// SPDX-License-Identifier: MIT// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)pragmasolidity ^0.8.0;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
}
Contract Source Code
File 2 of 6: IERC20.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom,
address to,
uint256 amount
) externalreturns (bool);
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)pragmasolidity ^0.8.0;/**
* @dev Standard math utilities missing in the Solidity language.
*/libraryMath{
enumRounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/functionmax(uint256 a, uint256 b) internalpurereturns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/functionmin(uint256 a, uint256 b) internalpurereturns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/functionaverage(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b) / 2 can overflow.return (a & b) + (a ^ b) /2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/functionceilDiv(uint256 a, uint256 b) internalpurereturns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.return a ==0 ? 0 : (a -1) / b +1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/functionmulDiv(uint256 x,
uint256 y,
uint256 denominator
) internalpurereturns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256// variables such that product = prod1 * 2^256 + prod0.uint256 prod0; // Least significant 256 bits of the productuint256 prod1; // Most significant 256 bits of the productassembly {
let mm :=mulmod(x, y, not(0))
prod0 :=mul(x, y)
prod1 :=sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.if (prod1 ==0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.require(denominator > prod1);
///////////////////////////////////////////////// 512 by 256 division.///////////////////////////////////////////////// Make division exact by subtracting the remainder from [prod1 prod0].uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder :=mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 :=sub(prod1, gt(remainder, prod0))
prod0 :=sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.// See https://cs.stackexchange.com/q/138556/92363.// Does not overflow because the denominator cannot be zero at this stage in the function.uint256 twos = denominator & (~denominator +1);
assembly {
// Divide denominator by twos.
denominator :=div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 :=div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos :=add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for// four bits. That is, denominator * inv = 1 mod 2^4.uint256 inverse = (3* denominator) ^2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works// in modular arithmetic, doubling the correct bits in each step.
inverse *=2- denominator * inverse; // inverse mod 2^8
inverse *=2- denominator * inverse; // inverse mod 2^16
inverse *=2- denominator * inverse; // inverse mod 2^32
inverse *=2- denominator * inverse; // inverse mod 2^64
inverse *=2- denominator * inverse; // inverse mod 2^128
inverse *=2- denominator * inverse; // inverse mod 2^256// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/functionmulDiv(uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internalpurereturns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up &&mulmod(x, y, denominator) >0) {
result +=1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/functionsqrt(uint256 a) internalpurereturns (uint256) {
if (a ==0) {
return0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.//// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.//// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`//// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.uint256 result =1<< (log2(a) >>1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision// into the expected uint128 result.unchecked {
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
result = (result + a / result) >>1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/functionsqrt(uint256 a, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >>128>0) {
value >>=128;
result +=128;
}
if (value >>64>0) {
value >>=64;
result +=64;
}
if (value >>32>0) {
value >>=32;
result +=32;
}
if (value >>16>0) {
value >>=16;
result +=16;
}
if (value >>8>0) {
value >>=8;
result +=8;
}
if (value >>4>0) {
value >>=4;
result +=4;
}
if (value >>2>0) {
value >>=2;
result +=2;
}
if (value >>1>0) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog2(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result =log2(value);
return result + (rounding == Rounding.Up &&1<< result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >=10**64) {
value /=10**64;
result +=64;
}
if (value >=10**32) {
value /=10**32;
result +=32;
}
if (value >=10**16) {
value /=10**16;
result +=16;
}
if (value >=10**8) {
value /=10**8;
result +=8;
}
if (value >=10**4) {
value /=10**4;
result +=4;
}
if (value >=10**2) {
value /=10**2;
result +=2;
}
if (value >=10**1) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog10(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up &&10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/functionlog256(uint256 value) internalpurereturns (uint256) {
uint256 result =0;
unchecked {
if (value >>128>0) {
value >>=128;
result +=16;
}
if (value >>64>0) {
value >>=64;
result +=8;
}
if (value >>32>0) {
value >>=32;
result +=4;
}
if (value >>16>0) {
value >>=16;
result +=2;
}
if (value >>8>0) {
result +=1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/functionlog256(uint256 value, Rounding rounding) internalpurereturns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up &&1<< (result *8) < value ? 1 : 0);
}
}
}
Contract Source Code
File 5 of 6: Ownable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)pragmasolidity ^0.8.0;import"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
