
address _signer,
bytes32 _theHash,
uint8 _v,
bytes32 _r,
bytes32 _s
) private pure returns (bool) {
bytes32 messageDigest = keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", _theHash)
);
return _signer == ecrecover(messageDigest, _v, _r, _s);
}
// Make a new checkpoint from the supplied validator set
// A checkpoint is a hash of all relevant information about the valset. This is stored by the contract,
// instead of storing the information directly. This saves on storage and gas.
// The format of the checkpoint is:
// h(gravityId, "checkpoint", valsetNonce, validators[], powers[])
// Where h is the keccak256 hash function.
// The validator powers must be decreasing or equal. This is important for checking the signatures on the
// next valset, since it allows the caller to stop verifying signatures once a quorum of signatures have been verified.
function makeCheckpoint(
address[] memory _validators,
uint256[] memory _powers,
uint256 _valsetNonce,
bytes32 _gravityId
) private pure returns (bytes32) {
// bytes32 encoding of the string "checkpoint"
bytes32 methodName = 0x636865636b706f696e7400000000000000000000000000000000000000000000;
bytes32 checkpoint = keccak256(
abi.encode(
_gravityId,
methodName,
_valsetNonce,
_validators,
_powers
)
);
return checkpoint;
}
function checkValidatorSignatures(
// The current validator set and their powers
address[] memory _currentValidators,
uint256[] memory _currentPowers,
// The current validator's signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s,
// This is what we are checking they have signed
bytes32 _theHash,
uint256 _powerThreshold
) private pure {
uint256 cumulativePower = 0;
for (uint256 i = 0; i < _currentValidators.length; i++) {
// If v is set to 0, this signifies that it was not possible to get a signature from this validator and we skip evaluation
// (In a valid signature, it is either 27 or 28)
if (_v[i] != 0) {
// Check that the current validator has signed off on the hash
require(
verifySig(
_currentValidators[i],
_theHash,
_v[i],
_r[i],
_s[i]
),
"Validator signature does not match."
);
// Sum up cumulative power
cumulativePower = cumulativePower + _currentPowers[i];
// Break early to avoid wasting gas
if (cumulativePower > _powerThreshold) {
break;
}
}
}
// Check that there was enough power
require(
cumulativePower > _powerThreshold,
"Submitted validator set signatures do not have enough power."
);
// Success
}
// This updates the valset by checking that the validators in the current valset have signed off on the
// new valset. The signatures supplied are the signatures of the current valset over the checkpoint hash
// generated from the new valset.
// Anyone can call this function, but they must supply valid signatures of state_powerThreshold of the current valset over
// the new valset.
function updateValset(
// The new version of the validator set
address[] memory _newValidators,
uint256[] memory _newPowers,
uint256 _newValsetNonce,
// The current validators that approve the change
address[] memory _currentValidators,
uint256[] memory _currentPowers,
uint256 _currentValsetNonce,
// These are arrays of the parts of the current validator's signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s
) external whenNotPaused nonReentrant {
// CHECKS
// Check that the valset nonce is greater than the old one
require(
_newValsetNonce > _currentValsetNonce,
"New valset nonce must be greater than the current nonce"
);
// Check that new validators and powers set is well-formed
require(
_newValidators.length == _newPowers.length,
"Malformed new validator set"
);
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
require(
_currentValidators.length == _currentPowers.length &&
_currentValidators.length == _v.length &&
_currentValidators.length == _r.length &&
_currentValidators.length == _s.length,
"Malformed current validator set"
);
// Check that the supplied current validator set matches the saved checkpoint
require(
makeCheckpoint(
_currentValidators,
_currentPowers,
_currentValsetNonce,
state_bridgeId
) == state_lastValsetCheckpoint,
"Supplied current validators and powers do not match checkpoint."
);
// Check that enough current validators have signed off on the new validator set
bytes32 newCheckpoint = makeCheckpoint(
_newValidators,
_newPowers,
_newValsetNonce,
state_bridgeId
);
checkValidatorSignatures(
_currentValidators,
_currentPowers,
_v,
_r,
_s,
newCheckpoint,
state_powerThreshold
);
// ACTIONS
// Stored to be used next time to validate that the valset
// supplied by the caller is correct.
state_lastValsetCheckpoint = newCheckpoint;
// Store new nonce
state_lastValsetNonce = _newValsetNonce;
// LOGS
state_lastEventNonce = state_lastEventNonce.add(1);
emit ValsetUpdatedEvent(
_newValsetNonce,
state_lastEventNonce,
_newValidators,
_newPowers
);
}
// submitBatch processes a batch of Seele -> Ethereum transactions by sending the tokens in the transactions
// to the destination addresses. It is approved by the current Seele validator set.
