Accounts
0x97...cd3d
0x97...CD3D

0x97...CD3D

$500
This contract's source code is verified!
Contract Metadata
Compiler
0.8.28+commit.7893614a
Language
Solidity
Contract Source Code
File 1 of 14: Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}
Contract Source Code
File 2 of 14: Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}
Contract Source Code
File 3 of 14: GotiginDex.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import "./GotiginOwner.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Strings.sol";

contract GotiginDex is ReentrancyGuard, GotiginOwner {
    using Strings for uint256;
    using SafeERC20 for IERC20;

    enum BidState {
        Requested,
        Created,
        Cancelled,
        Processed
    }

    struct Order {
        uint256 reqId;
        uint256 paidId;
        uint256 sellAmountGross;
        uint256 sellCharges;
        uint256 sellAmountNet;
        uint256 buyAmountGross;
        uint256 buyCharges;
        uint256 buyAmountNet;
        address seller;
        address buyer;
        IERC20 sellToken;
        IERC20 buyToken;
        BidState bidState;
    }

    struct RequestBid {
        IERC20 sellToken;
        IERC20 buyToken;
        uint256 sellAmount;
        uint256 buyAmount;
    }

    struct UserOrdersRequest {
        uint256 startIndex;
        uint256 numberOfOrders;
        address userAddress;
        bool onlyPaidOrders;
    }

    struct OrdersRequest {
        uint256 startIndex;
        uint256 numberOfOrders;
        bool onlyPaidOrders;
    }

    struct OrdersResponse {
        Order[] orders;
        uint256 endedAtIndex;
        uint256 totalOrdersCount;
    }

    struct TokenTrackInternal {
        bool existInArr;
        uint256 activeCount;
    }

    struct TokenTrack {
        uint256 count;
        IERC20 token;
    }

    struct TokenTracksRequest {
        uint256 startIndex;
        uint256 iterationCount;
        bool allowInActive;
    }

    struct TokenTracksResponse {
        TokenTrack[] tokenTracks;
        uint256 endedAtIndex;
        uint256 totalTokenCount;
    }

    struct HaltNewReqState {
        bool isHalted;
        string reason;
    }

    address private immutable _thisAddress;
    mapping(uint256 reqId => Order) public allOrders;
    mapping(uint256 paidId => uint256) public paidOrders;
    mapping(address userAddress => uint256[]) private _userAllOrders;
    mapping(address userAddress => uint256[]) private _userPaidOrders;
    mapping(uint256 orderId => bool locked) private _orderLocks;
    uint256 public orderIdCounter;
    uint256 public paidOrderIdCounter;
    mapping(address members => bool) public membersMap;
    IERC20 public membershipToken;
    uint256 public membershipAmount;
    bool public isMembershipOpen;
    uint256 public feesRateDenominator = 1e4;
    uint256 public maxThresholdFees;
    HaltNewReqState public haltNewReqState;

    error InsufficientAllowance(IERC20 token, uint256 allowance, uint256 requiredAmount);
    error InvalidAmountBid();
    error IdenticalTokens();
    error InvalidBid(uint256 reqId);
    error BidIdsMismatch(uint256 reqId, uint256 paidId, uint256 foundReqId, uint256 foundPaidId);
    error OrderIsCurrentlyLocked(uint256 orderId);
    error OnlySellerAuthorized(uint256 orderId);
    error MembershipIsCurrentlyClosed();
    error YouAreAlreadyMember();
    error TransferNativeCurrFailed(address recipient, uint256 amount);
    error NewRequestHalted(string reason);

