// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
struct SwapInstructions {
uint8 swapperId;
bytes swapPayload;
}
struct FeeData {
bytes4 appId;
bytes4 affiliateId;
uint bridgeFee;
Fee[] appFees;
}
struct Fee {
address recipient;
address token;
uint amount;
}
struct SwapAndExecuteInstructions {
SwapInstructions swapInstructions;
address target;
address paymentOperator;
address refund;
bytes payload;
}
struct BridgeInstructions {
SwapInstructions preBridge;
SwapInstructions postBridge;
uint8 bridgeId;
uint256 dstChainId;
address target;
address paymentOperator;
address refund;
bytes payload;
bytes additionalArgs;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
pragma solidity ^0.8.0;
import {SwapInstructions} from "../CommonTypes.sol";
interface IBridgeAdapter {
error NoDstBridge();
function getId() external returns (uint8);
function getBridgeToken(
bytes calldata additionalArgs
) external returns (address);
function getBridgedAmount(
uint256 amt2Bridge,
address preBridgeToken,
address postBridgeToken,
bytes calldata additionalArgs
) external returns (uint256);
function bridge(
uint256 amt2Bridge,
SwapInstructions memory postBridge,
uint256 dstChainId,
address target,
address paymentOperator,
bytes memory payload,
bytes calldata additionalArgs,
address refund
) external payable returns (bytes memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
pragma solidity ^0.8.0;
import {SwapParams} from "../swappers/SwapParams.sol";
interface ISwapper {
error RouterNotSet();
function getId() external returns (uint8);
function swap(
bytes memory swapPayload
) external returns (address tokenOut, uint256 amountOut);
function updateSwapParams(
SwapParams memory newSwapParams,
bytes memory payload
) external returns (bytes memory);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
import {SwapInstructions, FeeData, BridgeInstructions, SwapAndExecuteInstructions} from "../CommonTypes.sol";
interface IUTB {
event Swapped();
event BridgeCalled();
event RecievedFromBridge();
/// @notice Thrown when protocol fees cannot be collected
error ProtocolFeeCannotBeFetched();
/// @notice Thrown when UTB is paused
error UTBPaused();
/// @notice Thrown when not enough native is passed for swap
error NotEnoughNative();
/// @notice Thrown when receive from bridge is not called from a bridge adapter
error OnlyBridgeAdapter();
/**
* @dev Swaps currency from the incoming to the outgoing token and executes a transaction with payment.
* @param instructions The token swap data and payment transaction payload.
* @param feeData The bridge fee in native, as well as utb fee tokens and amounts.
* @param signature The ECDSA signature to verify the fee structure.
*/
function swapAndExecute(
SwapAndExecuteInstructions memory instructions,
FeeData memory feeData,
bytes memory signature
) external payable;
/**
* @dev Bridges funds in native or ERC20 and a payment transaction payload to the destination chain
* @param instructions The bridge data, token swap data, and payment transaction payload.
* @param feeData The bridge fee in native, as well as utb fee tokens and amounts.
* @param signature The ECDSA signature to verify the fee structure.
*/
function bridgeAndExecute(
BridgeInstructions memory instructions,
FeeData memory feeData,
bytes memory signature
) external payable returns (bytes memory);
/**
* @dev Receives funds from the bridge adapter, executes a swap, and executes a payment transaction.
* @param postBridge The swapper ID and calldata to execute a swap.
* @param target The address of the target contract for the payment transaction.
* @param paymentOperator The operator address for payment transfers requiring ERC20 approvals.
* @param payload The calldata to execute the payment transaction.
* @param refund The account receiving any refunds, typically the EOA which initiated the transaction.
*/
function receiveFromBridge(
SwapInstructions memory postBridge,
address target,
address paymentOperator,
bytes memory payload,
address refund,
uint8 bridgeId
) external payable;
/**
* @dev Registers and maps a bridge adapter to a bridge adapter ID.
* @param bridge The address of the bridge adapter.
