账户
0x3b...761b
0x3B...761B

0x3B...761B

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.21+commit.d9974bed
语言
Solidity
合同源代码
文件 1 的 10:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
合同源代码
文件 2 的 10:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
合同源代码
文件 3 的 10:IDeltaRewardPoolMultiple.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;

/**
 * @title IDeltaRewardPoolMultiple
 * @dev IDeltaRewardPoolMultiple interface
 * stakePool
 */
interface IDeltaRewardPoolMultiple {
    function getUserStakeInfo(
        address user,
        uint256 positionID
    )
        external
        view
        returns (
            uint256 power,
            uint256 amount,
            uint256 stakeTime,
            uint256 stakeDuration
        );
}
合同源代码
文件 4 的 10:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
合同源代码
文件 5 的 10:IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
合同源代码
文件 6 的 10:Manager.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
pragma abicoder v2;

import "@openzeppelin/contracts/utils/Context.sol";


abstract contract Manager is Context {

    mapping(address => bool) private _accounts;

    modifier onlyManager {
        require(isManager(), "only manager");
        _;
    }

    constructor() {
        _accounts[_msgSender()] = true;
    }

    function isManager(address one) public view returns (bool) {
        return _accounts[one];
    }

    function isManager() public view returns (bool) {
        return isManager(_msgSender());
    }

    function setManager(address one, bool val) public onlyManager {
        require(one != address(0), "address is zero");
        _accounts[one] = val;
    }

    function setManagerBatch(address[] calldata list, bool val) public onlyManager {
        for (uint256 i = 0; i < list.length; i++) {
            setManager(list[i], val);
        }
    }
}
合同源代码
文件 7 的 10:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 8 的 10:ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}
合同源代码
文件 9 的 10:SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
合同源代码
文件 10 的 10:UXLINKTokenRewardPoolMultiple.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;
pragma abicoder v2;

import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IDeltaRewardPoolMultiple} from "../libs/IDeltaRewardPoolMultiple.sol";
import {Manager} from "../libs/Manager.sol";


contract UXLINKTokenRewardPoolMultiple is IDeltaRewardPoolMultiple, ReentrancyGuard, Manager {
    using Address for address;
    using SafeERC20 for IERC20;

    bool private initialized;
    bool public withdrawOpened;

    uint256 public constant monthTime = 30 days;

    // Info of each user.
    struct UserInfo {
        uint256 amount; // How many LP tokens the user has provided.
        uint256 stakeTime; // month; limit = 36;
        uint256 stakeDuration;
        uint256 power; // How much weight the user has provided.
        uint256 reward; // Reward
        uint256 allReward; // Reward
        uint256 rewardPerTokenPaid;
    }
    address public devAddress;

    uint256 public constant MIN_DEPOSIT_AMOUNT = 0.00001 ether;
    uint256 public constant MIN_WITHDRAW_AMOUNT = 0.00001 ether;

    uint256 public constant basRate = 100000;
    uint256 public punishRate = 10000; // basRate = 100000; limit = 36;
    uint256[] public stakeTimeRatio; // basRate = 100000; limit = 36;

    // tokens of the pool!
    address public rewardToken;
    address public stakedToken;

    // all reward for pool
    uint256 public totalReward;

    uint256 public curCycleStartTime;
    uint256 public startStakeTime;

    uint256 public poolSurplusReward;
    uint256 public curCycleReward;
    uint256 public nextCycleReward;
    uint256 public nextDuration;

    uint256 public cycleTimes;
    uint256 public periodFinish;

    uint256 public totalPower;
    uint256 public totalAmount;

    uint256 public rewardPerTokenStored;
    uint256 public lastUpdateTime;
    uint256 public rewardRate;