    event BidRequestedSuccess(address indexed seller, uint256 indexed reqId, bool isNew, Order order);
    event BidRequestedTokenSuccess(IERC20 indexed sellingToken, IERC20 indexed buyingToken, uint256 indexed reqId, bool isNew, Order order);
    event BidCreatedSuccess(address indexed seller, uint256 indexed reqId, uint256 indexed paidId, Order order);
    event BidCreatedTokenSuccess(IERC20 indexed sellingToken, IERC20 indexed buyingToken, uint256 indexed paidId, Order order);
    event BidProcessedSuccess(address indexed seller, address indexed buyer, uint256 indexed paidId, Order order);
    event BidProcessedTokenSuccess(IERC20 indexed sellingToken, IERC20 indexed buyingToken, uint256 indexed paidId, Order order);
    event BidCancelledSuccess(address indexed seller, uint256 indexed reqId, uint256 indexed paidId, Order order);
    event BidCancelledTokenSuccess(IERC20 indexed sellingToken, IERC20 indexed buyingToken, uint256 indexed paidId, Order order);
    event MembershipUpdated(IERC20 indexed token, uint256 amount, bool isOpen);
    event NewMembershipAdded(address indexed newMember, uint256 amount);
    event TokenFeesCollected(address indexed owner, uint256 orderId, uint256 value);
    event MembershipFeesCollected(address indexed owner, uint256 value);
    event PaymentCollectedFromBuyer(address indexed buyer, IERC20 token, uint256 value, uint256 ordierId);
    event PaymentCollectedFromSeller(address indexed seller, IERC20 token, uint256 value, uint256 ordierId);
    event PaymentTransferredToBuyer(address indexed buyer, Order order);
    event PaymentTransferredToSeller(address indexed seller, Order order);
    event FeesRateDenominatorUpdated(uint256 indexed value);
    event FeesRateMaxThresholdUpdated(uint256 indexed value);
    event TransferNativeCurrSuccess(address indexed recipient, uint256 amount);
    event HaltNewReqStateUpdated(bool indexed isHalted, string indexed reason);

    constructor(address[] memory initialOwners) payable GotiginOwner(initialOwners){
        _thisAddress = address(this);
    }

    modifier validateOrderRequest(RequestBid memory orderRequest) {
        if (orderRequest.sellAmount == 0 || orderRequest.buyAmount == 0) {
            revert InvalidAmountBid();
        }
        if (orderRequest.sellToken == orderRequest.buyToken) {
            revert IdenticalTokens();
        }
        _;
    }

    modifier orderLockReentrancy(uint256 orderId) {
        if (_orderLocks[orderId]) {
            revert OrderIsCurrentlyLocked(orderId);
        }
        _orderLocks[orderId] = true;
        _;
        _orderLocks[orderId] = false;
    }

    function _validateBidState(Order memory order, uint256 reqId, BidState bidState, BidState bitStateAlt) internal pure {
        bool isInvalid = reqId == 0 || order.reqId == 0 || order.reqId != reqId ||
            (order.bidState != bidState && order.bidState != bitStateAlt);
        if (isInvalid) {
            revert InvalidBid(reqId);
        }
    }

    function _validateReqPaidMatch(Order memory reqOrder, uint256 reqId, uint256 paidId) internal view {
        uint256 foundReqId = paidOrders[paidId];
        bool isInvalid = reqOrder.reqId != reqId || reqOrder.paidId != paidId ||
            foundReqId != reqId;
        if (isInvalid) {
            revert BidIdsMismatch(reqId, paidId, reqOrder.reqId, reqOrder.paidId);
        }
    }

    function _onlySellerAuthorized(uint256 orderId) private view {
        Order storage order = allOrders[orderId];
        if (order.seller != msg.sender) {
            revert OnlySellerAuthorized(orderId);
        }
    }

    function _isZeroAddressToken(IERC20 addrToCheck) private pure returns (bool addressIsZero) {
        addressIsZero = address(addrToCheck) == address(0);
    }

    function _transferNativeCurr(address recipient, uint256 amount) private {
        (bool success,) = payable(recipient).call{value: amount}("");
        if (!success) {
            revert TransferNativeCurrFailed(recipient, amount);
        }
        emit TransferNativeCurrSuccess(recipient, amount);
    }

    function getOrderBidStateLength() public pure returns (uint256 bidStateLength) {
        bidStateLength = uint256(type(BidState).max) + 1;
    }

    function applyFeesRate(uint256 amount) public view returns (uint256 feesAmount)  {
        feesAmount = amount / feesRateDenominator;
        uint256 _maxThresholdFees = maxThresholdFees;
        if (feesAmount >= _maxThresholdFees && _maxThresholdFees != 0) {
            feesAmount = _maxThresholdFees;
        }
    }

