// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library to encode strings in Base64.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol)
/// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <brecht@loopring.org>.
library Base64 {
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// See: https://datatracker.ietf.org/doc/html/rfc4648
/// @param fileSafe Whether to replace '+' with '-' and '/' with '_'.
/// @param noPadding Whether to strip away the padding.
function encode(bytes memory data, bool fileSafe, bool noPadding)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let dataLength := mload(data)
if dataLength {
// Multiply by 4/3 rounded up.
// The `shl(2, ...)` is equivalent to multiplying by 4.
let encodedLength := shl(2, div(add(dataLength, 2), 3))
// Set `result` to point to the start of the free memory.
result := mload(0x40)
// Store the table into the scratch space.
// Offsetted by -1 byte so that the `mload` will load the character.
// We will rewrite the free memory pointer at `0x40` later with
// the allocated size.
// The magic constant 0x0230 will translate "-_" + "+/".
mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef")
mstore(0x3f, sub("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0230)))
// Skip the first slot, which stores the length.
let ptr := add(result, 0x20)
let end := add(ptr, encodedLength)
// Run over the input, 3 bytes at a time.
for {} 1 {} {
data := add(data, 3) // Advance 3 bytes.
let input := mload(data)
// Write 4 bytes. Optimized for fewer stack operations.
mstore8(0, mload(and(shr(18, input), 0x3F)))
mstore8(1, mload(and(shr(12, input), 0x3F)))
mstore8(2, mload(and(shr(6, input), 0x3F)))
mstore8(3, mload(and(input, 0x3F)))
mstore(ptr, mload(0x00))
ptr := add(ptr, 4) // Advance 4 bytes.
if iszero(lt(ptr, end)) { break }
}
mstore(0x40, add(end, 0x20)) // Allocate the memory.
// Equivalent to `o = [0, 2, 1][dataLength % 3]`.
let o := div(2, mod(dataLength, 3))
// Offset `ptr` and pad with '='. We can simply write over the end.
mstore(sub(ptr, o), shl(240, 0x3d3d))
// Set `o` to zero if there is padding.
o := mul(iszero(iszero(noPadding)), o)
mstore(sub(ptr, o), 0) // Zeroize the slot after the string.
mstore(result, sub(encodedLength, o)) // Store the length.
}
}
}
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// Equivalent to `encode(data, false, false)`.
function encode(bytes memory data) internal pure returns (string memory result) {
result = encode(data, false, false);
}
/// @dev Encodes `data` using the base64 encoding described in RFC 4648.
/// Equivalent to `encode(data, fileSafe, false)`.
function encode(bytes memory data, bool fileSafe)
internal
pure
returns (string memory result)
{
result = encode(data, fileSafe, false);
}
/// @dev Decodes base64 encoded `data`.
///
/// Supports:
/// - RFC 4648 (both standard and file-safe mode).
/// - RFC 3501 (63: ',').
///
/// Does not support:
/// - Line breaks.
///
/// Note: For performance reasons,
/// this function will NOT revert on invalid `data` inputs.
/// Outputs for invalid inputs will simply be undefined behaviour.
/// It is the user's responsibility to ensure that the `data`
/// is a valid base64 encoded string.
function decode(string memory data) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
let dataLength := mload(data)
if dataLength {
let decodedLength := mul(shr(2, dataLength), 3)
for {} 1 {} {
// If padded.
if iszero(and(dataLength, 3)) {
let t := xor(mload(add(data, dataLength)), 0x3d3d)
// forgefmt: disable-next-item
decodedLength := sub(
decodedLength,
add(iszero(byte(30, t)), iszero(byte(31, t)))
)
break
}
// If non-padded.
decodedLength := add(decodedLength, sub(and(dataLength, 3), 1))
break
}
result := mload(0x40)
// Write the length of the bytes.
mstore(result, decodedLength)
// Skip the first slot, which stores the length.
let ptr := add(result, 0x20)
let end := add(ptr, decodedLength)
// Load the table into the scratch space.
// Constants are optimized for smaller bytecode with zero gas overhead.
// `m` also doubles as the mask of the upper 6 bits.
let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc
mstore(0x5b, m)
mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064)
mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4)
for {} 1 {} {
// Read 4 bytes.
data := add(data, 4)
let input := mload(data)
// Write 3 bytes.