    // Info of each user that stakes tokens.
    mapping(address => UserInfo[]) public userInfo;

    event Stake(
        address indexed user,
        uint256 positionID,
        uint256 amount,
        uint256 power,
        uint256 duration
    );

    event Withdraw(
        address indexed user,
        uint256 positionID,
        uint256 punish,
        uint256 amount,
        uint256 power
    );
    event Harvest(address indexed user, uint256 amount, uint256 positionID);
    event SetStakeTimeRatio(uint256[] _stakeTimeRatio);
    event SetPunishRate(uint256 punishRate);
    event AddStakeTimeRatio(uint256[] _stakeTimeRatio);
    event AddNextCycleReward(uint256 rewardAmount);
    event SetRewardConfig(uint256 nextCycleReward, uint256 nextDuration);
    event StartNewEpoch(uint256 reward, uint256 duration);

    constructor(){
        setManager(msg.sender,true);
    }

    function initialize(
        address _devAddress,
        address _rewardToken,
        address _stakedToken,
        uint256 _curCycleStartTime,
        uint256 _duration,
        uint256 _nextCycleReward,
        uint256[] memory _stakeTimeRatio
    ) external onlyManager {
        require(!initialized, "initialize: Already initialized!");
        require( _stakeTimeRatio.length<=36, "stakeTimeRatio length is invalid!");

        withdrawOpened = true;
        devAddress = _devAddress;

        rewardToken = _rewardToken;
        stakedToken = _stakedToken;
        curCycleStartTime = _curCycleStartTime - _duration; // start time - duration
        periodFinish = _curCycleStartTime;
        nextDuration = _duration;
        startStakeTime = periodFinish;
        nextCycleReward = _nextCycleReward;
        stakeTimeRatio = _stakeTimeRatio;
        punishRate = 10000;

        initialized = true;
    }

    //for reward
    function notifyMintAmount(uint256 addNextReward) external onlyManager {
        uint256 balanceBefore = IERC20(rewardToken).balanceOf(address(this));
        IERC20(rewardToken).safeTransferFrom(
            msg.sender,
            address(this),
            addNextReward
        );
        uint256 balanceEnd = IERC20(rewardToken).balanceOf(address(this));

        poolSurplusReward = poolSurplusReward + (balanceEnd - balanceBefore);
        emit AddNextCycleReward(poolSurplusReward);
    }

    function setNextCycleReward(
        uint256 _nextCycleReward,
        uint256 _nextDuration
    ) external onlyManager {
        nextCycleReward = _nextCycleReward;
        nextDuration = _nextDuration;
        emit SetRewardConfig(nextCycleReward, nextDuration);
    }

    function setStakeTimeRatio(
        uint256[] memory _stakeTimeRatio
    ) external onlyManager {
        require( _stakeTimeRatio.length<=36, "stakeTimeRatio length is invalid!");
        stakeTimeRatio = _stakeTimeRatio;
        emit SetStakeTimeRatio(_stakeTimeRatio);
    }

    function setPunishRate(uint256 _punishRate) external onlyManager {
        punishRate = _punishRate;
        emit SetPunishRate(_punishRate);
    }

    function setWithdrawOpened(bool _opened) external onlyManager {
        withdrawOpened = _opened;
    }

    function addStakeTimeRatio(
        uint256[] memory _stakeTimeRatio
    ) external onlyManager {
        require(_stakeTimeRatio.length <= 36, "stake time Ratio length is too long");
        for (uint256 i = 0; i < _stakeTimeRatio.length; i++) {
            stakeTimeRatio.push(_stakeTimeRatio[i]);
        }
        emit AddStakeTimeRatio(_stakeTimeRatio);
    }

    modifier checkNextEpoch() {
        if (block.timestamp >= periodFinish) {
            curCycleReward = nextCycleReward;
            require(
                poolSurplusReward >= nextCycleReward,
                "poolSurplusReward is not enough"
            );
            poolSurplusReward = poolSurplusReward - nextCycleReward;
            curCycleStartTime = block.timestamp;
            periodFinish = block.timestamp + (nextDuration);
            cycleTimes++;
            lastUpdateTime = curCycleStartTime;
            rewardRate = curCycleReward / (nextDuration);
            totalReward = totalReward + (curCycleReward);
            emit StartNewEpoch(curCycleReward, nextDuration);
        }
        _;
    }