    function updateFeesRate(uint256 amount) external payable onlyOwner {
        if (feesRateDenominator != amount) {
            feesRateDenominator = amount;
            emit FeesRateDenominatorUpdated(amount);
        }
    }

    function updateFeesRateThreshold(uint256 amount) external payable onlyOwner {
        if (maxThresholdFees != amount) {
            maxThresholdFees = amount;
            emit FeesRateMaxThresholdUpdated(amount);
        }
    }

    function requestBid(RequestBid memory orderRequest) external nonReentrant validateOrderRequest(orderRequest) returns (Order memory order){
        HaltNewReqState storage haltState = haltNewReqState;
        if (haltState.isHalted) {
            revert NewRequestHalted(haltState.reason);
        }
        order.seller = msg.sender;
        order.sellAmountGross = orderRequest.sellAmount;
        order.sellCharges = applyFeesRate(orderRequest.sellAmount);
        order.sellAmountNet = orderRequest.sellAmount - order.sellCharges;
        order.buyCharges = applyFeesRate(orderRequest.buyAmount);
        order.buyAmountGross = orderRequest.buyAmount + order.buyCharges;
        order.buyAmountNet = orderRequest.buyAmount;
        order.sellToken = orderRequest.sellToken;
        order.buyToken = orderRequest.buyToken;
        order.reqId = ++orderIdCounter;
        order.bidState = BidState.Requested;
        allOrders[order.reqId] = order;
        _userAllOrders[msg.sender].push(order.reqId);
        emit BidRequestedSuccess(order.seller, order.reqId, true, order);
        emit BidRequestedTokenSuccess(order.sellToken, order.buyToken, order.reqId, true, order);
    }

    function modifyRequestedBid(RequestBid memory orderRequest, uint256 reqId) external nonReentrant validateOrderRequest(orderRequest) orderLockReentrancy(reqId) returns (Order memory order){
        order = allOrders[reqId];
        _validateBidState(order, reqId, BidState.Requested, BidState.Requested);
        _onlySellerAuthorized(reqId);
        order.sellAmountGross = orderRequest.sellAmount;
        order.sellCharges = applyFeesRate(orderRequest.sellAmount);
        order.sellAmountNet = orderRequest.sellAmount - order.sellCharges;
        order.buyCharges = applyFeesRate(orderRequest.buyAmount);
        order.buyAmountGross = orderRequest.buyAmount + order.buyCharges;
        order.buyAmountNet = orderRequest.buyAmount;
        order.sellToken = orderRequest.sellToken;
        order.buyToken = orderRequest.buyToken;
        allOrders[reqId] = order;
        emit BidRequestedSuccess(order.seller, order.reqId, false, order);
        emit BidRequestedTokenSuccess(order.sellToken, order.buyToken, order.reqId, false, order);
    }

    function placeBid(uint256 reqId) external payable nonReentrant orderLockReentrancy(reqId) returns (Order memory order){
        order = allOrders[reqId];
        _validateBidState(order, reqId, BidState.Requested, BidState.Requested);
        _onlySellerAuthorized(reqId);
        if (membersMap[msg.sender]) {
            order.sellCharges = 0;
            order.sellAmountNet = order.sellAmountGross;
        }
        bool isSellingTokenNativeCurr = _isZeroAddressToken(order.sellToken);
        uint256 allowance = isSellingTokenNativeCurr ?
            msg.value :
            order.sellToken.allowance(msg.sender, _thisAddress);
        if (!isSellingTokenNativeCurr && !(allowance >= order.sellAmountGross)) {
            revert InsufficientAllowance(order.sellToken, msg.value, order.sellAmountGross);
        } else if (allowance != order.sellAmountGross) {
            revert InsufficientAllowance(order.sellToken, msg.value, order.sellAmountGross);
        }
        if (!isSellingTokenNativeCurr) {
            order.sellToken.safeTransferFrom(msg.sender, _thisAddress, order.sellAmountGross);
        }
        emit PaymentCollectedFromSeller(msg.sender, order.sellToken, order.sellAmountGross, reqId);
        if (order.sellCharges != 0) {
            address firstOwner = _getFirstOwner();
            isSellingTokenNativeCurr ?
                _transferNativeCurr(firstOwner, order.sellCharges) :
                order.sellToken.safeTransfer(firstOwner, order.sellCharges);
            emit TokenFeesCollected(firstOwner, reqId, order.sellCharges);
        }
        order.bidState = BidState.Created;
        uint256 paidId = ++paidOrderIdCounter;
        order.paidId = paidId;
        allOrders[reqId] = order;
        paidOrders[paidId] = reqId;
        _userPaidOrders[msg.sender].push(paidId);
        emit BidCreatedSuccess(order.seller, reqId, paidId, order);
        emit BidCreatedTokenSuccess(order.sellToken, order.buyToken, paidId, order);
    }