*/
function registerBridge(address bridge) external;
/**
* @dev Registers and maps a swapper to a swapper ID.
* @param swapper The address of the swapper.
*/
function registerSwapper(address swapper) external;
function setExecutor(address _executor) external;
function setFeeManager(address _feeManager) external;
function setWrapped(address _wrapped) external;
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
interface IUTBExecutor {
/**
* @dev Executes a payment transaction with native OR ERC20.
* @param target The address of the target contract for the payment transaction.
* @param paymentOperator The operator address for payment transfers requiring ERC20 approvals.
* @param payload The calldata to execute the payment transaction.
* @param token The token being transferred, zero address for native.
* @param amount The amount of native or ERC20 being sent with the payment transaction.
* @param refund The account receiving any refunds, typically the EOA that initiated the transaction.
*/
function execute(
address target,
address paymentOperator,
bytes memory payload,
address token,
uint256 amount,
address refund
) external payable;
/**
* @dev Executes a payment transaction with native AND/OR ERC20.
* @param target The address of the target contract for the payment transaction.
* @param paymentOperator The operator address for payment transfers requiring ERC20 approvals.
* @param payload The calldata to execute the payment transaction.
* @param token The token being transferred, zero address for native.
* @param amount The amount of native or ERC20 being sent with the payment transaction.
* @param refund The account receiving any refunds, typically the EOA that initiated the transaction.
* @param extraNative Forwards additional gas or native fees required to executing the payment transaction.
*/
function execute(
address target,
address paymentOperator,
bytes memory payload,
address token,
uint256 amount,
address refund,
uint256 extraNative
) external;
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
interface IUTBFeeManager {
/// @notice Thrown if incorrect signature
error WrongSig();
/// @notice Thrown if sig length != 65
error WrongSigLength();
/**
* @dev Verifies packed info containing fees in either native or ERC20.
* @param packedInfo The fees and swap instructions used to generate the signature.
* @param signature The ECDSA signature to verify the fee structure.
*/
function verifySignature(
bytes memory packedInfo,
bytes memory signature
) external;
/**
* @dev Sets the signer used for fee verification.
* @param _signer The address of the signer.
*/
function setSigner(address _signer) external;
}
pragma solidity ^0.8.0;
import {IERC20} from "forge-std/interfaces/IERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
abstract contract Roles is AccessControl {
constructor(address admin) {
_grantRole(DEFAULT_ADMIN_ROLE, admin);
}
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Only admin");
_;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
library SwapDirection {
uint8 constant EXACT_IN = 0;
uint8 constant EXACT_OUT = 1;
}
struct SwapParams {
uint256 amountIn;
uint256 amountOut;
address tokenIn;
address tokenOut;
uint8 direction;
// if direction is exactAmountIn
// then amount out will be the minimum amount out
// if direction is exactAmountOutA
// then amount in is maximum amount in
bytes path;
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
import {Roles} from "decent-bridge/src/utils/Roles.sol";
import {SwapParams} from "./swappers/SwapParams.sol";
import {IUTB} from "./interfaces/IUTB.sol";
import {IUTBExecutor} from "./interfaces/IUTBExecutor.sol";
import {IERC20} from "openzeppelin-contracts/interfaces/IERC20.sol";
import {SafeERC20} from "openzeppelin-contracts/token/ERC20/utils/SafeERC20.sol";
import {IWETH} from "decent-bridge/src/interfaces/IWETH.sol";
import {IUTBFeeManager} from "./interfaces/IUTBFeeManager.sol";
import {IBridgeAdapter} from "./interfaces/IBridgeAdapter.sol";
import {ISwapper} from "./interfaces/ISwapper.sol";
import {SwapInstructions, FeeData, Fee, BridgeInstructions, SwapAndExecuteInstructions} from "./CommonTypes.sol";
contract UTB is IUTB, Roles {
constructor() Roles(msg.sender) {}
IUTBExecutor public executor;
IUTBFeeManager public feeManager;
IWETH public wrapped;
mapping(uint8 => address) public swappers;
mapping(uint8 => address) public bridgeAdapters;
bool public isActive = true;
/**
* @dev only support calling swapAndExecute and bridgeAndExecute if active
*/
modifier isUtbActive() {
if (!isActive) revert UTBPaused();
_;
}
/**
* @dev Transfers fees from the sender to the fee recipients.