// forgefmt: disable-next-item
mstore(ptr, or(
and(m, mload(byte(28, input))),
shr(6, or(
and(m, mload(byte(29, input))),
shr(6, or(
and(m, mload(byte(30, input))),
shr(6, mload(byte(31, input)))
))
))
))
ptr := add(ptr, 3)
if iszero(lt(ptr, end)) { break }
}
mstore(0x40, add(end, 0x20)) // Allocate the memory.
mstore(end, 0) // Zeroize the slot after the bytes.
mstore(0x60, 0) // Restore the zero slot.
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
contract CommitReveal {
error InvalidCommitment(uint256 committedTimestamp);
uint256 private constant INVALID_COMMITMENT_SELECTOR = 0x31e63ea0;
uint256 public immutable COMMITMENT_LIFESPAN;
uint256 public immutable COMMITMENT_DELAY;
constructor(uint256 commitmentLifespan, uint256 commitmentDelay) {
COMMITMENT_LIFESPAN = commitmentLifespan;
COMMITMENT_DELAY = commitmentDelay;
}
///@dev mapping of user to key to commitment hash to timestamp.
mapping(address user => mapping(bytes32 commitment => uint256 timestamp)) public commitments;
/**
* @notice Commit a hash to the contract, to be retrieved and verified after a delay. A commitment is valid only
* after COMMITMENT_DELAY seconds have passed, and is only valid for COMMITMENT_LIFESPAN seconds.
* @param commitment The hash to commit.
*/
function commit(bytes32 commitment) public {
commitments[msg.sender][commitment] = block.timestamp;
}
/**
* @dev Assert that a commitment has been made and is within a valid time
* window.
* @param computedCommitmentHash The derived commitment hash to verify.
*/
function _assertCommittedReveal(bytes32 computedCommitmentHash) internal view {
// retrieve the timestamp of the commitment (if it exists)
uint256 retrievedTimestamp = commitments[msg.sender][computedCommitmentHash];
// compute the time difference
uint256 timeDiff;
// unchecked; assume blockchain time is monotonically increasing
unchecked {
timeDiff = block.timestamp - retrievedTimestamp;
}
uint256 commitmentLifespan = COMMITMENT_LIFESPAN;
uint256 commitmentDelay = COMMITMENT_DELAY;
assembly {
// if the time difference is greater than the commitment lifespan,
// the commitment has expired
// if the time difference is less than the commitment delay, the
// commitment is pending
let invalidCommitment := or(gt(timeDiff, commitmentLifespan), lt(timeDiff, commitmentDelay))
if invalidCommitment {
mstore(0, INVALID_COMMITMENT_SELECTOR)
mstore(0x20, retrievedTimestamp)
revert(0x1c, 0x24)
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple ERC721 implementation with storage hitchhiking.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC721.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC721/ERC721.sol)
/// Note:
/// The ERC721 standard allows for self-approvals.
/// For performance, this implementation WILL NOT revert for such actions.
/// Please add any checks with overrides if desired.
abstract contract ERC721 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev An account can hold up to 4294967295 tokens.
uint256 internal constant _MAX_ACCOUNT_BALANCE = 0xffffffff;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Only the token owner or an approved account can manage the token.
error NotOwnerNorApproved();
/// @dev The token does not exist.
error TokenDoesNotExist();
/// @dev The token already exists.
error TokenAlreadyExists();
/// @dev Cannot query the balance for the zero address.
error BalanceQueryForZeroAddress();
/// @dev Cannot mint or transfer to the zero address.
error TransferToZeroAddress();
/// @dev The token must be owned by `from`.
error TransferFromIncorrectOwner();
/// @dev The recipient's balance has overflowed.
error AccountBalanceOverflow();
/// @dev Cannot safely transfer to a contract that does not implement
/// the ERC721Receiver interface.
error TransferToNonERC721ReceiverImplementer();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Emitted when token `id` is transferred from `from` to `to`.
event Transfer(address indexed from, address indexed to, uint256 indexed id);
/// @dev Emitted when `owner` enables `account` to manage the `id` token.
event Approval(address indexed owner, address indexed account, uint256 indexed id);
/// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens.
event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved);
/// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
uint256 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
/// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
uint256 private constant _APPROVAL_EVENT_SIGNATURE =
0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
/// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`.
uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE =
0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership data slot of `id` is given by:
/// ```
/// mstore(0x00, id)
/// mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
/// let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
/// ```
/// Bits Layout:
// - [0..159] `addr`
// - [160..223] `extraData`
///
/// The approved address slot is given by: `add(1, ownershipSlot)`.