    function buyBid(uint256 reqId, uint256 paidId) external payable nonReentrant orderLockReentrancy(reqId) returns (Order memory order) {
        order = allOrders[reqId];
        _validateBidState(order, reqId, BidState.Created, BidState.Created);
        _validateReqPaidMatch(order, reqId, paidId);
        if (membersMap[msg.sender]) {
            order.buyCharges = 0;
            order.buyAmountNet = order.buyAmountGross;
        }
        bool isBuyingTokenNativeCurr = _isZeroAddressToken(order.buyToken);
        uint256 allowance = isBuyingTokenNativeCurr ?
            msg.value :
            order.buyToken.allowance(msg.sender, _thisAddress);
        if (!isBuyingTokenNativeCurr && !(allowance >= order.buyAmountGross)) {
            revert InsufficientAllowance(order.buyToken, msg.value, order.buyAmountGross);
        } else if (allowance != order.buyAmountGross) {
            revert InsufficientAllowance(order.buyToken, msg.value, order.buyAmountGross);
        }
        order.buyer = msg.sender;
        if (isBuyingTokenNativeCurr) {
            _transferNativeCurr(order.seller, order.buyAmountNet);
            order.sellToken.safeTransfer(order.buyer, order.sellAmountNet);
        } else {
            order.buyToken.safeTransferFrom(msg.sender, _thisAddress, order.buyAmountGross);
            order.buyToken.safeTransfer(order.seller, order.buyAmountNet);
            _isZeroAddressToken(order.sellToken) ?
                _transferNativeCurr(order.buyer, order.sellAmountNet) :
                order.sellToken.safeTransfer(order.buyer, order.sellAmountNet);
        }
        emit PaymentCollectedFromBuyer(msg.sender, order.buyToken, order.buyAmountGross, reqId);
        if (order.buyCharges != 0) {
            address firstOwner = _getFirstOwner();
            isBuyingTokenNativeCurr ?
                _transferNativeCurr(firstOwner, order.buyCharges) :
                order.buyToken.safeTransfer(firstOwner, order.buyCharges);
            emit TokenFeesCollected(firstOwner, reqId, order.buyCharges);
        }
        order.bidState = BidState.Processed;
        allOrders[reqId] = order;
        // In case if the buyer and seller are the same person, then avoid duplicate entries
        if (msg.sender != order.seller) {
            _userAllOrders[msg.sender].push(reqId);
            _userPaidOrders[msg.sender].push(paidId);
        }
        emit PaymentTransferredToBuyer(order.buyer, order);
        emit PaymentTransferredToSeller(order.seller, order);
        emit BidProcessedSuccess(order.seller, order.buyer, order.paidId, order);
        emit BidProcessedTokenSuccess(order.sellToken, order.buyToken, order.paidId, order);
    }

    function cancelBid(uint256 reqId, uint256 paidId) external nonReentrant orderLockReentrancy(reqId) returns (Order memory order){
        order = allOrders[reqId];
        _validateBidState(order, reqId, BidState.Requested, BidState.Created);
        _onlySellerAuthorized(reqId);
        if (order.bidState == BidState.Requested) {
            order.bidState = BidState.Cancelled;
            allOrders[reqId] = order;
            emit BidCancelledSuccess(order.seller, reqId, paidId, order);
            emit BidCancelledTokenSuccess(order.sellToken, order.buyToken, paidId, order);
            return order;
        }
        _validateReqPaidMatch(order, reqId, paidId);
        _isZeroAddressToken(order.sellToken) ?
            _transferNativeCurr(order.seller, order.sellAmountNet) :
            order.sellToken.safeTransfer(order.seller, order.sellAmountNet);
        order.bidState = BidState.Cancelled;
        allOrders[order.reqId] = order;
        emit BidCancelledSuccess(order.seller, reqId, paidId, order);
        emit BidCancelledTokenSuccess(order.sellToken, order.buyToken, paidId, order);
    }