* @param feeData The bridge fee in native, as well as utb fee tokens and amounts.
* @param packedInfo The fees and swap instructions which were used to generate the signature.
* @param signature The ECDSA signature to verify the fee structure.
*/
function _retrieveAndCollectFees(
FeeData calldata feeData,
bytes memory packedInfo,
bytes calldata signature
) private returns (uint256 value) {
if (address(feeManager) != address(0)) {
feeManager.verifySignature(packedInfo, signature);
value += feeData.bridgeFee;
Fee[] memory fees = feeData.appFees;
for (uint i = 0; i < fees.length; i++) {
Fee memory fee = fees[i];
if (fee.token != address(0)) {
SafeERC20.safeTransferFrom(
IERC20(fee.token),
msg.sender,
fee.recipient,
fee.amount
);
} else {
(bool success, ) = address(fee.recipient).call{value: fee.amount}("");
value += fee.amount;
if (!success) revert ProtocolFeeCannotBeFetched();
}
}
}
}
/**
* @dev Refunds leftover native to the specified refund address.
* @param to The address receiving the refund.
* @param leftover The amount of leftover native.
*/
function _refundLeftover(address to, uint256 leftover) internal {
if (leftover > 0) {
(bool success, ) = to.call{value: leftover}("");
require(success, "failed to refund leftover");
}
}
/**
* @dev Sets the executor.
* @param _executor The address of the executor.
*/
function setExecutor(address _executor) public onlyAdmin {
executor = IUTBExecutor(_executor);
}
/**
* @dev Sets the wrapped native token.
* @param _wrapped The address of the wrapped token.
*/
function setWrapped(address _wrapped) public onlyAdmin {
wrapped = IWETH(_wrapped);
}
/**
* @dev Sets the fee manager.
* @param _feeManager The address of the fee manager.
*/
function setFeeManager(address _feeManager) public onlyAdmin {
feeManager = IUTBFeeManager(_feeManager);
}
/**
* @dev toggles active state
*/
function toggleActive() public onlyAdmin {
isActive = !isActive;
}
/**
* @dev Performs a swap with the requested swapper and swap calldata.
* @param swapInstructions The swapper ID and calldata to execute a swap.
* @param retrieveTokenIn Flag indicating whether to transfer ERC20 for the swap.
*/
function performSwap(
SwapInstructions memory swapInstructions,
bool retrieveTokenIn
) private returns (address tokenOut, uint256 amountOut, uint256 value) {
ISwapper swapper = ISwapper(swappers[swapInstructions.swapperId]);
SwapParams memory swapParams = abi.decode(
swapInstructions.swapPayload,
(SwapParams)
);
if (swapParams.tokenIn == address(0)) {
if (msg.value < swapParams.amountIn) revert NotEnoughNative();
wrapped.deposit{value: swapParams.amountIn}();
value += swapParams.amountIn;
swapParams.tokenIn = address(wrapped);
swapInstructions.swapPayload = swapper.updateSwapParams(
swapParams,
swapInstructions.swapPayload
);
} else if (retrieveTokenIn) {
SafeERC20.safeTransferFrom(
IERC20(swapParams.tokenIn),
msg.sender,
address(this),
swapParams.amountIn
);
}
SafeERC20.forceApprove(
IERC20(swapParams.tokenIn),
address(swapper),
swapParams.amountIn
);
(tokenOut, amountOut) = swapper.swap(swapInstructions.swapPayload);
if (tokenOut == address(0)) {
wrapped.withdraw(amountOut);
}
}
/// @inheritdoc IUTB
function swapAndExecute(
SwapAndExecuteInstructions calldata instructions,
FeeData calldata feeData,
bytes calldata signature
)
public
payable
isUtbActive
{
uint256 value = _retrieveAndCollectFees(feeData, abi.encode(instructions, feeData), signature);
value += _swapAndExecute(
instructions.swapInstructions,
instructions.target,
instructions.paymentOperator,
instructions.payload,
instructions.refund
);
_refundLeftover(instructions.refund, msg.value - value);
emit Swapped();
}
/**
* @dev Swaps currency from the incoming to the outgoing token and executes a transaction with payment.