///
/// See: https://notes.ethereum.org/%40vbuterin/verkle_tree_eip
///
/// The balance slot of `owner` is given by:
/// ```
/// mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
/// mstore(0x00, owner)
/// let balanceSlot := keccak256(0x0c, 0x1c)
/// ```
/// Bits Layout:
/// - [0..31] `balance`
/// - [32..225] `aux`
///
/// The `operator` approval slot of `owner` is given by:
/// ```
/// mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
/// mstore(0x00, owner)
/// let operatorApprovalSlot := keccak256(0x0c, 0x30)
/// ```
uint256 private constant _ERC721_MASTER_SLOT_SEED = 0x7d8825530a5a2e7a << 192;
/// @dev Pre-shifted and pre-masked constant.
uint256 private constant _ERC721_MASTER_SLOT_SEED_MASKED = 0x0a5a2e7a00000000;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC721 METADATA */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the token collection name.
function name() public view virtual returns (string memory);
/// @dev Returns the token collection symbol.
function symbol() public view virtual returns (string memory);
/// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
function tokenURI(uint256 id) public view virtual returns (string memory);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC721 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function ownerOf(uint256 id) public view virtual returns (address result) {
result = _ownerOf(id);
/// @solidity memory-safe-assembly
assembly {
if iszero(result) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns the number of tokens owned by `owner`.
///
/// Requirements:
/// - `owner` must not be the zero address.
function balanceOf(address owner) public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// Revert if the `owner` is the zero address.
if iszero(owner) {
mstore(0x00, 0x8f4eb604) // `BalanceQueryForZeroAddress()`.
revert(0x1c, 0x04)
}
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
result := and(sload(keccak256(0x0c, 0x1c)), _MAX_ACCOUNT_BALANCE)
}
}
/// @dev Returns the account approved to managed token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function getApproved(uint256 id) public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
if iszero(shr(96, shl(96, sload(ownershipSlot)))) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
result := sload(add(1, ownershipSlot))
}
}
/// @dev Sets `account` as the approved account to manage token `id`.
///
/// Requirements:
/// - Token `id` must exist.
/// - The caller must be the owner of the token,
/// or an approved operator for the token owner.
///
/// Emits a {Approval} event.
function approve(address account, uint256 id) public payable virtual {
_approve(msg.sender, account, id);
}
/// @dev Returns whether `operator` is approved to manage the tokens of `owner`.
function isApprovedForAll(address owner, address operator)
public
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, operator)
mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED)
mstore(0x00, owner)
result := sload(keccak256(0x0c, 0x30))
}
}
/// @dev Sets whether `operator` is approved to manage the tokens of the caller.
///
/// Emits a {ApprovalForAll} event.
function setApprovalForAll(address operator, bool isApproved) public virtual {
/// @solidity memory-safe-assembly
assembly {
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`msg.sender`, `operator`).
mstore(0x1c, operator)
mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x30), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
log3(
0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator))
)
}
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function transferFrom(address from, address to, uint256 id) public payable virtual {
_beforeTokenTransfer(from, to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
from := and(bitmaskAddress, from)
to := and(bitmaskAddress, to)
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, caller()))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
let owner := and(bitmaskAddress, ownershipPacked)
// Revert if `from` is not the owner, or does not exist.
if iszero(mul(owner, eq(owner, from))) {
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
mstore(0x00, 0xa1148100) // `TransferFromIncorrectOwner()`.
revert(0x1c, 0x04)
}
// Revert if `to` is the zero address.
if iszero(to) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// Load, check, and update the token approval.