    modifier updateReward(address account) {
        rewardPerTokenStored = rewardPerToken();
        lastUpdateTime = lastTimeRewardApplicable();
        if (account != address(0)) {
             UserInfo[] storage users = userInfo[account];
            for (uint256 i = 0; i < users.length; i++) {
                if (users[i].power > 0) {
                    users[i].reward = earned(account, i);
                    users[i].rewardPerTokenPaid = rewardPerTokenStored;
                }
            }
        }
        _;
    }

    function rewardPerToken() public view returns (uint256) {
        if (totalSupply() == 0) {
            return rewardPerTokenStored;
        }
        return
            rewardPerTokenStored +
            (((lastTimeRewardApplicable() - lastUpdateTime) *
                rewardRate *
                1e18) / totalSupply());
    }

    function stakeForAddress(
        uint256 _amount,
        uint256 _durationType,
        address _stakerAddress
    ) external updateReward(_stakerAddress) checkNextEpoch onlyManager {
        // check stake amount
        require(_stakerAddress != address(0), "_stakerAddress is empty");
        require(block.timestamp >= startStakeTime, "not start");
        require(_amount > 0, "Cannot stake 0");
        require(_durationType > 0, "stake time is too short");
        require(_durationType <= 36, "stake time is too long");
        require( _amount > MIN_DEPOSIT_AMOUNT, "Deposit amount must be greater than MIN_DEPOSIT_AMOUNT");

        // transfer token to this contract
        uint256 balanceBefore = IERC20(stakedToken).balanceOf(address(this));
        IERC20(stakedToken).safeTransferFrom(
            msg.sender,
            address(this),
            _amount
        );
        uint256 balanceEnd = IERC20(stakedToken).balanceOf(address(this));
        uint256 currentAmount = balanceEnd - balanceBefore;
        uint256 stakePower = (currentAmount * (stakeTimeRatio[_durationType])) /
            (basRate);
        
        userInfo[_stakerAddress].push(UserInfo(currentAmount, block.timestamp, _durationType, stakePower, 0, 0, rewardPerTokenStored));
        uint256 positionID = userInfo[_stakerAddress].length - 1;

        // update total info
        totalAmount = totalAmount + (currentAmount);
        totalPower = totalPower + (stakePower);

        emit Stake(
            _stakerAddress,
            positionID,
            currentAmount,
            stakePower,
            _durationType
        );
    }

    function stake(
        uint256 _amount,
        uint256 _durationType
    ) external updateReward(msg.sender) checkNextEpoch nonReentrant {
        // check stake amount
        require(block.timestamp >= startStakeTime, "not start");
        require(_amount > 0, "Cannot stake 0");
        require(_durationType > 0, "stake time is too short");
        require(_durationType <= 36, "stake time is too long");
        require( _amount > MIN_DEPOSIT_AMOUNT, "Deposit amount must be greater than MIN_DEPOSIT_AMOUNT");

        // transfer token to this contract
        uint256 balanceBefore = IERC20(stakedToken).balanceOf(address(this));
        IERC20(stakedToken).safeTransferFrom(
            msg.sender,
            address(this),
            _amount
        );
        uint256 balanceEnd = IERC20(stakedToken).balanceOf(address(this));
        uint256 currentAmount = balanceEnd - balanceBefore;
        uint256 stakePower = (currentAmount * (stakeTimeRatio[_durationType])) /
            (basRate);
        
        userInfo[msg.sender].push(UserInfo(currentAmount, block.timestamp, _durationType, stakePower, 0, 0, rewardPerTokenStored));
        uint256 positionID = userInfo[msg.sender].length - 1;