* @param swapInstructions The swapper ID and calldata to execute a swap.
* @param target The address of the target contract for the payment transaction.
* @param paymentOperator The operator address for payment transfers requiring ERC20 approvals.
* @param payload The calldata to execute the payment transaction.
* @param refund The account receiving any refunds, typically the EOA which initiated the transaction.
*/
function _swapAndExecute(
SwapInstructions memory swapInstructions,
address target,
address paymentOperator,
bytes memory payload,
address refund
) private returns (uint256 value) {
address tokenOut;
uint256 amountOut;
(tokenOut, amountOut, value) = performSwap(swapInstructions, true);
if (tokenOut == address(0)) {
executor.execute{value: amountOut}(
target,
paymentOperator,
payload,
tokenOut,
amountOut,
refund
);
} else {
SafeERC20.forceApprove(IERC20(tokenOut), address(executor), amountOut);
executor.execute(
target,
paymentOperator,
payload,
tokenOut,
amountOut,
refund
);
}
}
/**
* @dev Performs the pre bridge swap and modifies the post bridge swap to utilize the bridged amount.
* @param instructions The bridge data, token swap data, and payment transaction payload.
*/
function swapAndModifyPostBridge(
BridgeInstructions memory instructions
)
private
returns (
uint256 amount2Bridge,
BridgeInstructions memory updatedInstructions,
uint256 value
)
{
address tokenOut;
uint256 amountOut;
(tokenOut, amountOut, value) = performSwap(
instructions.preBridge, true
);
SwapParams memory newPostSwapParams = abi.decode(
instructions.postBridge.swapPayload,
(SwapParams)
);
newPostSwapParams.amountIn = IBridgeAdapter(
bridgeAdapters[instructions.bridgeId]
).getBridgedAmount(amountOut, tokenOut, newPostSwapParams.tokenIn, instructions.additionalArgs);
updatedInstructions = instructions;
updatedInstructions.postBridge.swapPayload = ISwapper(swappers[
instructions.postBridge.swapperId
]).updateSwapParams(
newPostSwapParams,
instructions.postBridge.swapPayload
);
amount2Bridge = amountOut;
}
/**
* @dev Checks if the bridge token is native, and approves the bridge adapter to transfer ERC20 if required.
* @param instructions The bridge data, token swap data, and payment transaction payload.
* @param amt2Bridge The amount of the bridge token being transferred to the bridge adapter.
*/
function approveAndCheckIfNative(
BridgeInstructions memory instructions,
uint256 amt2Bridge
) private returns (bool) {
IBridgeAdapter bridgeAdapter = IBridgeAdapter(bridgeAdapters[instructions.bridgeId]);
address bridgeToken = bridgeAdapter.getBridgeToken(
instructions.additionalArgs
);
if (bridgeToken != address(0)) {
SafeERC20.forceApprove(IERC20(bridgeToken), address(bridgeAdapter), amt2Bridge);
return false;
}
return true;
}
/// @inheritdoc IUTB
function bridgeAndExecute(
BridgeInstructions calldata instructions,
FeeData calldata feeData,
bytes calldata signature
)
public
payable
isUtbActive
returns (bytes memory)
{
uint256 feeValue = _retrieveAndCollectFees(feeData, abi.encode(instructions, feeData), signature);
(
uint256 amt2Bridge,
BridgeInstructions memory updatedInstructions,
uint256 swapValue
) = swapAndModifyPostBridge(instructions);
_refundLeftover(instructions.refund, msg.value - feeValue - swapValue);
return callBridge(amt2Bridge, feeData.bridgeFee, updatedInstructions);
}
/**
* @dev Calls the bridge adapter to bridge funds, and approves the bridge adapter to transfer ERC20 if required.