// Anyone can call this function, but they must supply valid signatures of state_powerThreshold of the current valset over
// the batch.
function submitBatch(
// The validators that approve the batch
address[] memory _currentValidators,
uint256[] memory _currentPowers,
uint256 _currentValsetNonce,
// These are arrays of the parts of the validators signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s,
// The batch of transactions
uint256[] memory _amounts,
address payable[] memory _destinations,
uint256[] memory _fees,
uint256 _batchNonce,
address _tokenContract,
// a block height beyond which this batch is not valid
// used to provide a fee-free timeout
uint256 _batchTimeout
) external nonReentrant whenNotPaused {
// CHECKS scoped to reduce stack depth
{
// Check that the batch nonce is higher than the last nonce for this token
require(
state_lastBatchNonces[_tokenContract] < _batchNonce,
"New batch nonce must be greater than the current nonce"
);
// Check that the block height is less than the timeout height
require(
block.number < _batchTimeout,
"Batch timeout must be greater than the current block height"
);
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
require(
_currentValidators.length == _currentPowers.length &&
_currentValidators.length == _v.length &&
_currentValidators.length == _r.length &&
_currentValidators.length == _s.length,
"Malformed current validator set"
);
// Check that the supplied current validator set matches the saved checkpoint
require(
makeCheckpoint(
_currentValidators,
_currentPowers,
_currentValsetNonce,
state_bridgeId
) == state_lastValsetCheckpoint,
"Supplied current validators and powers do not match checkpoint."
);
// Check that the transaction batch is well-formed
require(
_amounts.length == _destinations.length &&
_amounts.length == _fees.length,
"Malformed batch of transactions"
);
// Check that enough current validators have signed off on the transaction batch and valset
checkValidatorSignatures(
_currentValidators,
_currentPowers,
_v,
_r,
_s,
// Get hash of the transaction batch and checkpoint
keccak256(
abi.encode(
state_bridgeId,
// bytes32 encoding of "transactionBatch"
0x7472616e73616374696f6e426174636800000000000000000000000000000000,
_amounts,
_destinations,
_fees,
_batchNonce,
_tokenContract,
_batchTimeout
)
),
state_powerThreshold
);
// ACTIONS
// Store batch nonce
state_lastBatchNonces[_tokenContract] = _batchNonce;
{
// Send transaction amounts to destinations
uint256 totalFee;
for (uint256 i = 0; i < _amounts.length; i++) {
if (_tokenContract == address(0)) {
(bool success, ) = _destinations[i].call{
value: _amounts[i],
gas: 60000
}("");
require(success, "error sending ether");
} else {
IERC20(_tokenContract).safeTransfer(
_destinations[i],
_amounts[i]
);
}
totalFee = totalFee.add(_fees[i]);
}
// Send transaction fees to msg.sender
if (totalFee > 0) {
if (_tokenContract == address(0)) {
(bool success, ) = msg.sender.call{
value: totalFee,
gas: 60000
}("");
require(success, "error sending ether");
} else {
IERC20(_tokenContract).safeTransfer(
msg.sender,
totalFee
);
}
}
}
}
// LOGS scoped to reduce stack depth
{
state_lastEventNonce = state_lastEventNonce.add(1);
emit TransactionBatchExecutedEvent(
_batchNonce,
_tokenContract,
state_lastEventNonce
);
}
}
// This makes calls to contracts that execute arbitrary logic
// First, it gives the logic contract some tokens
// Then, it gives msg.senders tokens for fees
// Then, it calls an arbitrary function on the logic contract
// invalidationId and invalidationNonce are used for replay prevention.
// They can be used to implement a per-token nonce by setting the token
// address as the invalidationId and incrementing the nonce each call.
// They can be used for nonce-free replay prevention by using a different invalidationId
// for each call.
function submitLogicCall(
// The validators that approve the call
address[] memory _currentValidators,
uint256[] memory _currentPowers,
uint256 _currentValsetNonce,
// These are arrays of the parts of the validators signatures
uint8[] memory _v,
bytes32[] memory _r,
bytes32[] memory _s,
LogicCallArgs memory _args
) public nonReentrant {
// CHECKS scoped to reduce stack depth
{
// Check that the call has not timed out
require(block.number < _args.timeOut, "Timed out");
// Check that the invalidation nonce is higher than the last nonce for this invalidation Id
require(
state_invalidationMapping[_args.invalidationId] <
_args.invalidationNonce,
"New invalidation nonce must be greater than the current nonce"
);
// Check that current validators, powers, and signatures (v,r,s) set is well-formed
require(
_currentValidators.length == _currentPowers.length &&
_currentValidators.length == _v.length &&
_currentValidators.length == _r.length &&
_currentValidators.length == _s.length,
"Malformed current validator set"
);
// Check that the supplied current validator set matches the saved checkpoint
require(
makeCheckpoint(
_currentValidators,
_currentPowers,
_currentValsetNonce,
state_bridgeId
) == state_lastValsetCheckpoint,
"Supplied current validators and powers do not match checkpoint."
