// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)pragmasolidity ^0.8.20;import {Errors} from"./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev There's no code at `target` (it is not a contract).
*/errorAddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
if (address(this).balance< amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value) internalreturns (bytesmemory) {
if (address(this).balance< value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytesmemory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/functionfunctionStaticCall(address target, bytesmemory data) internalviewreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/functionfunctionDelegateCall(address target, bytesmemory data) internalreturns (bytesmemory) {
(bool success, bytesmemory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/functionverifyCallResultFromTarget(address target,
bool success,
bytesmemory returndata
) internalviewreturns (bytesmemory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty// otherwise we already know that it was a contractif (returndata.length==0&& target.code.length==0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/functionverifyCallResult(bool success, bytesmemory returndata) internalpurereturns (bytesmemory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/function_revert(bytesmemory returndata) privatepure{
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assemblyassembly ("memory-safe") {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}
Contract Source Code
File 2 of 14: Errors.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)pragmasolidity ^0.8.20;/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/libraryErrors{
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/errorInsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/errorFailedCall();
/**
* @dev The deployment failed.
*/errorFailedDeployment();
/**
* @dev A necessary precompile is missing.
*/errorMissingPrecompile(address);
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)pragmasolidity ^0.8.20;import {IERC20} from"./IERC20.sol";
import {IERC165} from"./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/interfaceIERC1363isIERC20, IERC165{
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*//**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/functiontransferAndCall(address to, uint256 value) externalreturns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/functiontransferAndCall(address to, uint256 value, bytescalldata data) externalreturns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/functiontransferFromAndCall(addressfrom, address to, uint256 value) externalreturns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/functiontransferFromAndCall(addressfrom, address to, uint256 value, bytescalldata data) externalreturns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/functionapproveAndCall(address spender, uint256 value) externalreturns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/functionapproveAndCall(address spender, uint256 value, bytescalldata data) externalreturns (bool);
}
Contract Source Code
File 6 of 14: IERC165.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)pragmasolidity ^0.8.20;/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/interfaceIERC165{
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/functionsupportsInterface(bytes4 interfaceId) externalviewreturns (bool);
}
Contract Source Code
File 7 of 14: IERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.20;/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 value) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 value) externalreturns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom, address to, uint256 value) externalreturns (bool);
}
Contract Source Code
File 8 of 14: Math.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)pragmasolidity ^0.8.20;import {Panic} from"../Panic.sol";
import {SafeCast} from"./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/libraryMath{
enumRounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/functiontryAdd(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/functiontrySub(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/functiontryMul(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the// benefit is lost if 'b' is also tested.// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522if (a ==0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/functiontryDiv(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
if (b ==0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/functiontryMod(uint256 a, uint256 b) internalpurereturns (bool success, uint256 result) {
unchecked {
if (b ==0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/functionternary(bool condition, uint256 a, uint256 b) internalpurereturns (uint256) {
unchecked {
// branchless ternary works because:// b ^ (a ^ b) == a// b ^ 0 == breturn b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/functionmax(uint256 a, uint256 b) internalpurereturns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/functionmin(uint256 a, uint256 b) internalpurereturns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/functionaverage(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b) / 2 can overflow.return (a & b) + (a ^ b) /2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/functionceilDiv(uint256 a, uint256 b) internalpurereturns (uint256) {
if (b ==0) {
// Guarantee the same behavior as in a regular Solidity division.Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.// Since a is non-zero, (a - 1) / b will not overflow.// The largest possible result occurs when (a - 1) / b is type(uint256).max,// but the largest value we can obtain is type(uint256).max - 1, which happens// when a = type(uint256).max and b = 1.unchecked {
return SafeCast.toUint(a >0) * ((a -1) / b +1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/functionmulDiv(uint256 x, uint256 y, uint256 denominator) internalpurereturns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256// variables such that product = prod1 * 2²⁵⁶ + prod0.uint256 prod0 = x * y; // Least significant 256 bits of the productuint256 prod1; // Most significant 256 bits of the productassembly {
let mm :=mulmod(x, y, not(0))
prod1 :=sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.if (prod1 ==0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.// The surrounding unchecked block does not change this fact.// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.if (denominator <= prod1) {
Panic.panic(ternary(denominator ==0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////// 512 by 256 division.///////////////////////////////////////////////// Make division exact by subtracting the remainder from [prod1 prod0].uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder :=mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 :=sub(prod1, gt(remainder, prod0))
prod0 :=sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.uint256 twos = denominator & (0- denominator);
assembly {
// Divide denominator by twos.