    function getUserOrders(UserOrdersRequest calldata userOrdersRequest) external view returns (OrdersResponse memory ordersResponse) {
        bool onlyPaidOrders = userOrdersRequest.onlyPaidOrders;
        uint256[] storage reqOrPaidIds = onlyPaidOrders ?
            _userPaidOrders[userOrdersRequest.userAddress] :
            _userAllOrders[userOrdersRequest.userAddress];
        ordersResponse.totalOrdersCount = reqOrPaidIds.length;
        if (ordersResponse.totalOrdersCount == 0) {
            return ordersResponse;
        }
        if (userOrdersRequest.startIndex >= ordersResponse.totalOrdersCount) {
            ordersResponse.endedAtIndex = ordersResponse.totalOrdersCount - 1;
            return ordersResponse;
        }
        uint256 remainingSize = ordersResponse.totalOrdersCount - userOrdersRequest.startIndex;
        uint256 size = userOrdersRequest.numberOfOrders < remainingSize ?
            userOrdersRequest.numberOfOrders : remainingSize;
        ordersResponse.orders = new Order[](size);
        mapping(uint256 orderId => Order) storage cachedOrders = allOrders;
        remainingSize = remainingSize - 1;
        ordersResponse.endedAtIndex = userOrdersRequest.startIndex + size - 1;

        unchecked {
            if (onlyPaidOrders) {
                mapping(uint256 paidId => uint256) storage paidCachedOrders = paidOrders;
                for (uint256 i = 0; i < size; ++i) {
                    uint256 paidId = reqOrPaidIds[remainingSize - i];
                    uint256 orderId = paidCachedOrders[paidId];
                    ordersResponse.orders[i] = cachedOrders[orderId];
                }
            } else {
                for (uint256 i = 0; i < size; ++i) {
                    ordersResponse.orders[i] = cachedOrders[reqOrPaidIds[remainingSize - i]];
                }
            }
        }
    }

    function getOrders(OrdersRequest calldata ordersRequest) external view returns (OrdersResponse memory ordersResponse) {
        uint256 iterationCount = ordersRequest.numberOfOrders;
        bool onlyPaidOrders = ordersRequest.onlyPaidOrders;
        ordersResponse.totalOrdersCount = onlyPaidOrders ? paidOrderIdCounter : orderIdCounter;
        if (ordersResponse.totalOrdersCount == 0) {
            return ordersResponse;
        }
        if (ordersRequest.startIndex >= ordersResponse.totalOrdersCount) {
            ordersResponse.endedAtIndex = ordersResponse.totalOrdersCount - 1;
            return ordersResponse;
        }
        uint256 remainingSize = ordersResponse.totalOrdersCount - ordersRequest.startIndex;
        uint256 size = iterationCount < remainingSize ? iterationCount : remainingSize;
        ordersResponse.orders = new Order[](size);
        mapping(uint256 orderId => Order) storage cachedOrders = allOrders;
        ordersResponse.endedAtIndex = ordersRequest.startIndex + size - 1;
        unchecked {
            if (onlyPaidOrders) {
                mapping(uint256 paidId => uint256) storage paidCachedOrders = paidOrders;
                for (uint256 i = 0; i < size; ++i) {
                    uint256 orderId = paidCachedOrders[remainingSize - i];
                    ordersResponse.orders[i] = cachedOrders[orderId];
                }
            } else {
                for (uint256 i = 0; i < size; ++i) {
                    ordersResponse.orders[i] = cachedOrders[remainingSize - i];
                }
            }
        }
    }

