账户
0xb3...ad35
0xB3...Ad35

0xB3...Ad35

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.17+commit.8df45f5f
语言
Solidity
合同源代码
文件 1 的 12:CombinatorSimpleReRoll.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import '@openzeppelin/contracts/access/Ownable.sol';
import '@openzeppelin/contracts/security/Pausable.sol';
import '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
import '@openzeppelin/contracts/token/ERC721/IERC721.sol';
import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
import '../interface/ICoolERC721A.sol';
import './utils/ErrorsAndEventsSimpleReRoll.sol';

//
//
//
//                                                                                                  .@@@%#@&&,(#.
//                                                                                                @@@@@@@@@@@@@@@@&%
//                                                                                               @@@@@@@@@@@@@@@/,@@(
//               &@@@%                                                                        /@@@&@@@@@@@@@@#//
//             @@@@@@@@                        /%@@@&@@@,                                   @@@@@@@@@@@@@@@@@@@@@#
//     &@@&@@@&@@@&@@@@..                  &@@@@@@&@@@@@@@&@@@@(                          @@@@@@&         (&@@@&
//     @@@@@@@@@@@@@@@@@@@@@@@@          ,@@@@@@@@@@@@@@@@@@@@@@@@,                     (@@@@&*   @@@&@/         &@@@@.
//      ,@@@@@@@@@@@@@@@@@@@@&          &@@@@@@@@@@@@@@@@@@@@@@@@@&@@@(                *@@@@@    ,&@@@@@@@@@@@@@@@@@@@&
//      &@@@@@@@@@@@@@@@@@%          &@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@              @@@@&      @@@@@@@@@@@@@@@@@@@&.
//   #@@@@@@@@@@@@&@@@@@@%         ,&@@@@@@@@@@@@@&@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@*    @@@@&     %&@@@@@@@@@@@@@@@&@@@@#
//  @@@@@@@@@@@@@@@@@@@@@@@       ,&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@@    &@@@@    &@@@@@@@@@@@@@@@@@@@@@@@(
// .&@@@@@@@@@@@@@@@@@@@@@@*      &@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@&     .@@@@*   *@&@@@@@@@@@@@@@@@@@@@@@
//  &@@@@@@@@@@@@@@@@@@@@@@       &@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@&        @@@@(   *&@@@@@@@@@@@@@@@@@@@&
//    &@@@&@@@&@@@&@@@&@&         .&@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@@@&@&.        /&@@&#   (@@&@@@&@@@&@@@&@%
//     *@@@@@@@@@@@@@@@             @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@@          .@@@@@@@@@@@@@@@@@@@@@@@&/
//   &@@@@@@@@@@@@@@@@@@@#          @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@@@@@@@@@@@@@&              %@&@@@@@@@@@@@@@@@@@@@@
//    /@@@@@@@@@@@@@@@@@@/          @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@@/  #@@@@@@@@@@            @@@@@@@@@@@@@@@@@@@@@@@@@
//   #@@@@@@@@@@@@&@@@@@@@&     (@&@@@@@@@@@,  .*%@@@&&&&&@@@@@@@@&@    *@@@@@@@@@&@         *@%* @@%&@@@@(.  %@@@&%@@
//      ,@@@(@@@@@/#@@@          ./@&&&&&&@%            &@@@@@@@@@&@@                               %@@@@&.   ,@@@@@@
//                                                        ,*.#&&%.,.
//
//

/// @title CombinatorSimpleReRoll
/// @author Adam Goodman
/// @notice This contract allows the burning of Cool Pets to upgrade them, and simplified re-rolling of traits
contract CombinatorSimpleReRoll is Ownable, Pausable, ErrorsAndEventsSimpleReRoll {
  using ECDSA for bytes32;

  IERC721 public _oldCoolPets;
  ICoolERC721A public _newCoolPets;

  uint256 public _burnWindowStart;
  uint256 public _burnWindowEnd;

  uint256 public _maxSlots = 3;
  uint256 public _selectPetCost = 0.02 ether;
  uint256 public _reRollCost = 0.02 ether;
  uint256 public _maxSelectablePetType = 3;
  uint256 public _timestampWindow = 180;

  bytes32 public _merkleRoot;

  /// @dev Have to send old pets to 0x000...01 as transfer to 0x0 reverts, and old pets does not expose a burn function
  address public _nullAddress = address(1);