denominator :=div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 :=div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos :=add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for// four bits. That is, denominator * inv ≡ 1 mod 2⁴.uint256 inverse = (3* denominator) ^2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also// works in modular arithmetic, doubling the correct bits in each step.
inverse *=2- denominator * inverse; // inverse mod 2⁸
inverse *=2- denominator * inverse; // inverse mod 2¹⁶
inverse *=2- denominator * inverse; // inverse mod 2³²
inverse *=2- denominator * inverse; // inverse mod 2⁶⁴
inverse *=2- denominator * inverse; // inverse mod 2¹²⁸
inverse *=2- denominator * inverse; // inverse mod 2²⁵⁶// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/functionmulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internalpurereturns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) &&mulmod(x, y, denominator) >0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/functioninvMod(uint256 a, uint256 n) internalpurereturns (uint256) {
unchecked {
if (n ==0) return0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)// Used to compute integers x and y such that: ax + ny = gcd(a, n).// When the gcd is 1, then the inverse of a modulo n exists and it's x.// ax + ny = 1// ax = 1 + (-y)n// ax ≡ 1 (mod n) # x is the inverse of a modulo n// If the remainder is 0 the gcd is n right away.uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:// ax + ny = gcd(a, n) = n// 0a + 1n = nint256 x =0;
int256 y =1;
while (remainder !=0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.// Can overflow, but the result is casted to uint256 so that the// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y *int256(quotient)
);
}
if (gcd !=1) return0; // No inverse exists.return ternary(x <0, n -uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/functioninvModPrime(uint256 a, uint256 p) internalviewreturns (uint256) {
unchecked {
return Math.modExp(a, p -2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/functionmodExp(uint256 b, uint256 e, uint256 m) internalviewreturns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/functiontryModExp(uint256 b, uint256 e, uint256 m) internalviewreturns (bool success, uint256 result) {
if (m ==0) return (false, 0);
assembly ("memory-safe") {
let ptr :=mload(0x40)
// | Offset | Content | Content (Hex) |// |-----------|------------|--------------------------------------------------------------------|// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |// | 0x60:0x7f | value of b | 0x<.............................................................b> |// | 0x80:0x9f | value of e | 0x<.............................................................e> |// | 0xa0:0xbf | value of m | 0x<.............................................................m> |mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,// so we can use the memory scratch space located at offset 0.
success :=staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result :=mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/functionmodExp(bytesmemory b, bytesmemory e, bytesmemory m) internalviewreturns (bytesmemory) {
(bool success, bytesmemory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/functiontryModExp(bytesmemory b,
bytesmemory e,
bytesmemory m
) internalviewreturns (bool success, bytesmemory result) {
if (_zeroBytes(m)) return (false, newbytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result =abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr :=add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success :=staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.// result.length > returndatasize() is guaranteed because returndatasize() == m.lengthmstore(result, mLen)
// Set the memory pointer after the returned data.mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/function_zeroBytes(bytesmemory byteArray) privatepurereturns (bool) {
for (uint256 i =0; i < byteArray.length; ++i) {
if (byteArray[i] !=0) {
returnfalse;
}
}
returntrue;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/functionsqrt(uint256 a) internalpurereturns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1if (a <=1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between// the current value as `ε_n = | x_n - sqrt(a) |`.//// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is// bigger than any uint256.//// By noticing that// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar// to the msb function.uint256 aa = a;
uint256 xn =1;
if (aa >= (1<<128)) {
aa >>=128;
xn <<=64;
}
if (aa >= (1<<64)) {
aa >>=64;
xn <<=32;
}
if (aa >= (1<<32)) {
aa >>=32;
xn <<=16;
}
if (aa >= (1<<16)) {
aa >>=16;
xn <<=8;
}
if (aa >= (1<<8)) {
aa >>=8;
xn <<=4;
}
if (aa >= (1<<4)) {
aa >>=4;
xn <<=2;
}
if (aa >= (1<<2)) {
xn <<=1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).//// We can refine our estimation by noticing that the middle of that interval minimizes the error.// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).// This is going to be our x_0 (and ε_0)