);
// Check that the token transfer list is well-formed
require(
_args.transferAmounts.length ==
_args.transferTokenContracts.length,
"Malformed list of token transfers"
);
// Check that the fee list is well-formed
require(
_args.feeAmounts.length == _args.feeTokenContracts.length,
"Malformed list of fees"
);
}
bytes32 argsHash = keccak256(
abi.encode(
state_bridgeId,
// bytes32 encoding of "logicCall"
0x6c6f67696343616c6c0000000000000000000000000000000000000000000000,
_args.transferAmounts,
_args.transferTokenContracts,
_args.feeAmounts,
_args.feeTokenContracts,
_args.logicContractAddress,
_args.payload,
_args.timeOut,
_args.invalidationId,
_args.invalidationNonce
)
);
{
// Check that enough current validators have signed off on the transaction batch and valset
checkValidatorSignatures(
_currentValidators,
_currentPowers,
_v,
_r,
_s,
// Get hash of the transaction batch and checkpoint
argsHash,
state_powerThreshold
);
}
// ACTIONS
// Update invaldiation nonce
state_invalidationMapping[_args.invalidationId] = _args
.invalidationNonce;
// Send tokens to the logic contract
for (uint256 i = 0; i < _args.transferAmounts.length; i++) {
IERC20(_args.transferTokenContracts[i]).safeTransfer(
_args.logicContractAddress,
_args.transferAmounts[i]
);
}
// Make call to logic contract
bytes memory returnData = Address.functionCall(
_args.logicContractAddress,
_args.payload
);
// Send fees to msg.sender
for (uint256 i = 0; i < _args.feeAmounts.length; i++) {
IERC20(_args.feeTokenContracts[i]).safeTransfer(
msg.sender,
_args.feeAmounts[i]
);
}
// LOGS scoped to reduce stack depth
{
state_lastEventNonce = state_lastEventNonce.add(1);
emit LogicCallEvent(
_args.invalidationId,
_args.invalidationNonce,
returnData,
state_lastEventNonce
);
}
}
function sendToSeele(
address _tokenContract,
address _destination,
uint256 _amount
)
external
payable
onlyEthTokenWhiteList(_tokenContract)
whenNotPaused
nonReentrant
{
require(_amount > 0, "incorrect amount");
if (msg.value > 0) {
// Ethereum deposit
require(_tokenContract == address(0), "!address(0)");
require(msg.value == _amount, "incorrect eth amount");
} else {
// ERC20 deposit
IERC20(_tokenContract).safeTransferFrom(
msg.sender,
address(this),
_amount
);
}
state_lastEventNonce = state_lastEventNonce.add(1);
emit SendToSeeleEvent(
_tokenContract,
msg.sender,
_destination,
_amount,
state_lastEventNonce
);
}
function deployERC20(
string calldata _seeleDenom,
string calldata _name,
string calldata _symbol,
uint8 _decimals
) external onlyOwner {
// Deploy an ERC20 with entire supply granted to SeeleBridge.sol
SeeleERC20 erc20 = new SeeleERC20(
address(this),
_name,
_symbol,
_decimals
);
// Fire an event to let the Bridge module know
state_lastEventNonce = state_lastEventNonce.add(1);
emit ERC20DeployedEvent(
_seeleDenom,
address(erc20),
_name,
_symbol,
_decimals,
state_lastEventNonce
);
}
function emergencyPause() external onlyOwner {
_pause();
}
function emergencyUnpause() external onlyOwner {
_unpause();
}
/*
* @dev: Modifier to restrict erc20 can be locked
*/
modifier onlyEthTokenWhiteList(address _token) {
require(
getTokenInEthWhiteList(_token),
"Only token in whitelist can be transferred to cosmos"
);
_;
}
/*
* @dev: Set the token address in whitelist
*
* @param _token: ERC 20's address
* @param _inList: set the _token in list or not
*/
function setTokenInEthWhiteList(address _token, bool _inList)
external
onlyOwner
{
_ethereumTokenWhiteList[_token] = _inList;
emit WhiteListUpdateEvent(_token, _inList);
}
/*
* @dev: Get if the token in whitelist
*
* @param _token: ERC 20's address
* @return: if _token in whitelist
*/
function getTokenInEthWhiteList(address _token) public view returns (bool) {
return _ethereumTokenWhiteList[_token];
}
}
{
"compilationTarget": {
"contracts/seelebridge.sol": "TransparentUpgradeableProxy"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_logic","type":"address"},{"internalType":"address","name":"_admin","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"stateMutability":"payable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"AdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdmin","type":"address"}],"name":"changeAdmin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"}],"name":"upgradeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"stateMutability":"payable","type":"receive"}]