  /// @dev address for message signature verification
  address public _systemAddress;

  /// @dev address for withdrawing funds
  address public _withdrawAddress;

  /// @dev Hold nonces for combining to allow for tracking gem inventory off-chain
  mapping(address => uint256) public _currentNonce;

  /// @dev Hold used signatures for re-rolling
  mapping(bytes => bool) public _usedSignatures;

  // Mapping to only allow a merkle proof array to be used once.
  // Merkle proofs are not guaranteed to be unique to a specific Merkle root. So store them by root.
  mapping(bytes32 => mapping(bytes32 => bool)) public _usedMerkleProofs;

  constructor(
    address oldCoolPets,
    address newCoolPets,
    address systemAddress,
    address withdrawAddress,
    uint64 burnWindowStart,
    uint64 burnWindowEnd
  ) {
    _oldCoolPets = IERC721(oldCoolPets);
    _newCoolPets = ICoolERC721A(newCoolPets);

    _systemAddress = systemAddress;
    _withdrawAddress = withdrawAddress;

    setBurnWindow(burnWindowStart, burnWindowEnd);

    _pause();
  }

  /// @notice Modifier to check if the burn window is open, otherwise revert
  modifier withinBurnWindow() {
    if (block.timestamp < _burnWindowStart) {
      revert BurnWindowNotStarted();
    }

    if (block.timestamp > _burnWindowEnd) {
      revert BurnWindowEnded();
    }
    _;
  }

  /// @notice Checks the input nonce matches the users nonce, and increments the nonce
  modifier validateNonce(address account, uint256 nonce) {
    if (nonce != _currentNonce[account]) {
      revert InvalidNonce(_currentNonce[account], nonce);
    }

    _currentNonce[account]++;

    _;
  }

  /// @notice Burns given old Cool Pets and mints upgraded Cool Pets
  /// @param firstPetId The first old Cool Pet to burn
  /// @param secondPetId The second old Cool Pet to burn
  /// @param gemTokenIds The gem token ids to use in each slot for the new Cool Pet - in order of slot
  /// @param signature The signature to validate the sender, nonce, gemIds and gemTokenIds
  /// @param nonce The nonce for the sender - must be greater than the last nonce used, stops signature replay, starts at 0
  /// @param petSelection The pet type to mint - 0 for random
  function combine(
    uint256 firstPetId,
    uint256 secondPetId,
    uint256[] calldata gemTokenIds,
    bytes calldata signature,
    uint256 nonce,
    uint256 petSelection,
    uint256 timestamp
  ) external payable whenNotPaused withinBurnWindow validateNonce(msg.sender, nonce) {
    if (msg.sender != tx.origin) revert OnlyEOA();
    if (gemTokenIds.length != _maxSlots) revert InvalidGemArrays();
    if (timestamp < block.timestamp - _timestampWindow || timestamp > block.timestamp + 60)
      revert OutsideTimestampWindow();

    if (
      !_isValidSignature(
        keccak256(
          abi.encodePacked(msg.sender, nonce, gemTokenIds, petSelection, timestamp, address(this))
        ),
        signature
      )
    ) revert InvalidSignature();

    _handlePetSelection(petSelection);
    _handleOldPetBurning(firstPetId, secondPetId);

    uint256 mintedId = _newCoolPets.nextTokenId();

    _newCoolPets.mint(msg.sender, 1);

    emit Combined(msg.sender, firstPetId, secondPetId, mintedId, gemTokenIds, petSelection);
  }

  /// @notice re-roll a pets traits
  /// @param tokenId The token id of the pet to re-roll
  /// @param signature The signature to validate the sender, tokenId and timestamp
  /// @param timestamp The timestamp of the re-roll - must be within the timestamp window
  function reRoll(
    uint256 tokenId,
    bytes calldata signature,
    uint256 timestamp,
    bool reRollForm,
    bytes32[] calldata merkleProof
  ) external payable whenNotPaused {
    if (msg.sender != tx.origin) revert OnlyEOA();
    if (_newCoolPets.ownerOf(tokenId) != msg.sender) revert OnlyOwnerOf(tokenId);
    if (timestamp < block.timestamp - _timestampWindow || timestamp > block.timestamp + 60)
      revert OutsideTimestampWindow();

    if (
      !_isValidSignature(
        keccak256(abi.encodePacked(msg.sender, tokenId, timestamp, reRollForm, address(this))),
        signature
      )
    ) revert InvalidSignature();

    if (_usedSignatures[signature]) revert SignatureAlreadyUsed();
    _usedSignatures[signature] = true;