xn = (3* xn) >>1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)// From here, Newton's method give us:// x_{n+1} = (x_n + a / x_n) / 2//// One should note that:// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a// = ((x_n² + a) / (2 * x_n))² - a// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)// = (x_n² - a)² / (2 * x_n)²// = ((x_n² - a) / (2 * x_n))²// ≥ 0// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n//// This gives us the proof of quadratic convergence of the sequence:// ε_{n+1} = | x_{n+1} - sqrt(a) |// = | (x_n + a / x_n) / 2 - sqrt(a) |// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |// = | (x_n - sqrt(a))² / (2 * x_n) |// = | ε_n² / (2 * x_n) |// = ε_n² / | (2 * x_n) |//// For the first iteration, we have a special case where x_0 is known:// ε_1 = ε_0² / | (2 * x_0) |// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))// ≤ 2**(2*e-4) / (3 * 2**(e-1))// ≤ 2**(e-3) / 3// ≤ 2**(e-3-log2(3))// ≤ 2**(e-4.5)//// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:// ε_{n+1} = ε_n² / | (2 * x_n) |// ≤ (2**(e-k))² / (2 * 2**(e-1))// ≤ 2**(2*e-2*k) / 2**e// ≤ 2**(e-2*k)
xn = (xn + a / xn) >>1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >>1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >>1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >>1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >>1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >>1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either// sqrt(a) or sqrt(a) + 1.return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/functionsqrt(uint256 a, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/functionlog2(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
uint256 exp;
unchecked {
exp =128* SafeCast.toUint(value > (1<<128) -1);
value >>= exp;
result += exp;
exp =64* SafeCast.toUint(value > (1<<64) -1);
value >>= exp;
result += exp;
exp =32* SafeCast.toUint(value > (1<<32) -1);
value >>= exp;
result += exp;
exp =16* SafeCast.toUint(value > (1<<16) -1);
value >>= exp;
result += exp;
exp =8* SafeCast.toUint(value > (1<<8) -1);
value >>= exp;
result += exp;
exp =4* SafeCast.toUint(value > (1<<4) -1);
value >>= exp;
result += exp;
exp =2* SafeCast.toUint(value > (1<<2) -1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value >1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result =log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) &&1<< result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/functionlog10(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >=10**64) {
value /=10**64;
result +=64;
}
if (value >=10**32) {
value /=10**32;
result +=32;
}
if (value >=10**16) {
value /=10**16;
result +=16;
}
if (value >=10**8) {
value /=10**8;
result +=8;
}
if (value >=10**4) {
value /=10**4;
result +=4;
}
if (value >=10**2) {
value /=10**2;
result +=2;
}
if (value >=10**1) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) &&10** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/functionlog256(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1<<128) -1);
value >>= isGt *128;
result += isGt *16;
isGt = SafeCast.toUint(value > (1<<64) -1);
value >>= isGt *64;
result += isGt *8;
isGt = SafeCast.toUint(value > (1<<32) -1);
value >>= isGt *32;
result += isGt *4;
isGt = SafeCast.toUint(value > (1<<16) -1);
value >>= isGt *16;
result += isGt *2;
result += SafeCast.toUint(value > (1<<8) -1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog256(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) &&1<< (result <<3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/functionunsignedRoundsUp(Rounding rounding) internalpurereturns (bool) {
returnuint8(rounding) %2==1;
}
}
Contract Source Code
File 9 of 14: Panic.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)pragmasolidity ^0.8.20;/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/// slither-disable-next-line unused-statelibraryPanic{
/// @dev generic / unspecified erroruint256internalconstant GENERIC =0x00;
/// @dev used by the assert() builtinuint256internalconstant ASSERT =0x01;
/// @dev arithmetic underflow or overflowuint256internalconstant UNDER_OVERFLOW =0x11;
/// @dev division or modulo by zerouint256internalconstant DIVISION_BY_ZERO =0x12;
/// @dev enum conversion erroruint256internalconstant ENUM_CONVERSION_ERROR =0x21;
/// @dev invalid encoding in storageuint256internalconstant STORAGE_ENCODING_ERROR =0x22;
/// @dev empty array popuint256internalconstant EMPTY_ARRAY_POP =0x31;
/// @dev array out of bounds accessuint256internalconstant ARRAY_OUT_OF_BOUNDS =0x32;
/// @dev resource error (too large allocation or too large array)uint256internalconstant RESOURCE_ERROR =0x41;
/// @dev calling invalid internal functionuint256internalconstant INVALID_INTERNAL_FUNCTION =0x51;
/// @dev Reverts with a panic code. Recommended to use with/// the internal constants with predefined codes.functionpanic(uint256 code) internalpure{
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
Contract Source Code
File 10 of 14: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)pragmasolidity ^0.8.20;/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/abstractcontractReentrancyGuard{
// Booleans are more expensive than uint256 or any type that takes up a full// word because each write operation emits an extra SLOAD to first read the// slot's contents, replace the bits taken up by the boolean, and then write// back. This is the compiler's defense against contract upgrades and// pointer aliasing, and it cannot be disabled.// The values being non-zero value makes deployment a bit more expensive,// but in exchange the refund on every call to nonReentrant will be lower in// amount. Since refunds are capped to a percentage of the total// transaction's gas, it is best to keep them low in cases like this one, to// increase the likelihood of the full refund coming into effect.uint256privateconstant NOT_ENTERED =1;
uint256privateconstant ENTERED =2;
uint256private _status;
/**
* @dev Unauthorized reentrant call.