    function updateMembershipToken(IERC20 token, uint256 amount, bool membershipOpen) external payable nonReentrant onlyOwner {
        bool membershipUpdated;
        if (membershipAmount != amount) {
            membershipAmount = amount;
            membershipUpdated = true;
        }
        if (membershipToken != token) {
            membershipToken = token;
            membershipUpdated = true;
        }
        if (isMembershipOpen != membershipOpen) {
            isMembershipOpen = membershipOpen;
            membershipUpdated = true;
        }
        if (membershipUpdated) {
            emit MembershipUpdated(token, amount, membershipOpen);
        }
    }
    function updateReqHaltState(HaltNewReqState memory newHaltReqState) external payable nonReentrant onlyOwner {
        haltNewReqState = newHaltReqState;
        emit HaltNewReqStateUpdated(newHaltReqState.isHalted, newHaltReqState.reason);
    }

    function getPermanentMembership() external payable nonReentrant {
        if (!isMembershipOpen) {
            revert MembershipIsCurrentlyClosed();
        }
        bool isAlreadyMember = membersMap[msg.sender];
        if (isAlreadyMember) {
            revert YouAreAlreadyMember();
        }
        uint256 _membershipAmount = membershipAmount;
        IERC20 _membershipToken = membershipToken;
        bool isTokenNative = _isZeroAddressToken(_membershipToken);
        uint256 allowance = isTokenNative ?
            msg.value :
            _membershipToken.allowance(msg.sender, _thisAddress);
        if (!(allowance >= _membershipAmount)) {
            revert InsufficientAllowance(_membershipToken, allowance, _membershipAmount);
        }
        address firstOwner = _getFirstOwner();
        isTokenNative ?
            _transferNativeCurr(firstOwner, _membershipAmount) :
            _membershipToken.safeTransferFrom(msg.sender, firstOwner, _membershipAmount);
        membersMap[msg.sender] = true;
        emit MembershipFeesCollected(firstOwner, _membershipAmount);
        emit NewMembershipAdded(msg.sender, _membershipAmount);
    }
}
Contract Source Code
File 4 of 14: GotiginOwner.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

abstract contract GotiginOwner {
    struct OwnerData {
        bool isOwner;
        uint256 priority;
    }

    mapping(address ownerAddress => OwnerData) private _ownerData;
    address[] private _ownerArray;

    error NotAuthorized();
    error InvalidOwner();
    error AtLeastOneOwnerRequired();

    event OwnerRemoved(address indexed removedOwner);

    constructor(address[] memory initialOwners) {
        uint256 initialOwnersLength = initialOwners.length;
        if (initialOwnersLength == 0) {
            revert AtLeastOneOwnerRequired();
        }
        unchecked {
            for (uint256 i = 0; i < initialOwnersLength; ++i) {
                address ownerAddress = initialOwners[i];
                if (ownerAddress == address(0)) {
                    revert InvalidOwner();
                }
                OwnerData storage ownerData = _ownerData[ownerAddress];
                ownerData.isOwner = true;
                ownerData.priority = i;
                _ownerArray.push(ownerAddress);
            }
        }
    }

    modifier onlyOwner() virtual {
        if (!_ownerData[msg.sender].isOwner) {
            revert NotAuthorized();
        }
        _;
    }

    modifier higherPrivilegeOwner(address ownerToRemove) virtual {
        if (!_ownerData[ownerToRemove].isOwner || !_ownerData[msg.sender].isOwner) {
            revert InvalidOwner();
        }
        _;
    }

    function removeOwner(address ownerToRemove) external payable virtual onlyOwner higherPrivilegeOwner(ownerToRemove) {
        OwnerData storage ownerToRemoveData = _ownerData[ownerToRemove];
        uint256 callerPriority = _ownerData[msg.sender].priority;
        uint256 ownerToRemovePriority = ownerToRemoveData.priority;
        if (callerPriority <= ownerToRemovePriority) {
            revert InvalidOwner();
        }
        ownerToRemoveData.isOwner = false;
        ownerToRemoveData.priority = 0;
        uint256 ownerArrayLength = _ownerArray.length;
        address[] storage owners = _ownerArray;
        bool ownerRemoved;
        unchecked {
            for (uint256 i = 0; i < ownerArrayLength; ++i) {
                if (owners[i] == ownerToRemove) {
                    for (uint256 j = i; j < ownerArrayLength - 1; ++j) {
                        owners[j] = owners[j + 1];
                    }
                    owners.pop();
                    ownerRemoved = true;
                    break;
                }
            }
        }
        if (ownerRemoved) {
            emit OwnerRemoved(ownerToRemove);
        }
    }