    _handleReRollCost(merkleProof);

    emit ReRolled(msg.sender, tokenId, reRollForm);
  }

  /// @notice Get the current nonce for an account
  function getNonce(address account) external view returns (uint256) {
    return _currentNonce[account];
  }

  /// @notice Get nonces for a list of accounts
  function getNonceBatch(address[] memory accounts) external view returns (uint256[] memory) {
    uint256[] memory nonces = new uint256[](accounts.length);

    for (uint256 i = 0; i < accounts.length; i++) {
      nonces[i] = _currentNonce[accounts[i]];
    }

    return nonces;
  }

  /// @notice Pauses the contract - stopping minting via the public mint function
  /// @dev Only the owner can call this function
  ///      Emit handled by {OpenZeppelin Pausable}
  function pause() external onlyOwner {
    _pause();
  }

  /// @notice Unpauses the contract - allowing minting via the public mint function
  /// @dev Only the owner can call this function
  ///      Emit handled by {OpenZeppelin Pausable}
  function unpause() external onlyOwner {
    _unpause();
  }

  /// @notice Sets the max slots for an input gem array
  /// @dev Only the owner can call this function
  /// @param maxSlots The max slots for an input gem array
  function setMaxSlots(uint256 maxSlots) external onlyOwner {
    _maxSlots = maxSlots;

    emit MaxSlotsSet(maxSlots);
  }

  /// @notice Sets the system address for signature verification
  /// @dev Only the owner can call this function
  /// @param systemAddress The address of the system
  function setSystemAddress(address systemAddress) external onlyOwner {
    _systemAddress = systemAddress;

    emit SystemAddressSet(systemAddress);
  }

  /// @notice Sets the withdraw address for the contract
  /// @dev Only the owner can call this function
  /// @param withdrawAddress The address to withdraw to
  function setWithdrawAddress(address withdrawAddress) external onlyOwner {
    _withdrawAddress = withdrawAddress;

    emit WithdrawAddressSet(withdrawAddress);
  }

  /// @notice Sets the cost for selecting a specific pet type
  /// @dev Only the owner can call this function
  /// @param selectPetCost The cost for selecting a specific pet type
  function setSelectPetCost(uint256 selectPetCost) external onlyOwner {
    _selectPetCost = selectPetCost;

    emit SelectPetCostSet(selectPetCost);
  }

  /// @notice Sets the cost for re-rolling a pet
  /// @dev Only the owner can call this function
  /// @param reRollCost The cost for re-rolling a pet
  function setReRollCost(uint256 reRollCost) external onlyOwner {
    _reRollCost = reRollCost;

    emit ReRollCostSet(reRollCost);
  }

  /// @notice Sets the maximum value for a pet selection
  /// @dev Only the owner can call this function
  /// @param maxSelectablePetType The maximum value for a pet selection
  function setMaxSelectablePetType(uint256 maxSelectablePetType) external onlyOwner {
    _maxSelectablePetType = maxSelectablePetType;

    emit MaxSelectablePetTypeSet(maxSelectablePetType);
  }

  /// @notice Sets the address of the old Cool Pets contract
  /// @dev Only the owner can call this function
  /// @param oldCoolPets The address of the old Cool Pets contract
  function setOldCoolPetsAddress(address oldCoolPets) external onlyOwner {
    _oldCoolPets = IERC721(oldCoolPets);

    emit OldCoolPetsAddressSet(oldCoolPets);
  }

  /// @notice Sets the address of the new Cool Pets contract
  /// @dev Only the owner can call this function
  /// @param newCoolPets The address of the new Cool Pets contract
  function setNewCoolPetsAddress(address newCoolPets) external onlyOwner {
    _newCoolPets = ICoolERC721A(newCoolPets);

    emit NewCoolPetsAddressSet(newCoolPets);
  }

  /// @notice Sets the timestamp window, in seconds
  /// @dev Only the owner can call this function, used for signature verification
  /// @param timestampWindow The timestamp window, in seconds
  function setTimestampWindow(uint256 timestampWindow) external onlyOwner {
    _timestampWindow = timestampWindow;