* @param amt2Bridge The amount of the bridge token being bridged via the bridge adapter.
* @param bridgeFee The fee being transferred to the bridge adapter and finally to the bridge.
* @param instructions The bridge data, token swap data, and payment transaction payload.
*/
function callBridge(
uint256 amt2Bridge,
uint bridgeFee,
BridgeInstructions memory instructions
) private returns (bytes memory) {
bool native = approveAndCheckIfNative(instructions, amt2Bridge);
emit BridgeCalled();
return
IBridgeAdapter(bridgeAdapters[instructions.bridgeId]).bridge{
value: bridgeFee + (native ? amt2Bridge : 0)
}(
amt2Bridge,
instructions.postBridge,
instructions.dstChainId,
instructions.target,
instructions.paymentOperator,
instructions.payload,
instructions.additionalArgs,
instructions.refund
);
}
/// @inheritdoc IUTB
function receiveFromBridge(
SwapInstructions memory postBridge,
address target,
address paymentOperator,
bytes memory payload,
address refund,
uint8 bridgeId
) public payable {
if (msg.sender != bridgeAdapters[bridgeId]) revert OnlyBridgeAdapter();
emit RecievedFromBridge();
_swapAndExecute(postBridge, target, paymentOperator, payload, refund);
}
/// @inheritdoc IUTB
function registerSwapper(address swapper) public onlyAdmin {
ISwapper s = ISwapper(swapper);
swappers[s.getId()] = swapper;
}
/// @inheritdoc IUTB
function registerBridge(address bridge) public onlyAdmin {
IBridgeAdapter b = IBridgeAdapter(bridge);
bridgeAdapters[b.getId()] = bridge;
}
receive() external payable {}
fallback() external payable {}
}
{
"compilationTarget": {
"src/UTB.sol": "UTB"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/decent-bridge/lib/openzeppelin-contracts/",
":@openzeppelin/contracts/=lib/decent-bridge/lib/openzeppelin-contracts/contracts/",
":@uniswap/swap-contracts/=lib/swap-router-contracts/contracts/",
":@uniswap/v3-core/=lib/v3-core/",
":@uniswap/v3-periphery/=lib/v3-periphery/",
":LayerZero/=lib/forge-toolkit/lib/LayerZero/contracts/",
":better-deployer/=lib/decent-bridge/lib/better-deployer/src/",
":decent-bridge/=lib/decent-bridge/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/decent-bridge/lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":forge-toolkit/=lib/forge-toolkit/src/",
":openzeppelin-contracts/=lib/decent-bridge/lib/openzeppelin-contracts/contracts/",
":openzeppelin/=lib/decent-bridge/lib/openzeppelin-contracts/contracts/",
":solidity-examples/=lib/solidity-examples/contracts/",
":solidity-stringutils/=lib/decent-bridge/lib/solidity-stringutils/",
":solmate/=lib/solmate/src/",
":swap-router-contracts/=lib/swap-router-contracts/contracts/",
":v3-core/=lib/v3-core/",
":v3-periphery/=lib/v3-periphery/contracts/",
"lib/forge-std:ds-test/=lib/decent-bridge/lib/forge-std/lib/ds-test/src/",
"lib/openzeppelin-contracts:ds-test/=lib/decent-bridge/lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"lib/openzeppelin-contracts:erc4626-tests/=lib/decent-bridge/lib/openzeppelin-contracts/lib/erc4626-tests/",
"lib/openzeppelin-contracts:forge-std/=lib/decent-bridge/lib/openzeppelin-contracts/lib/forge-std/src/",
"lib/openzeppelin-contracts:openzeppelin/=lib/decent-bridge/lib/openzeppelin-contracts/contracts/"
]
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"NotEnoughNative","type":"error"},{"inputs":[],"name":"OnlyBridgeAdapter","type":"error"},{"inputs":[],"name":"ProtocolFeeCannotBeFetched","type":"error"},{"inputs":[],"name":"UTBPaused","type":"error"},{"anonymous":false,"inputs":[],"name":"BridgeCalled","type":"event"},{"anonymous":false,"inputs":[],"name":"RecievedFromBridge","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[],"name":"Swapped","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"","type":"uint8"}],"name":"bridgeAdapters","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"uint8","name":"swapperId","type":"uint8"},{"internalType":"bytes","name":"swapPayload","type":"bytes"}],"internalType":"struct