*/errorReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/modifiernonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function_nonReentrantBefore() private{
// On the first call to nonReentrant, _status will be NOT_ENTEREDif (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function_nonReentrantAfter() private{
// By storing the original value once again, a refund is triggered (see// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/function_reentrancyGuardEntered() internalviewreturns (bool) {
return _status == ENTERED;
}
}
Contract Source Code
File 11 of 14: SafeCast.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)// This file was procedurally generated from scripts/generate/templates/SafeCast.js.pragmasolidity ^0.8.20;/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/librarySafeCast{
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/errorSafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/errorSafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/errorSafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/errorSafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/functiontoUint248(uint256 value) internalpurereturns (uint248) {
if (value >type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
returnuint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/functiontoUint240(uint256 value) internalpurereturns (uint240) {
if (value >type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
returnuint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/functiontoUint232(uint256 value) internalpurereturns (uint232) {
if (value >type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
returnuint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/functiontoUint224(uint256 value) internalpurereturns (uint224) {
if (value >type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
returnuint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/functiontoUint216(uint256 value) internalpurereturns (uint216) {
if (value >type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
returnuint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/functiontoUint208(uint256 value) internalpurereturns (uint208) {
if (value >type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
returnuint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/functiontoUint200(uint256 value) internalpurereturns (uint200) {
if (value >type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
returnuint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/functiontoUint192(uint256 value) internalpurereturns (uint192) {
if (value >type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
returnuint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/functiontoUint184(uint256 value) internalpurereturns (uint184) {
if (value >type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
returnuint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/functiontoUint176(uint256 value) internalpurereturns (uint176) {
if (value >type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
returnuint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/functiontoUint168(uint256 value) internalpurereturns (uint168) {
if (value >type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
returnuint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/functiontoUint160(uint256 value) internalpurereturns (uint160) {
if (value >type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
returnuint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/functiontoUint152(uint256 value) internalpurereturns (uint152) {
if (value >type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
returnuint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/functiontoUint144(uint256 value) internalpurereturns (uint144) {
if (value >type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
returnuint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/functiontoUint136(uint256 value) internalpurereturns (uint136) {
if (value >type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
returnuint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/functiontoUint128(uint256 value) internalpurereturns (uint128) {
if (value >type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
returnuint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/functiontoUint120(uint256 value) internalpurereturns (uint120) {
if (value >type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
returnuint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/functiontoUint112(uint256 value) internalpurereturns (uint112) {
if (value >type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
returnuint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/functiontoUint104(uint256 value) internalpurereturns (uint104) {
if (value >type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
returnuint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/functiontoUint96(uint256 value) internalpurereturns (uint96) {
if (value >type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
returnuint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/functiontoUint88(uint256 value) internalpurereturns (uint88) {
if (value >type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
returnuint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/functiontoUint80(uint256 value) internalpurereturns (uint80) {
if (value >type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
returnuint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/functiontoUint72(uint256 value) internalpurereturns (uint72) {
if (value >type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
returnuint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/functiontoUint64(uint256 value) internalpurereturns (uint64) {
if (value >type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
returnuint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/functiontoUint56(uint256 value) internalpurereturns (uint56) {
if (value >type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
returnuint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/functiontoUint48(uint256 value) internalpurereturns (uint48) {
if (value >type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
returnuint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/functiontoUint40(uint256 value) internalpurereturns (uint40) {