    emit TimestampWindowSet(timestampWindow);
  }

  /// @notice Check if a merkle proof is valid for a user and if it has been used
  /// @param account The address to check
  /// @param merkleProof The merkle proof to check
  /// @return Whether the merkle proof is valid and has not been used
  function isValidMerkleProofAndUnused(
    address account,
    bytes32[] calldata merkleProof
  ) external view returns (bool) {
    if (_merkleRoot == bytes32(0)) {
      return false;
    }

    if (!isValidMerkleProof(account, merkleProof)) {
      return false;
    }

    bytes32 node = keccak256(abi.encodePacked(account));
    return !_usedMerkleProofs[_merkleRoot][node];
  }

  /// @notice Sets the burn window, start and end times are in seconds since unix epoch
  /// @dev Only the owner can call this function
  /// @param burnWindowStart The start time of the burn window
  /// @param burnWindowEnd The end time of the burn window
  function setBurnWindow(uint256 burnWindowStart, uint256 burnWindowEnd) public onlyOwner {
    if (burnWindowEnd < burnWindowStart) {
      revert InvalidBurnWindow();
    }

    _burnWindowStart = burnWindowStart;
    _burnWindowEnd = burnWindowEnd;

    emit BurnWindowSet(burnWindowStart, burnWindowEnd);
  }

  /// @notice Sets the merkle root for the allowlist
  /// @dev Only the owner can call this function, setting the merkle root does not change
  ///      whether the allowlist is enabled or not
  /// @param merkleRoot The new merkle root
  function setMerkleRoot(bytes32 merkleRoot) external onlyOwner {
    _merkleRoot = merkleRoot;

    emit MerkleRootSet(merkleRoot);
  }

  /// @notice Checks if a given address is on the merkle tree allowlist
  /// @dev Merkle trees can be generated using https://github.com/OpenZeppelin/merkle-tree
  /// @param account The address to check
  /// @param merkleProof The merkle proof to check
  /// @return Whether the address is on the allowlist or not
  function isValidMerkleProof(
    address account,
    bytes32[] calldata merkleProof
  ) public view virtual returns (bool) {
    return
      MerkleProof.verifyCalldata(
        merkleProof,
        _merkleRoot,
        keccak256(bytes.concat(keccak256(abi.encode(account))))
      );
  }

  /// @notice Handles the cost of re-rolling a pet
  /// @dev Reverts if the incorrect amount of funds are sent, gives a discount for re-rolling all traits
  function _handleReRollCost(bytes32[] calldata merkleProof) internal {
    if (merkleProof.length > 0 && _merkleRoot != bytes32(0)) {
      if (msg.value != 0) revert IncorrectFundsSent(0, msg.value);
      if (!isValidMerkleProof(msg.sender, merkleProof)) revert InvalidMerkleProof();

      // bytes32 unique identifier for each merkle proof
      bytes32 node = keccak256(abi.encodePacked(msg.sender));
      if (_usedMerkleProofs[_merkleRoot][node]) {
        revert InvalidMerkleProof();
      }
      _usedMerkleProofs[_merkleRoot][node] = true;
    } else {
      if (msg.value != _reRollCost) revert IncorrectFundsSent(_reRollCost, msg.value);

      payable(_withdrawAddress).transfer(_reRollCost);
    }
  }

  /// @notice Handles the ownership (or approval) checks and burning of the old pets
  /// @param firstPetId The first old Cool Pet to burn
  /// @param secondPetId The second old Cool Pet to burn
  function _handleOldPetBurning(uint256 firstPetId, uint256 secondPetId) internal {
    // Check the sender is the owner or approved for each old pet
    // then burn the old pets
    _oldCoolPets.transferFrom(_getOwnerIfApproved(firstPetId), _nullAddress, firstPetId);
    _oldCoolPets.transferFrom(_getOwnerIfApproved(secondPetId), _nullAddress, secondPetId);
  }