{
mstore(0x00, from)
let approvedAddress := sload(add(1, ownershipSlot))
// Revert if the caller is not the owner, nor approved.
if iszero(or(eq(caller(), from), eq(caller(), approvedAddress))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Update with the new owner.
sstore(ownershipSlot, xor(ownershipPacked, xor(from, to)))
// Decrement the balance of `from`.
{
let fromBalanceSlot := keccak256(0x0c, 0x1c)
sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1))
}
// Increment the balance of `to`.
{
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x1c)
let toBalanceSlotPacked := add(sload(toBalanceSlot), 1)
if iszero(and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE)) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceSlotPacked)
}
// Emit the {Transfer} event.
log4(0x00, 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
_afterTokenTransfer(from, to, id);
}
/// @dev Equivalent to `safeTransferFrom(from, to, id, "")`.
function safeTransferFrom(address from, address to, uint256 id) public payable virtual {
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function safeTransferFrom(address from, address to, uint256 id, bytes calldata data)
public
payable
virtual
{
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Returns true if this contract implements the interface defined by `interfaceId`.
/// See: https://eips.ethereum.org/EIPS/eip-165
/// This function call must use less than 30000 gas.
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f.
result := or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL QUERY FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns if token `id` exists.
function _exists(uint256 id) internal view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shl(96, sload(add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Returns the owner of token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _ownerOf(uint256 id) internal view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shr(96, shl(96, sload(add(id, add(id, keccak256(0x00, 0x20))))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL DATA HITCHHIKING FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the auxiliary data for `owner`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _getAux(address owner) internal view virtual returns (uint224 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
result := shr(32, sload(keccak256(0x0c, 0x1c)))
}
}
/// @dev Set the auxiliary data for `owner` to `value`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _setAux(address owner, uint224 value) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
let balanceSlot := keccak256(0x0c, 0x1c)
let packed := sload(balanceSlot)
sstore(balanceSlot, xor(packed, shl(32, xor(value, shr(32, packed)))))
}
}
/// @dev Returns the extra data for token `id`.
/// Minting, transferring, burning a token will not change the extra data.
/// The extra data can be set on a non existent token.
function _getExtraData(uint256 id) internal view virtual returns (uint96 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shr(160, sload(add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Sets the extra data for token `id` to `value`.
/// Minting, transferring, burning a token will not change the extra data.
/// The extra data can be set on a non existent token.
function _setExtraData(uint256 id, uint96 value) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let packed := sload(ownershipSlot)
sstore(ownershipSlot, xor(packed, shl(160, xor(value, shr(160, packed)))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL MINT FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Mints token `id` to `to`.
///
/// Requirements:
///
/// - Token `id` must not exist.
/// - `to` cannot be the zero address.
///
/// Emits a {Transfer} event.
function _mint(address to, uint256 id) internal virtual {
_beforeTokenTransfer(address(0), to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
to := shr(96, shl(96, to))
// Revert if `to` is the zero address.
if iszero(to) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
// Revert if the token already exists.
if shl(96, ownershipPacked) {
mstore(0x00, 0xc991cbb1) // `TokenAlreadyExists()`.
revert(0x1c, 0x04)
}
// Update with the owner.
sstore(ownershipSlot, or(ownershipPacked, to))
// Increment the balance of the owner.
{
mstore(0x00, to)
let balanceSlot := keccak256(0x0c, 0x1c)
let balanceSlotPacked := add(sload(balanceSlot), 1)
if iszero(and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE)) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(balanceSlot, balanceSlotPacked)
}
// Emit the {Transfer} event.
log4(0x00, 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id)
}
_afterTokenTransfer(address(0), to, id);
}
/// @dev Equivalent to `_safeMint(to, id, "")`.
function _safeMint(address to, uint256 id) internal virtual {
_safeMint(to, id, "");
}
/// @dev Mints token `id` to `to`.
///
/// Requirements:
///
/// - Token `id` must not exist.
/// - `to` cannot be the zero address.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeMint(address to, uint256 id, bytes memory data) internal virtual {
_mint(to, id);
if (_hasCode(to)) _checkOnERC721Received(address(0), to, id, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL BURN FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_burn(address(0), id)`.
function _burn(uint256 id) internal virtual {
_burn(address(0), id);
}
/// @dev Destroys token `id`, using `by`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _burn(address by, uint256 id) internal virtual {
address owner = ownerOf(id);
_beforeTokenTransfer(owner, address(0), id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
by := shr(96, shl(96, by))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
// Reload the owner in case it is changed in `_beforeTokenTransfer`.
owner := shr(96, shl(96, ownershipPacked))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// Load and check the token approval.