        // update total info
        totalAmount = totalAmount + (currentAmount);
        totalPower = totalPower + (stakePower);

        emit Stake(
            msg.sender,
            positionID,
            currentAmount,
            stakePower,
            _durationType
        );
    }

    function fixUpdateUserPower(
        address user, 
        uint256 positionID
    ) external updateReward(user) nonReentrant {
        UserInfo storage updateUser = userInfo[user][positionID];
        uint256 beforePower = updateUser.power;
        uint256 userPower = (updateUser.amount *
            (stakeTimeRatio[updateUser.stakeDuration])) / (basRate);
        require(userPower != beforePower, "userPower does not change");
        updateUser.power = userPower;
        totalPower = totalPower - beforePower + (userPower);
    }

    // Withdraw without caring about punish
    function withdraw(
        uint256 amount, 
        uint256 positionID
    ) external updateReward(msg.sender) nonReentrant {
        require(
            withdrawOpened,
            "Have not opened"
        );
        require(
            amount > MIN_WITHDRAW_AMOUNT,
            "Withdraw amount must be greater than MIN_WITHDRAW_AMOUNT"
        );
        UserInfo storage user = userInfo[msg.sender][positionID];
        require(user.amount > 0, "no stake amount");
        require(user.amount >= amount, "Overdrawing");

        uint256 reward = userInfo[msg.sender][positionID].reward;
        if (reward > 0) {
            user.allReward = user.allReward + (reward);
            user.reward = 0;
            safeTokenTransfer(msg.sender, reward);
            emit Harvest(msg.sender, reward, positionID);
        }

        // calculate withdraw power
        uint256 withdrawPower = (amount *
            (stakeTimeRatio[user.stakeDuration])) / (basRate);

        // update user info
        user.amount = user.amount - amount;
        user.power = user.power - withdrawPower;

        // update total info
        totalAmount = totalAmount - amount;
        totalPower = totalPower - withdrawPower;

        uint256 punish = punishStake(msg.sender, amount, positionID);
        // transfer token to user
        if (punish > 0) {
            IERC20(stakedToken).safeTransfer(devAddress, punish);
        }

        IERC20(stakedToken).safeTransfer(msg.sender, amount - punish);

        emit Withdraw(msg.sender, positionID, punish, amount, withdrawPower);
    }

    // (1-(lockTime/stakeTime))*10%
    function punishStake(
        address user,
        uint256 withdrawAmount, 
        uint256 positionID
    ) public view returns (uint256) {
        UserInfo memory _userInfo = userInfo[user][positionID];
        uint256 stakeTime = _userInfo.stakeTime;
        uint256 _stakeDuration = _userInfo.stakeDuration;
        uint256 shouldDuration = _stakeDuration * monthTime;
        uint256 stopStake = stakeTime + shouldDuration;
        if (stopStake > block.timestamp) {
            uint256 lockTime = block.timestamp - stakeTime;
            uint256 punishRatio = (((1e18 -
                ((lockTime * 1e18) / shouldDuration)) * punishRate) / basRate);
            return (punishRatio * withdrawAmount) / 1e18;
        } else {
            return 0;
        }
    }

    function harvest(uint256 positionID)
        external
        updateReward(msg.sender)
        nonReentrant
    {
        require(
            withdrawOpened,
            "Have not opened"
        );
        uint256 reward = userInfo[msg.sender][positionID].reward;
        require(reward > 0, "no reward");
        UserInfo storage user = userInfo[msg.sender][positionID];
        user.allReward = user.allReward + (reward);
        user.reward = 0;
        safeTokenTransfer(msg.sender, reward);
        emit Harvest(msg.sender, reward, positionID);
    }

    function lastTimeRewardApplicable() internal view returns (uint256) {
        return Math.min(block.timestamp, periodFinish);
    }

    function earned(address account, uint256 positionID) public view returns (uint256) {
        UserInfo memory user = userInfo[account][positionID];
        return
            (user.power * (rewardPerToken() - (user.rewardPerTokenPaid))) /
            (1e18) +
            (user.reward);
    }

    function totalSupply() public view returns (uint256) {
        return totalPower;
    }

    function getUserStakeInfo(
        address user,
        uint256 positionID
    )
        external
        view
        override
        returns (
            uint256 power,
            uint256 amount,
            uint256 stakeTime,
            uint256 stakeDuration
        )
    {
        UserInfo memory _userInfo = userInfo[user][positionID];

        power = _userInfo.power;
        amount = _userInfo.amount;
        stakeTime = _userInfo.stakeTime;
        stakeDuration = _userInfo.stakeDuration;
    }