  /// @notice handles validating the selected pet type and sending on the funds
  /// @dev If the pet selection is 0 then no pet was selected, so no funds should be sent
  /// @param petSelection The selected pet type
  function _handlePetSelection(uint256 petSelection) internal {
    if (petSelection > _maxSelectablePetType) {
      revert PetSelectionOutOfRange(petSelection, _maxSelectablePetType);
    }

    if (petSelection > 0) {
      if (msg.value != _selectPetCost) {
        revert IncorrectFundsSent(_selectPetCost, msg.value);
      }

      payable(_withdrawAddress).transfer(msg.value);
    } else {
      if (msg.value > 0) {
        revert IncorrectFundsSent(0, msg.value);
      }
    }
  }

  /// @notice Verify hashed data
  /// @param hash - Hashed data bundle
  /// @param signature - Signature to check hash against
  /// @return bool - Is verified or not
  function _isValidSignature(bytes32 hash, bytes calldata signature) internal view returns (bool) {
    bytes32 signedHash = hash.toEthSignedMessageHash();
    return signedHash.recover(signature) == _systemAddress;
  }

  /// @notice Checks if a given Fracture is owned by or approved for the sender
  /// @dev This can be used to stop users from being able to burn Fractures someone else owns without their permission
  /// @param tokenId The Fracture to check
  /// @return The owner of the token
  function _getOwnerIfApproved(uint256 tokenId) internal view returns (address) {
    address owner = _oldCoolPets.ownerOf(tokenId);

    if (owner == msg.sender) {
      return owner;
    }

    if (_oldCoolPets.isApprovedForAll(owner, msg.sender)) {
      return owner;
    }

    if (_oldCoolPets.getApproved(tokenId) == msg.sender) {
      return owner;
    }

    revert NotOldCoolPetOwnerNorApproved(msg.sender, tokenId);
  }
}
合同源代码
文件 2 的 12:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 3 的 12:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}
合同源代码
文件 4 的 12:ErrorsAndEventsSimpleReRoll.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

contract ErrorsAndEventsSimpleReRoll {
  error BurnWindowNotStarted();
  error BurnWindowEnded();
  error NotOldCoolPetOwnerNorApproved(address account, uint256 oldPetId);
  error InvalidMerkleProof();
  error OnlyEOA();
  error OnlyOwnerOf(uint256 tokenId);
  error OutsideTimestampWindow();
  error IncorrectFundsSent(uint256 expected, uint256 actual);
  error InvalidArrayLength();
  error InvalidBurnWindow();
  error InvalidGemArrays();
  error InvalidNonce(uint256 expected, uint256 actual);
  error InvalidSignature();
  error PetSelectionOutOfRange(uint256 petType, uint256 maxSelectablePetType);
  error SignatureAlreadyUsed();

  event BurnWindowSet(uint256 burnWindowStart, uint256 burnWindowEnd);
  event Combined(
    address indexed account,
    uint256 firstPetId,
    uint256 secondPetId,
    uint256 indexed mintedId,
    uint256[] gemTokenIds,
    uint256 petSelection
  );
  event MaxSlotsSet(uint256 maxSlots);
  event MaxSelectablePetTypeSet(uint256 maxSelectablePetType);
  event MerkleRootSet(bytes32 merkleRoot);
  event NewCoolPetsAddressSet(address newCoolPets);
  event OldCoolPetsAddressSet(address oldCoolPets);
  event ReRolled(address indexed account, uint256 indexed tokenId, bool reRollForm);
  event ReRollCostSet(uint256 rerollCost);
  event SelectPetCostSet(uint256 selectPetCost);
  event SystemAddressSet(address systemAddress);
  event TimestampWindowSet(uint256 timestampWindow);
  event WithdrawAddressSet(address withdrawAddress);
  event Withdrawn(address indexed to, uint256 amount);
}
合同源代码
文件 5 的 12:ICoolERC721A.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

interface ICoolERC721A {
  /// @notice Mint an amount of tokens to the given address
  /// @dev Can only be called by an account with the MINTER_ROLE
  ///      Will revert if called when paused, see _beforeTokenTransfer
  /// @param to The address to mint the token to
  /// @param amount The amount of tokens to mint
  function mint(address to, uint256 amount) external;

  /// @notice Externally exposes the _nextTokenId function
  /// @dev used for referencing when burning fractures
  /// @return The next token id
  function nextTokenId() external view returns (uint256);