if (value >type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
returnuint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/functiontoUint32(uint256 value) internalpurereturns (uint32) {
if (value >type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
returnuint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/functiontoUint24(uint256 value) internalpurereturns (uint24) {
if (value >type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
returnuint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/functiontoUint16(uint256 value) internalpurereturns (uint16) {
if (value >type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
returnuint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/functiontoUint8(uint256 value) internalpurereturns (uint8) {
if (value >type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
returnuint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/functiontoUint256(int256 value) internalpurereturns (uint256) {
if (value <0) {
revert SafeCastOverflowedIntToUint(value);
}
returnuint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/functiontoInt248(int256 value) internalpurereturns (int248 downcasted) {
downcasted =int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/functiontoInt240(int256 value) internalpurereturns (int240 downcasted) {
downcasted =int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/functiontoInt232(int256 value) internalpurereturns (int232 downcasted) {
downcasted =int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/functiontoInt224(int256 value) internalpurereturns (int224 downcasted) {
downcasted =int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/functiontoInt216(int256 value) internalpurereturns (int216 downcasted) {
downcasted =int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/functiontoInt208(int256 value) internalpurereturns (int208 downcasted) {
downcasted =int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/functiontoInt200(int256 value) internalpurereturns (int200 downcasted) {
downcasted =int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/functiontoInt192(int256 value) internalpurereturns (int192 downcasted) {
downcasted =int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/functiontoInt184(int256 value) internalpurereturns (int184 downcasted) {
downcasted =int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/functiontoInt176(int256 value) internalpurereturns (int176 downcasted) {
downcasted =int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/functiontoInt168(int256 value) internalpurereturns (int168 downcasted) {
downcasted =int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/functiontoInt160(int256 value) internalpurereturns (int160 downcasted) {
downcasted =int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/functiontoInt152(int256 value) internalpurereturns (int152 downcasted) {
downcasted =int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/functiontoInt144(int256 value) internalpurereturns (int144 downcasted) {
downcasted =int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/functiontoInt136(int256 value) internalpurereturns (int136 downcasted) {
downcasted =int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/functiontoInt128(int256 value) internalpurereturns (int128 downcasted) {
downcasted =int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/functiontoInt120(int256 value) internalpurereturns (int120 downcasted) {
downcasted =int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/functiontoInt112(int256 value) internalpurereturns (int112 downcasted) {
downcasted =int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/functiontoInt104(int256 value) internalpurereturns (int104 downcasted) {
downcasted =int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/functiontoInt96(int256 value) internalpurereturns (int96 downcasted) {
downcasted =int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/functiontoInt88(int256 value) internalpurereturns (int88 downcasted) {
downcasted =int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/functiontoInt80(int256 value) internalpurereturns (int80 downcasted) {
downcasted =int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/functiontoInt72(int256 value) internalpurereturns (int72 downcasted) {
downcasted =int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/functiontoInt64(int256 value) internalpurereturns (int64 downcasted) {
downcasted =int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/functiontoInt56(int256 value) internalpurereturns (int56 downcasted) {
downcasted =int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/functiontoInt48(int256 value) internalpurereturns (int48 downcasted) {
downcasted =int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/functiontoInt40(int256 value) internalpurereturns (int40 downcasted) {
downcasted =int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/functiontoInt32(int256 value) internalpurereturns (int32 downcasted) {
downcasted =int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/functiontoInt24(int256 value) internalpurereturns (int24 downcasted) {
downcasted =int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/functiontoInt16(int256 value) internalpurereturns (int16 downcasted) {
downcasted =int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/functiontoInt8(int256 value) internalpurereturns (int8 downcasted) {
downcasted =int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/functiontoInt256(uint256 value) internalpurereturns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positiveif (value >uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
returnint256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/functiontoUint(bool b) internalpurereturns (uint256 u) {
assembly ("memory-safe") {
u :=iszero(iszero(b))
}
}
}
Contract Source Code
File 12 of 14: SafeERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)pragmasolidity ^0.8.20;import {IERC20} from"../IERC20.sol";
import {IERC1363} from"../../../interfaces/IERC1363.sol";
import {Address} from"../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/librarySafeERC20{
/**
* @dev An operation with an ERC-20 token failed.
