// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;import"../utils/EnumerableSet.sol";
import"../utils/Address.sol";
import"../GSN/Context.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/abstractcontractAccessControlisContext{
usingEnumerableSetforEnumerableSet.AddressSet;
usingAddressforaddress;
structRoleData {
EnumerableSet.AddressSet members;
bytes32 adminRole;
}
mapping (bytes32=> RoleData) private _roles;
bytes32publicconstant DEFAULT_ADMIN_ROLE =0x00;
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/eventRoleAdminChanged(bytes32indexed role, bytes32indexed previousAdminRole, bytes32indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {_setupRole}.
*/eventRoleGranted(bytes32indexed role, addressindexed account, addressindexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/eventRoleRevoked(bytes32indexed role, addressindexed account, addressindexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/functionhasRole(bytes32 role, address account) publicviewreturns (bool) {
return _roles[role].members.contains(account);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/functiongetRoleMemberCount(bytes32 role) publicviewreturns (uint256) {
return _roles[role].members.length();
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/functiongetRoleMember(bytes32 role, uint256 index) publicviewreturns (address) {
return _roles[role].members.at(index);
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/functiongetRoleAdmin(bytes32 role) publicviewreturns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/functiongrantRole(bytes32 role, address account) publicvirtual{
require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant");
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/functionrevokeRole(bytes32 role, address account) publicvirtual{
require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke");
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/functionrenounceRole(bytes32 role, address account) publicvirtual{
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*/function_setupRole(bytes32 role, address account) internalvirtual{
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/function_setRoleAdmin(bytes32 role, bytes32 adminRole) internalvirtual{
emit RoleAdminChanged(role, _roles[role].adminRole, adminRole);
_roles[role].adminRole = adminRole;
}
function_grantRole(bytes32 role, address account) private{
if (_roles[role].members.add(account)) {
emit RoleGranted(role, account, _msgSender());
}
}
function_revokeRole(bytes32 role, address account) private{
if (_roles[role].members.remove(account)) {
emit RoleRevoked(role, account, _msgSender());
}
}
}
Contract Source Code
File 2 of 17: Address.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.6.2;/**
* @dev Collection of functions related to the address type
*/libraryAddress{
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/functionisContract(address account) internalviewreturns (bool) {
// This method relies in extcodesize, which returns 0 for contracts in// construction, since the code is only stored at the end of the// constructor execution.uint256 size;
// solhint-disable-next-line no-inline-assemblyassembly { size :=extcodesize(account) }
return size >0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/functionsendValue(addresspayable recipient, uint256 amount) internal{
require(address(this).balance>= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data) internalreturns (bytesmemory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCall(address target, bytesmemory data, stringmemory errorMessage) internalreturns (bytesmemory) {
return _functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value) internalreturns (bytesmemory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/functionfunctionCallWithValue(address target, bytesmemory data, uint256 value, stringmemory errorMessage) internalreturns (bytesmemory) {
require(address(this).balance>= value, "Address: insufficient balance for call");
return _functionCallWithValue(target, data, value, errorMessage);
}
function_functionCallWithValue(address target, bytesmemory data, uint256 weiValue, stringmemory errorMessage) privatereturns (bytesmemory) {
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytesmemory returndata) = target.call{ value: weiValue }(data);
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if presentif (returndata.length>0) {
// The easiest way to bubble the revert reason is using memory via assembly// solhint-disable-next-line no-inline-assemblyassembly {
let returndata_size :=mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
Contract Source Code
File 3 of 17: ApeToken.sol
Contract Source Code
File 4 of 17: Context.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (addresspayable) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytesmemory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691returnmsg.data;
}
}
Contract Source Code
File 5 of 17: ERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;import"../../GSN/Context.sol";
import"./IERC20.sol";
import"../../math/SafeMath.sol";
import"../../utils/Address.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/contractERC20isContext, IERC20{
usingSafeMathforuint256;
usingAddressforaddress;
mapping (address=>uint256) private _balances;
mapping (address=>mapping (address=>uint256)) private _allowances;
uint256private _totalSupply;
stringprivate _name;
stringprivate _symbol;
uint8private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/constructor (stringmemory name, stringmemory symbol) public{
_name = name;
_symbol = symbol;
_decimals =18;
}
/**
* @dev Returns the name of the token.
*/functionname() publicviewreturns (stringmemory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/functionsymbol() publicviewreturns (stringmemory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/functiondecimals() publicviewreturns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/functiontotalSupply() publicviewoverridereturns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/functionbalanceOf(address account) publicviewoverridereturns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/functiontransfer(address recipient, uint256 amount) publicvirtualoverridereturns (bool) {
_transfer(_msgSender(), recipient, amount);
returntrue;
}
/**
* @dev See {IERC20-allowance}.