    // Safe slt transfer function, just in case if rounding error causes pool to not have enough SLTs.
    function safeTokenTransfer(address _to, uint256 _amount) internal {
        require(rewardToken != address(0x0), "No harvest began");
        uint256 tokenBalance = IERC20(rewardToken).balanceOf(address(this));
        if (_amount > tokenBalance) {
            IERC20(rewardToken).safeTransfer(_to, tokenBalance);
        } else {
            IERC20(rewardToken).safeTransfer(_to, _amount);
        }
    }
}
设置
{
  "compilationTarget": {
    "contracts/staking/UXLINKTokenRewardPoolMultiple.sol": "UXLINKTokenRewardPoolMultiple"
  },
  "evmVersion": "shanghai",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"rewardAmount","type":"uint256"}],"name":"AddNextCycleReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"_stakeTimeRatio","type":"uint256[]"}],"name":"AddStakeTimeRatio","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"Harvest","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"punishRate","type":"uint256"}],"name":"SetPunishRate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"nextCycleReward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nextDuration","type":"uint256"}],"name":"SetRewardConfig","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"_stakeTimeRatio","type":"uint256[]"}],"name":"SetStakeTimeRatio","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"positionID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"power","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"duration","type":"uint256"}],"name":"StartNewEpoch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"positionID","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"punish","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"power","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"MIN_DEPOSIT_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_WITHDRAW_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_stakeTimeRatio","type":"uint256[]"}],"name":"addStakeTimeRatio","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"basRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curCycleReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curCycleStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cycleTimes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"devAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"earned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"fixUpdateUserPower","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"getUserStakeInfo","outputs":[{"internalType":"uint256","name":"power","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"stakeTime","type":"uint256"},{"internalType":"uint256","name":"stakeDuration","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_devAddress","type":"address"},{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"address","name":"_stakedToken","type":"address"},{"internalType":"uint256","name":"_curCycleStartTime","type":"uint256"},{"internalType":"uint256","name":"_duration","type":"uint256"},{"internalType":"uint256","name":"_nextCycleReward","type":"uint256"},{"internalType":"uint256[]","name":"_stakeTimeRatio","type":"uint256[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isManager","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"one","type":"address"}],"name":"isManager","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"monthTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextCycleReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"addNextReward","type":"uint256"}],"name":"notifyMintAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"periodFinish","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolSurplusReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"punishRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"withdrawAmount","type":"uint256"},{"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"punishStake","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPerTokenStored","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"one","type":"address"},{"internalType":"bool","name":"val","type":"bool"}],"name":"setManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"list","type":"address[]"},{"internalType":"bool","name":"val","type":"bool"}],"name":"setManagerBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nextCycleReward","type":"uint256"},{"internalType":"uint256","name":"_nextDuration","type":"uint256"}],"name":"setNextCycleReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_punishRate","type":"uint256"}],"name":"setPunishRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_stakeTimeRatio","type":"uint256[]"}],"name":"setStakeTimeRatio","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_opened","type":"bool"}],"name":"setWithdrawOpened","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_durationType","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_durationType","type":"uint256"},{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"stakeForAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"stakeTimeRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakedToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startStakeTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"stakeTime","type":"uint256"},{"internalType":"uint256","name":"stakeDuration","type":"uint256"},{"internalType":"uint256","name":"power","type":"uint256"},{"internalType":"uint256","name":"reward","type":"uint256"},{"internalType":"uint256","name":"allReward","type":"uint256"},{"internalType":"uint256","name":"rewardPerTokenPaid","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"positionID","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawOpened","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]