    function _getFirstOwner() internal view virtual returns (address owner) {
        owner = _ownerArray[0];
    }

    function isOwner(address account) public view virtual returns (bool) {
        return _ownerData[account].isOwner;
    }

    function getOwnerCount() public view virtual returns (uint256) {
        return _ownerArray.length;
    }

    function getOwnerPriority(address owner) public view virtual returns (uint256) {
        return _ownerData[owner].priority;
    }
}
Contract Source Code
File 5 of 14: IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
Contract Source Code
File 6 of 14: IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
Contract Source Code
File 7 of 14: IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
Contract Source Code
File 8 of 14: Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
Contract Source Code
File 9 of 14: Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
Contract Source Code
File 10 of 14: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
Contract Source Code
File 11 of 14: SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
Contract Source Code
File 12 of 14: SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
Contract Source Code
File 13 of 14: SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}
Contract Source Code
File 14 of 14: Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
Settings
{
  "compilationTarget": {
    "contracts/GotiginDex.sol": "GotiginDex"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 20000
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address[]","name":"initialOwners","type":"address[]"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"AtLeastOneOwnerRequired","type":"error"},{"inputs":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"foundReqId","type":"uint256"},{"internalType":"uint256","name":"foundPaidId","type":"uint256"}],"name":"BidIdsMismatch","type":"error"},{"inputs":[],"name":"IdenticalTokens","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"requiredAmount","type":"uint256"}],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InvalidAmountBid","type":"error"},{"inputs":[{"internalType":"uint256","name":"reqId","type":"uint256"}],"name":"InvalidBid","type":"error"},{"inputs":[],"name":"InvalidOwner","type":"error"},{"inputs":[],"name":"MembershipIsCurrentlyClosed","type":"error"},{"inputs":[{"internalType":"string","name":"reason","type":"string"}],"name":"NewRequestHalted","type":"error"},{"inputs":[],"name":"NotAuthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"orderId","type":"uint256"}],"name":"OnlySellerAuthorized","type":"error"},{"inputs":[{"internalType":"uint256","name":"orderId","type":"uint256"}],"name":"OrderIsCurrentlyLocked","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TransferNativeCurrFailed","type":"error"},{"inputs":[],"name":"YouAreAlreadyMember","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":true,"internalType":"uint256","name":"reqId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"paidId","type":"uint256"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidCancelledSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"sellingToken","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"buyingToken","type":"address"},{"indexed":true,"internalType":"uint256","name":"paidId","type":"uint256"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidCancelledTokenSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":true,"internalType":"uint256","name":"reqId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"paidId","type":"uint256"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidCreatedSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"sellingToken","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"buyingToken","type":"address"},{"indexed":true,"internalType":"uint256","name":"paidId","type":"uint256"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidCreatedTokenSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":true,"internalType":"uint256","name":"paidId","type":"uint256"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidProcessedSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"sellingToken","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"buyingToken","type":"address"},{"indexed":true,"internalType":"uint256","name":"paidId","type":"uint256"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidProcessedTokenSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":true,"internalType":"uint256","name":"reqId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isNew","type":"bool"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidRequestedSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"sellingToken","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"buyingToken","type":"address"},{"indexed":true,"internalType":"uint256","name":"reqId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isNew","type":"bool"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"BidRequestedTokenSuccess","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"value","type":"uint256"}],"name":"FeesRateDenominatorUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"value","type":"uint256"}],"name":"FeesRateMaxThresholdUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bool","name":"isHalted","type":"bool"},{"indexed":true,"internalType":"string","name":"reason","type":"string"}],"name":"HaltNewReqStateUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"MembershipFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bool","name":"isOpen","type":"bool"}],"name":"MembershipUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newMember","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"NewMembershipAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"removedOwner","type":"address"}],"name":"OwnerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ordierId","type":"uint256"}],"name":"PaymentCollectedFromBuyer