{
mstore(0x00, owner)
let approvedAddress := sload(add(1, ownershipSlot))
// If `by` is not the zero address, do the authorization check.
// Revert if the `by` is not the owner, nor approved.
if iszero(or(iszero(by), or(eq(by, owner), eq(by, approvedAddress)))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Clear the owner.
sstore(ownershipSlot, xor(ownershipPacked, owner))
// Decrement the balance of `owner`.
{
let balanceSlot := keccak256(0x0c, 0x1c)
sstore(balanceSlot, sub(sload(balanceSlot), 1))
}
// Emit the {Transfer} event.
log4(0x00, 0x00, _TRANSFER_EVENT_SIGNATURE, owner, 0, id)
}
_afterTokenTransfer(owner, address(0), id);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL APPROVAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns whether `account` is the owner of token `id`, or is approved to managed it.
///
/// Requirements:
/// - Token `id` must exist.
function _isApprovedOrOwner(address account, uint256 id)
internal
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
// Clear the upper 96 bits.
account := shr(96, shl(96, account))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, account))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let owner := shr(96, shl(96, sload(ownershipSlot)))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// Check if `account` is the `owner`.
if iszero(eq(account, owner)) {
mstore(0x00, owner)
// Check if `account` is approved to
if iszero(sload(keccak256(0x0c, 0x30))) {
result := eq(account, sload(add(1, ownershipSlot)))
}
}
}
}
/// @dev Returns the account approved to manage token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _getApproved(uint256 id) internal view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := sload(add(1, add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Equivalent to `_approve(address(0), account, id)`.
function _approve(address account, uint256 id) internal virtual {
_approve(address(0), account, id);
}
/// @dev Sets `account` as the approved account to manage token `id`, using `by`.
///
/// Requirements:
/// - Token `id` must exist.
/// - If `by` is not the zero address, `by` must be the owner
/// or an approved operator for the token owner.
///
/// Emits a {Transfer} event.
function _approve(address by, address account, uint256 id) internal virtual {
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
account := and(bitmaskAddress, account)
by := and(bitmaskAddress, by)
// Load the owner of the token.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let owner := and(bitmaskAddress, sload(ownershipSlot))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// If `by` is not the zero address, do the authorization check.
// Revert if `by` is not the owner, nor approved.
if iszero(or(iszero(by), eq(by, owner))) {
mstore(0x00, owner)
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Sets `account` as the approved account to manage `id`.
sstore(add(1, ownershipSlot), account)
// Emit the {Approval} event.
log4(0x00, 0x00, _APPROVAL_EVENT_SIGNATURE, owner, account, id)
}
}
/// @dev Approve or remove the `operator` as an operator for `by`,
/// without authorization checks.
///
/// Emits a {ApprovalForAll} event.
function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual {
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
by := shr(96, shl(96, by))
operator := shr(96, shl(96, operator))
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`by`, `operator`).
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
mstore(0x00, by)
sstore(keccak256(0x0c, 0x30), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, by, operator)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL TRANSFER FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_transfer(address(0), from, to, id)`.
function _transfer(address from, address to, uint256 id) internal virtual {
_transfer(address(0), from, to, id);
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _transfer(address by, address from, address to, uint256 id) internal virtual {
_beforeTokenTransfer(from, to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
from := and(bitmaskAddress, from)
to := and(bitmaskAddress, to)
by := and(bitmaskAddress, by)
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
let owner := and(bitmaskAddress, ownershipPacked)
// Revert if `from` is not the owner, or does not exist.
if iszero(mul(owner, eq(owner, from))) {
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
mstore(0x00, 0xa1148100) // `TransferFromIncorrectOwner()`.
revert(0x1c, 0x04)
}
// Revert if `to` is the zero address.
if iszero(to) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// Load, check, and update the token approval.
{
mstore(0x00, from)
let approvedAddress := sload(add(1, ownershipSlot))
// If `by` is not the zero address, do the authorization check.