  /// @notice Returns the owner of a tokenId
  /// @return owner The owner address
  function ownerOf(uint256 tokenId) external view returns (address owner);
}
合同源代码
文件 6 的 12:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 7 的 12:IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}
合同源代码
文件 8 的 12:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 9 的 12:MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}
合同源代码
文件 10 的 12:Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
合同源代码
文件 11 的 12:Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
合同源代码
文件 12 的 12:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}
设置
{
  "compilationTarget": {
    "contracts/minting/CombinatorSimpleReRoll.sol": "CombinatorSimpleReRoll"
  },
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"oldCoolPets","type":"address"},{"internalType":"address","name":"newCoolPets","type":"address"},{"internalType":"address","name":"systemAddress","type":"address"},{"internalType":"address","name":"withdrawAddress","type":"address"},{"internalType":"uint64","name":"burnWindowStart","type":"uint64"},{"internalType":"uint64","name":"burnWindowEnd","type":"uint64"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BurnWindowEnded","type":"error"},{"inputs":[],"name":"BurnWindowNotStarted","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"IncorrectFundsSent","type":"error"},{"inputs":[],"name":"InvalidArrayLength","type":"error"},{"inputs":[],"name":"InvalidBurnWindow","type":"error"},{"inputs":[],"name":"InvalidGemArrays","type":"error"},{"inputs":[],"name":"InvalidMerkleProof","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidNonce","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"oldPetId","type":"uint256"}],"name":"NotOldCoolPetOwnerNorApproved","type":"error"},{"inputs":[],"name":"OnlyEOA","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"OnlyOwnerOf","type":"error"},{"inputs":[],"name":"OutsideTimestampWindow","type":"error"},{"inputs":[{"internalType":"uint256","name":"petType","type":"uint256"},{"internalType":"uint256","name":"maxSelectablePetType","type":"uint256"}],"name":"PetSelectionOutOfRange","type":"error"},{"inputs":[],"name":"SignatureAlreadyUsed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"burnWindowStart","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"burnWindowEnd","type":"uint256"}],"name":"BurnWindowSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"firstPetId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"secondPetId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"mintedId","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"gemTokenIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"petSelection","type":"uint256"}],"name":"Combined","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxSelectablePetType","type":"uint256"}],"name":"MaxSelectablePetTypeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"maxSlots","type":"uint256"}],"name":"MaxSlotsSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"MerkleRootSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newCoolPets","type":"address"}],"name":"NewCoolPetsAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldCoolPets","type":"address"}],"name":"OldCoolPetsAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rerollCost","type":"uint256"}],"name":"ReRollCostSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"reRollForm","type":"bool"}],"name":"ReRolled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"selectPetCost","type":"uint256"}],"name":"SelectPetCostSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"systemAddress","type":"address"}],"name":"SystemAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"timestampWindow","type":"uint256"}],"name":"TimestampWindowSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"withdrawAddress","type":"address"}],"name":"WithdrawAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[],"name":"_burnWindowEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_burnWindowStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_currentNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_maxSelectablePetType","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_maxSlots","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_newCoolPets","outputs":[{"internalType":"contract ICoolERC721A","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_nullAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_oldCoolPets","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_reRollCost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_selectPetCost","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_systemAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_timestampWindow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"_usedMerkleProofs","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"","type":"bytes"}],"name":"_usedSignatures","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_withdrawAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"firstPetId","type":"uint256"},{"internalType":"uint256","name":"secondPetId","type":"uint256"},{"internalType":"uint256[]","name":"gemTokenIds","type":"uint256[]"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"petSelection","type":"uint256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"combine","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"}],"name":"getNonceBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"isValidMerkleProof","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"isValidMerkleProofAndUnused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"bool","name":"reRollForm","type":"bool"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"reRoll","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"burnWindowStart","type":"uint256"},{"internalType":"uint256","name":"burnWindowEnd","type":"uint256"}],"name":"setBurnWindow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxSelectablePetType","type":"uint256"}],"name":"setMaxSelectablePetType","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxSlots","type":"uint256"}],"name":"setMaxSlots","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newCoolPets","type":"address"}],"name":"setNewCoolPetsAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"oldCoolPets","type":"address"}],"name":"setOldCoolPetsAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"reRollCost","type":"uint256"}],"name":"setReRollCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"selectPetCost","type":"uint256"}],"name":"setSelectPetCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"systemAddress","type":"address"}],"name":"setSystemAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"timestampWindow","type":"uint256"}],"name":"setTimestampWindow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"withdrawAddress","type":"address"}],"name":"setWithdrawAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]