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ordierId","type":"uint256"}],"name":"PaymentCollectedFromSeller","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"PaymentTransferredToBuyer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"seller","type":"address"},{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"indexed":false,"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"name":"PaymentTransferredToSeller","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"orderId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TokenFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TransferNativeCurrSuccess","type":"event"},{"inputs":[{"internalType":"uint256","name":"reqId","type":"uint256"}],"name":"allOrders","outputs":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"applyFeesRate","outputs":[{"internalType":"uint256","name":"feesAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"}],"name":"buyBid","outputs":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"}],"name":"cancelBid","outputs":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"feesRateDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOrderBidStateLength","outputs":[{"internalType":"uint256","name":"bidStateLength","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"startIndex","type":"uint256"},{"internalType":"uint256","name":"numberOfOrders","type":"uint256"},{"internalType":"bool","name":"onlyPaidOrders","type":"bool"}],"internalType":"struct GotiginDex.OrdersRequest","name":"ordersRequest","type":"tuple"}],"name":"getOrders","outputs":[{"components":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order[]","name":"orders","type":"tuple[]"},{"internalType":"uint256","name":"endedAtIndex","type":"uint256"},{"internalType":"uint256","name":"totalOrdersCount","type":"uint256"}],"internalType":"struct GotiginDex.OrdersResponse","name":"ordersResponse","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwnerCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"getOwnerPriority","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPermanentMembership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"startIndex","type":"uint256"},{"internalType":"uint256","name":"numberOfOrders","type":"uint256"},{"internalType":"address","name":"userAddress","type":"address"},{"internalType":"bool","name":"onlyPaidOrders","type":"bool"}],"internalType":"struct GotiginDex.UserOrdersRequest","name":"userOrdersRequest","type":"tuple"}],"name":"getUserOrders","outputs":[{"components":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order[]","name":"orders","type":"tuple[]"},{"internalType":"uint256","name":"endedAtIndex","type":"uint256"},{"internalType":"uint256","name":"totalOrdersCount","type":"uint256"}],"internalType":"struct GotiginDex.OrdersResponse","name":"ordersResponse","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"haltNewReqState","outputs":[{"internalType":"bool","name":"isHalted","type":"bool"},{"internalType":"string","name":"reason","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isMembershipOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isOwner","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxThresholdFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"members","type":"address"}],"name":"membersMap","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"membershipAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"membershipToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"}],"internalType":"struct GotiginDex.RequestBid","name":"orderRequest","type":"tuple"},{"internalType":"uint256","name":"reqId","type":"uint256"}],"name":"modifyRequestedBid","outputs":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"orderIdCounter","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paidOrderIdCounter","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"paidId","type":"uint256"}],"name":"paidOrders","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reqId","type":"uint256"}],"name":"placeBid","outputs":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"ownerToRemove","type":"address"}],"name":"removeOwner","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"uint256","name":"sellAmount","type":"uint256"},{"internalType":"uint256","name":"buyAmount","type":"uint256"}],"internalType":"struct GotiginDex.RequestBid","name":"orderRequest","type":"tuple"}],"name":"requestBid","outputs":[{"components":[{"internalType":"uint256","name":"reqId","type":"uint256"},{"internalType":"uint256","name":"paidId","type":"uint256"},{"internalType":"uint256","name":"sellAmountGross","type":"uint256"},{"internalType":"uint256","name":"sellCharges","type":"uint256"},{"internalType":"uint256","name":"sellAmountNet","type":"uint256"},{"internalType":"uint256","name":"buyAmountGross","type":"uint256"},{"internalType":"uint256","name":"buyCharges","type":"uint256"},{"internalType":"uint256","name":"buyAmountNet","type":"uint256"},{"internalType":"address","name":"seller","type":"address"},{"internalType":"address","name":"buyer","type":"address"},{"internalType":"contract IERC20","name":"sellToken","type":"address"},{"internalType":"contract IERC20","name":"buyToken","type":"address"},{"internalType":"enum GotiginDex.BidState","name":"bidState","type":"uint8"}],"internalType":"struct GotiginDex.Order","name":"order","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"updateFeesRate","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"updateFeesRateThreshold","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bool","name":"membershipOpen","type":"bool"}],"name":"updateMembershipToken","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bool","name":"isHalted","type":"bool"},{"internalType":"string","name":"reason","type":"string"}],"internalType":"struct GotiginDex.HaltNewReqState","name":"newHaltReqState","type":"tuple"}],"name":"updateReqHaltState","outputs":[],"stateMutability":"payable","type":"function"}]