// Revert if the `by` is not the owner, nor approved.
if iszero(or(iszero(by), or(eq(by, from), eq(by, approvedAddress)))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Update with the new owner.
sstore(ownershipSlot, xor(ownershipPacked, xor(from, to)))
// Decrement the balance of `from`.
{
let fromBalanceSlot := keccak256(0x0c, 0x1c)
sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1))
}
// Increment the balance of `to`.
{
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x1c)
let toBalanceSlotPacked := add(sload(toBalanceSlot), 1)
if iszero(and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE)) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceSlotPacked)
}
// Emit the {Transfer} event.
log4(0x00, 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
_afterTokenTransfer(from, to, id);
}
/// @dev Equivalent to `_safeTransfer(from, to, id, "")`.
function _safeTransfer(address from, address to, uint256 id) internal virtual {
_safeTransfer(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeTransfer(address from, address to, uint256 id, bytes memory data)
internal
virtual
{
_transfer(address(0), from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Equivalent to `_safeTransfer(by, from, to, id, "")`.
function _safeTransfer(address by, address from, address to, uint256 id) internal virtual {
_safeTransfer(by, from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeTransfer(address by, address from, address to, uint256 id, bytes memory data)
internal
virtual
{
_transfer(by, from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HOOKS FOR OVERRIDING */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Hook that is called before any token transfers, including minting and burning.
function _beforeTokenTransfer(address from, address to, uint256 id) internal virtual {}
/// @dev Hook that is called after any token transfers, including minting and burning.
function _afterTokenTransfer(address from, address to, uint256 id) internal virtual {}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns if `a` has bytecode of non-zero length.
function _hasCode(address a) private view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := extcodesize(a) // Can handle dirty upper bits.
}
}
/// @dev Perform a call to invoke {IERC721Receiver-onERC721Received} on `to`.
/// Reverts if the target does not support the function correctly.
function _checkOnERC721Received(address from, address to, uint256 id, bytes memory data)
private
{
/// @solidity memory-safe-assembly
assembly {
// Prepare the calldata.
let m := mload(0x40)
let onERC721ReceivedSelector := 0x150b7a02
mstore(m, onERC721ReceivedSelector)
mstore(add(m, 0x20), caller()) // The `operator`, which is always `msg.sender`.
mstore(add(m, 0x40), shr(96, shl(96, from)))
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), 0x80)
let n := mload(data)
mstore(add(m, 0xa0), n)
if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) }
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(0x00, 0x00, returndatasize())
revert(0x00, returndatasize())
}
mstore(m, 0)
}
// Load the returndata and compare it.
if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) {
mstore(0x00, 0xd1a57ed6) // `TransferToNonERC721ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;
interface IERC165 {
/// @notice Query if a contract implements an interface
/// @param interfaceID The interface identifier, as specified in ERC-165
/// @dev Interface identification is specified in ERC-165. This function
/// uses less than 30,000 gas.
/// @return `true` if the contract implements `interfaceID` and
/// `interfaceID` is not 0xffffffff, `false` otherwise
function supportsInterface(bytes4 interfaceID) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {IERC165} from "forge-std/interfaces/IERC165.sol";
interface IERC4906 is IERC165 {
/// @dev This event emits when the metadata of a token is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFT.
event MetadataUpdate(uint256 _tokenId);
/// @dev This event emits when the metadata of a range of tokens is changed.
/// So that the third-party platforms such as NFT market could
/// timely update the images and related attributes of the NFTs.
event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The `length` of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
str := add(mload(0x40), 0x80)
// Update the free memory pointer to allocate.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 1)`.