*/errorSafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/errorSafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/functionsafeTransfer(IERC20 token, address to, uint256 value) internal{
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/functionsafeTransferFrom(IERC20 token, addressfrom, address to, uint256 value) internal{
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/functionsafeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal{
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/functionsafeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal{
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/functionforceApprove(IERC20 token, address spender, uint256 value) internal{
bytesmemory approvalCall =abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/functiontransferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytesmemory data) internal{
if (to.code.length==0) {
safeTransfer(token, to, value);
} elseif (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/functiontransferFromAndCallRelaxed(
IERC1363 token,
addressfrom,
address to,
uint256 value,
bytesmemory data
) internal{
if (to.code.length==0) {
safeTransferFrom(token, from, to, value);
} elseif (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/functionapproveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytesmemory data) internal{
if (to.code.length==0) {
forceApprove(token, to, value);
} elseif (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/function_callOptionalReturn(IERC20 token, bytesmemory data) private{
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success :=call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errorsifiszero(success) {
let ptr :=mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize :=returndatasize()
returnValue :=mload(0)
}
if (returnSize ==0 ? address(token).code.length==0 : returnValue !=1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/function_callOptionalReturnBool(IERC20 token, bytesmemory data) privatereturns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success :=call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize :=returndatasize()
returnValue :=mload(0)
}
return success && (returnSize ==0 ? address(token).code.length>0 : returnValue ==1);
}
}
Contract Source Code
File 13 of 14: SignedMath.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)pragmasolidity ^0.8.20;import {SafeCast} from"./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/librarySignedMath{
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/functionternary(bool condition, int256 a, int256 b) internalpurereturns (int256) {
unchecked {
// branchless ternary works because:// b ^ (a ^ b) == a// b ^ 0 == breturn b ^ ((a ^ b) *int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/functionmax(int256 a, int256 b) internalpurereturns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/functionmin(int256 a, int256 b) internalpurereturns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/functionaverage(int256 a, int256 b) internalpurereturns (int256) {
// Formula from the book "Hacker's Delight"int256 x = (a & b) + ((a ^ b) >>1);
return x + (int256(uint256(x) >>255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/functionabs(int256 n) internalpurereturns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,// taking advantage of the most significant (or "sign" bit) in two's complement representation.// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).int256 mask = n >>255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.returnuint256((n + mask) ^ mask);
}
}
}
Contract Source Code
File 14 of 14: Strings.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)pragmasolidity ^0.8.20;import {Math} from"./math/Math.sol";
import {SignedMath} from"./math/SignedMath.sol";
/**
* @dev String operations.
*/libraryStrings{
bytes16privateconstant HEX_DIGITS ="0123456789abcdef";
uint8privateconstant ADDRESS_LENGTH =20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/errorStringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/functiontoString(uint256 value) internalpurereturns (stringmemory) {
unchecked {
uint256 length = Math.log10(value) +1;
stringmemory buffer =newstring(length);
uint256 ptr;
assembly ("memory-safe") {
ptr :=add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /=10;
if (value ==0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/functiontoStringSigned(int256 value) internalpurereturns (stringmemory) {
returnstring.concat(value <0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/functiontoHexString(uint256 value) internalpurereturns (stringmemory) {
unchecked {
return toHexString(value, Math.log256(value) +1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/functiontoHexString(uint256 value, uint256 length) internalpurereturns (stringmemory) {
uint256 localValue = value;
bytesmemory buffer =newbytes(2* length +2);
buffer[0] ="0";
buffer[1] ="x";
for (uint256 i =2* length +1; i >1; --i) {
buffer[i] = HEX_DIGITS[localValue &0xf];
localValue >>=4;
}
if (localValue !=0) {
revert StringsInsufficientHexLength(value, length);
}
returnstring(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/functiontoHexString(address addr) internalpurereturns (stringmemory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/functiontoChecksumHexString(address addr) internalpurereturns (stringmemory) {
bytesmemory buffer =bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)uint256 hashValue;
assembly ("memory-safe") {
hashValue :=shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i =41; i >1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)if (hashValue &0xf>7&&uint8(buffer[i]) >96) {
// case shift by xoring with 0x20
buffer[i] ^=0x20;
}
hashValue >>=4;
}
returnstring(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/functionequal(stringmemory a, stringmemory b) internalpurereturns (bool) {
returnbytes(a).length==bytes(b).length&&keccak256(bytes(a)) ==keccak256(bytes(b));
}
}