require(newOwner !=address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Contract Source Code
File 6 of 6: TokenLockup.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.8.17;import"@openzeppelin/contracts/access/Ownable.sol";
import"@openzeppelin/contracts/token/ERC20/IERC20.sol";
import"@openzeppelin/contracts/utils/math/Math.sol";
import"./interfaces/ITokenLockup.sol";
contractTokenLockupisOwnable, ITokenLockup{
addresspublic token;
uint256public startTime;
uint256public claimDelay;
Schedule[] public schedule;
mapping(address=>uint256) public initialLocked;
mapping(address=>uint256) public totalClaimed;
uint256public initialLockedSupply;
uint256public unallocatedSupply;
uint256privateconstant INVERSE_BASIS_POINTS =10_000;
constructor(address _token,
uint256 _startTime,
uint256 _claimDelay,
Schedule[] memory _schedule
) {
require(_startTime >=block.timestamp, 'Invalid startTime');
token = _token;
startTime = _startTime;
claimDelay = _claimDelay;
uint256 scheduleLength = _schedule.length;
uint256 totalPortion;
for (uint256 i; i < scheduleLength; i++) {
totalPortion += _schedule[i].portion;
if (i !=0) {
require(_schedule[i-1].endTime < _schedule[i].endTime, 'Invalid schedule times');
}
schedule.push(_schedule[i]);
}
require(totalPortion == INVERSE_BASIS_POINTS, 'Invalid schedule portions');
}
/**
* @notice Transfers and locks unallocated tokens in escrow from msg.sender
* @param amount Amount of tokens to lock in escrow
*/functionaddTokens(uint256 amount) externalonlyOwner{
require(IERC20(token).transferFrom(msg.sender, address(this), amount));
unallocatedSupply += amount;
}
/**
* @notice Distributes unallocated tokens to recipients
* @param recipients List of addresses to distribute tokens to
* @param amounts List of token amounts to distribute to recipient at respective index
*/functionfund(address[] calldata recipients, uint256[] calldata amounts)
externalonlyOwner{
require(recipients.length== amounts.length);
uint256 _totalAmount =0;
for (uint i; i < amounts.length; ++i) {
uint256 amount = amounts[i];
address recipient = recipients[i];
if (recipient ==address(0)) {
break;
}
_totalAmount += amount;
initialLocked[recipient] += amount;
emit Fund(recipient, amount);
}
initialLockedSupply += _totalAmount;
unallocatedSupply -= _totalAmount;
}
/**
* @notice Retrieves unclaimed unlocked tokens for msg.sender
*/functionclaim() external{
require(block.timestamp> startTime + claimDelay, "Claiming is not available yet");
uint256 claimable = _totalUnlockedOf(msg.sender) - totalClaimed[msg.sender];
totalClaimed[msg.sender] += claimable;
require(IERC20(token).transfer(msg.sender, claimable));
emit Claim(msg.sender, claimable);
}
/**
* @notice Changes the recipient of msg.sender funds
* @param newRecipient New address to transfer the locked funds to
*/functionchangeRecipient(address newRecipient) external{
require(newRecipient !=msg.sender, "newRecipient must not be msg.sender");
uint256 _initialLocked = initialLocked[msg.sender];
uint256 _totalClaimed = totalClaimed[msg.sender];
initialLocked[msg.sender] =0;
totalClaimed[msg.sender] =0;
initialLocked[newRecipient] += _initialLocked;
totalClaimed[newRecipient] += _totalClaimed;
emit ChangeRecipient(msg.sender, newRecipient);
}
/**
* @notice Returns unclaimed unlocked balance for account
* @param account Address to check balance of
* @return Unclaimed unlocked balance
*/functionbalanceOf(address account) externalviewreturns (uint256) {
return _totalUnlockedOf(account) - totalClaimed[account];
}
/**
* @notice Returns unlocked balance for account
* @param account Address to check unlocked balance of
* @return Unlocked balance
*/functionunlockedOf(address account) externalviewreturns (uint256) {
return _totalUnlockedOf(account);
}
/**
* @notice Returns locked balance for account
* @param account Address to check unlocked balance of
* @return Locked balance
*/functionlockedOf(address account) externalviewreturns (uint256) {
return initialLocked[account] - _totalUnlockedOf(account);
}
/**
* @notice Returns total unlocked supply
* @return Total unlocked supply
*/functionunlockedSupply() externalviewreturns (uint256) {
return _totalUnlocked();
}
/**
* @notice Returns total supply that has not unlocked
* @return Total locked supply
*/functionlockedSupply() externalviewreturns (uint256) {
return initialLockedSupply - _totalUnlocked();
}
/**
* @notice Returns unlocked balance for account at specified time
* @param account Address to check unlocked balance of
* @return Unlocked balance
*/function_totalUnlockedOf(address account) internalviewreturns (uint256) {
uint256 locked = initialLocked[account];
return _computeUnlocked(locked, block.timestamp);
}
/**
* @notice Returns total unlocked supply
* @return Total unlocked supply
*/function_totalUnlocked() internalviewreturns (uint256) {
uint256 locked = initialLockedSupply;
return _computeUnlocked(locked, block.timestamp);
}
/**
* @notice Compute and return amount of initial locked tokens that have unlocked based on schedule
* @param locked Initial locked tokens
* @param time Time to check unlocked balance at
* @return Amount of locked tokens that have unlocked
*/function_computeUnlocked(uint256 locked, uint256 time) internalviewreturns (uint256) {
uint256 start = startTime;
if (time < start) {
return0;
}
uint256 unlocked;
uint256 scheduleLength = schedule.length;
for (uint i; i < scheduleLength; i++) {
uint256 portion = schedule[i].portion;
uint256 end = schedule[i].endTime;
if (time < end) {
unlocked += locked * (time - start) * portion / ((end - start) * INVERSE_BASIS_POINTS);
break;
} else {
unlocked += locked * portion / INVERSE_BASIS_POINTS;
start = end;
}
}
return unlocked;
}
}