SwapInstructions","name":"preBridge","type":"tuple"},{"components":[{"internalType":"uint8","name":"swapperId","type":"uint8"},{"internalType":"bytes","name":"swapPayload","type":"bytes"}],"internalType":"struct SwapInstructions","name":"postBridge","type":"tuple"},{"internalType":"uint8","name":"bridgeId","type":"uint8"},{"internalType":"uint256","name":"dstChainId","type":"uint256"},{"internalType":"address","name":"target","type":"address"},{"internalType":"address","name":"paymentOperator","type":"address"},{"internalType":"address","name":"refund","type":"address"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"bytes","name":"additionalArgs","type":"bytes"}],"internalType":"struct BridgeInstructions","name":"instructions","type":"tuple"},{"components":[{"internalType":"bytes4","name":"appId","type":"bytes4"},{"internalType":"bytes4","name":"affiliateId","type":"bytes4"},{"internalType":"uint256","name":"bridgeFee","type":"uint256"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct Fee[]","name":"appFees","type":"tuple[]"}],"internalType":"struct FeeData","name":"feeData","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"bridgeAndExecute","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"executor","outputs":[{"internalType":"contract IUTBExecutor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeManager","outputs":[{"internalType":"contract IUTBFeeManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint8","name":"swapperId","type":"uint8"},{"internalType":"bytes","name":"swapPayload","type":"bytes"}],"internalType":"struct SwapInstructions","name":"postBridge","type":"tuple"},{"internalType":"address","name":"target","type":"address"},{"internalType":"address","name":"paymentOperator","type":"address"},{"internalType":"bytes","name":"payload","type":"bytes"},{"internalType":"address","name":"refund","type":"address"},{"internalType":"uint8","name":"bridgeId","type":"uint8"}],"name":"receiveFromBridge","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"bridge","type":"address"}],"name":"registerBridge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"swapper","type":"address"}],"name":"registerSwapper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_executor","type":"address"}],"name":"setExecutor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeManager","type":"address"}],"name":"setFeeManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_wrapped","type":"address"}],"name":"setWrapped","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"components":[{"internalType":"uint8","name":"swapperId","type":"uint8"},{"internalType":"bytes","name":"swapPayload","type":"bytes"}],"internalType":"struct SwapInstructions","name":"swapInstructions","type":"tuple"},{"internalType":"address","name":"target","type":"address"},{"internalType":"address","name":"paymentOperator","type":"address"},{"internalType":"address","name":"refund","type":"address"},{"internalType":"bytes","name":"payload","type":"bytes"}],"internalType":"struct SwapAndExecuteInstructions","name":"instructions","type":"tuple"},{"components":[{"internalType":"bytes4","name":"appId","type":"bytes4"},{"internalType":"bytes4","name":"affiliateId","type":"bytes4"},{"internalType":"uint256","name":"bridgeFee","type":"uint256"},{"components":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct Fee[]","name":"appFees","type":"tuple[]"}],"internalType":"struct FeeData","name":"feeData","type":"tuple"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"swapAndExecute","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint8","name":"","type":"uint8"}],"name":"swappers","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggleActive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"wrapped","outputs":[{"internalType":"contract IWETH","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]