*/functionallowance(address owner, address spender) publicviewvirtualoverridereturns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionapprove(address spender, uint256 amount) publicvirtualoverridereturns (bool) {
_approve(_msgSender(), spender, amount);
returntrue;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20};
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/functiontransferFrom(address sender, address recipient, uint256 amount) publicvirtualoverridereturns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
returntrue;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/functionincreaseAllowance(address spender, uint256 addedValue) publicvirtualreturns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
returntrue;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/functiondecreaseAllowance(address spender, uint256 subtractedValue) publicvirtualreturns (bool) {
_approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
returntrue;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/function_transfer(address sender, address recipient, uint256 amount) internalvirtual{
require(sender !=address(0), "ERC20: transfer from the zero address");
require(recipient !=address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/function_mint(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/function_burn(address account, uint256 amount) internalvirtual{
require(account !=address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/function_approve(address owner, address spender, uint256 amount) internalvirtual{
require(owner !=address(0), "ERC20: approve from the zero address");
require(spender !=address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/function_setupDecimals(uint8 decimals_) internal{
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/function_beforeTokenTransfer(addressfrom, address to, uint256 amount) internalvirtual{ }
}
Contract Source Code
File 6 of 17: ERC20Burnable.sol
Contract Source Code
File 7 of 17: ERC20Presaleable.sol
Contract Source Code
File 8 of 17: ERC20Vestable.sol
Contract Source Code
File 9 of 17: EnumerableSet.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256`
* (`UintSet`) are supported.
*/libraryEnumerableSet{
// To implement this library for multiple types with as little code// repetition as possible, we write it in terms of a generic Set type with// bytes32 values.// The Set implementation uses private functions, and user-facing// implementations (such as AddressSet) are just wrappers around the// underlying Set.// This means that we can only create new EnumerableSets for types that fit// in bytes32.structSet {
// Storage of set valuesbytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0// means a value is not in the set.mapping (bytes32=>uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/function_add(Set storage set, bytes32 value) privatereturns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
returntrue;
} else {
returnfalse;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/function_remove(Set storage set, bytes32 value) privatereturns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slotuint256 valueIndex = set._indexes[value];
if (valueIndex !=0) { // Equivalent to contains(set, value)// To delete an element from the _values array in O(1), we swap the element to delete with the last one in// the array, and then remove the last element (sometimes called as 'swap and pop').// This modifies the order of the array, as noted in {at}.uint256 toDeleteIndex = valueIndex -1;
uint256 lastIndex = set._values.length-1;
// When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs// so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement.bytes32 lastvalue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastvalue;
// Update the index for the moved value
set._indexes[lastvalue] = toDeleteIndex +1; // All indexes are 1-based// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slotdelete set._indexes[value];
returntrue;
} else {
returnfalse;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/function_contains(Set storage set, bytes32 value) privateviewreturns (bool) {
return set._indexes[value] !=0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/function_length(Set storage set) privateviewreturns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/function_at(Set storage set, uint256 index) privateviewreturns (bytes32) {
require(set._values.length> index, "EnumerableSet: index out of bounds");
return set._values[index];
}
// AddressSetstructAddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(AddressSet storage set, address value) internalreturns (bool) {
return _add(set._inner, bytes32(uint256(value)));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(AddressSet storage set, address value) internalreturns (bool) {
return _remove(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(AddressSet storage set, address value) internalviewreturns (bool) {
return _contains(set._inner, bytes32(uint256(value)));
}
/**
* @dev Returns the number of values in the set. O(1).
*/functionlength(AddressSet storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(AddressSet storage set, uint256 index) internalviewreturns (address) {
returnaddress(uint256(_at(set._inner, index)));
}
// UintSetstructUintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/functionadd(UintSet storage set, uint256 value) internalreturns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/functionremove(UintSet storage set, uint256 value) internalreturns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/functioncontains(UintSet storage set, uint256 value) internalviewreturns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values on the set. O(1).
*/functionlength(UintSet storage set) internalviewreturns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/functionat(UintSet storage set, uint256 index) internalviewreturns (uint256) {
returnuint256(_at(set._inner, index));
}
}
Contract Source Code
File 10 of 17: IERC20.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Returns the amount of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address recipient, uint256 amount) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 amount) externalreturns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(address sender, address recipient, uint256 amount) externalreturns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
}
// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/contractReentrancyGuard{
// Booleans are more expensive than uint256 or any type that takes up a full// word because each write operation emits an extra SLOAD to first read the// slot's contents, replace the bits taken up by the boolean, and then write// back. This is the compiler's defense against contract upgrades and// pointer aliasing, and it cannot be disabled.// The values being non-zero value makes deployment a bit more expensive,// but in exchange the refund on every call to nonReentrant will be lower in// amount. Since refunds are capped to a percentage of the total// transaction's gas, it is best to keep them low in cases like this one, to// increase the likelihood of the full refund coming into effect.uint256privateconstant _NOT_ENTERED =1;
uint256privateconstant _ENTERED =2;
uint256private _status;
constructor () internal{
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/modifiernonReentrant() {
// On the first call to nonReentrant, _notEntered will be truerequire(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
_;
// By storing the original value once again, a refund is triggered (see// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
}
Contract Source Code
File 15 of 17: RoleAware.sol
Contract Source Code
File 16 of 17: SafeMath.sol
// SPDX-License-Identifier: MITpragmasolidity ^0.6.0;/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/librarySafeMath{
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/functionadd(uint256 a, uint256 b) internalpurereturns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/functionsub(uint256 a, uint256 b) internalpurereturns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/functionsub(uint256 a, uint256 b, stringmemory errorMessage) internalpurereturns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/functionmul(uint256 a, uint256 b) internalpurereturns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the// benefit is lost if 'b' is also tested.// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522if (a ==0) {
return0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functiondiv(uint256 a, uint256 b) internalpurereturns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functiondiv(uint256 a, uint256 b, stringmemory errorMessage) internalpurereturns (uint256) {
require(b >0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't holdreturn c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functionmod(uint256 a, uint256 b) internalpurereturns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/functionmod(uint256 a, uint256 b, stringmemory errorMessage) internalpurereturns (uint256) {
require(b !=0, errorMessage);
return a % b;
}
}