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory str) {
if (value >= 0) {
return toString(uint256(value));
}
unchecked {
str = toString(uint256(-value));
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let length := mload(str) // Load the string length.
mstore(str, 0x2d) // Store the '-' character.
str := sub(str, 1) // Move back the string pointer by a byte.
mstore(str, add(length, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2 + 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value, length);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 length)
internal
pure
returns (string memory str)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
// Allocate the memory.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end to calculate the length later.
let end := str
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(str, add(length, length))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(str, start)) { break }
}
if temp {
// Store the function selector of `HexLengthInsufficient()`.
mstore(0x00, 0x2194895a)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Compute the string's length.
let strLength := sub(end, str)
// Move the pointer and write the length.
str := sub(str, 0x20)
mstore(str, strLength)
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
str := add(mload(0x40), 0x80)
// Allocate the memory.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end to calculate the length later.
let end := str
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
// Compute the string's length.
let strLength := sub(end, str)
// Move the pointer and write the length.
str := sub(str, 0x20)
mstore(str, strLength)
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksumed(address value) internal pure returns (string memory str) {
str = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(str, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
str := mload(0x40)
// Allocate the memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(str, 0x80))
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
str := add(str, 2)
mstore(str, 40)
let o := add(str, 0x20)
mstore(add(o, 40), 0)
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory str) {
str = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
let length := mload(raw)
str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(str, add(length, length)) // Store the length of the output.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let o := add(str, 0x20)
let end := add(raw, length)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate the memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let mask := shl(7, div(not(0), 255))
result := 1
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, all indices of the following operations
// are byte (ASCII) offsets, not UTF character offsets.
/// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
function replace(string memory subject, string memory search, string memory replacement)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
let replacementLength := mload(replacement)
subject := add(subject, 0x20)
search := add(search, 0x20)
replacement := add(replacement, 0x20)
result := add(mload(0x40), 0x20)
let subjectEnd := add(subject, subjectLength)
if iszero(gt(searchLength, subjectLength)) {
let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(result, o), mload(add(replacement, o)))
o := add(o, 0x20)
if iszero(lt(o, replacementLength)) { break }
}
result := add(result, replacementLength)
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
}
let resultRemainder := result
result := add(mload(0x40), 0x20)
let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
// Copy the rest of the string one word at a time.
for {} lt(subject, subjectEnd) {} {
mstore(resultRemainder, mload(subject))
resultRemainder := add(resultRemainder, 0x20)
subject := add(subject, 0x20)
}
result := sub(result, 0x20)
let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
mstore(last, 0)
mstore(0x40, add(last, 0x20)) // Allocate the memory.
mstore(result, k) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for { let subjectLength := mload(subject) } 1 {} {
if iszero(mload(search)) {
if iszero(gt(from, subjectLength)) {
result := from
break
}
result := subjectLength
break
}
let searchLength := mload(search)
let subjectStart := add(subject, 0x20)
result := not(0) // Initialize to `NOT_FOUND`.
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(add(search, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
if iszero(lt(searchLength, 0x20)) {
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = indexOf(subject, search, 0);
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let searchLength := mload(search)
if gt(searchLength, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), searchLength)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = lastIndexOf(subject, search, uint256(int256(-1)));
}
/// @dev Returns whether `subject` starts with `search`.
function startsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
iszero(gt(searchLength, mload(subject))),
eq(
keccak256(add(subject, 0x20), searchLength),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns whether `subject` ends with `search`.
function endsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
let subjectLength := mload(subject)
// Whether `search` is not longer than `subject`.
let withinRange := iszero(gt(searchLength, subjectLength))
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
withinRange,
eq(
keccak256(
// `subject + 0x20 + max(subjectLength - searchLength, 0)`.
add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
searchLength
),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(or(iszero(times), iszero(subjectLength))) {
subject := add(subject, 0x20)
result := mload(0x40)
let output := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(output, o), mload(add(subject, o)))
o := add(o, 0x20)
if iszero(lt(o, subjectLength)) { break }
}
output := add(output, subjectLength)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(output, 0) // Zeroize the slot after the string.
let resultLength := sub(output, add(result, 0x20))
mstore(result, resultLength) // Store the length.
// Allocate the memory.
mstore(0x40, add(result, add(resultLength, 0x20)))
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(gt(subjectLength, end)) { end := subjectLength }
if iszero(gt(subjectLength, start)) { start := subjectLength }
if lt(start, end) {
result := mload(0x40)
let resultLength := sub(end, start)
mstore(result, resultLength)
subject := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
mstore(add(result, o), mload(add(subject, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(result, 0x20), resultLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start)
internal
pure
returns (string memory result)
{
result = slice(subject, start, uint256(int256(-1)));
}
/// @dev Returns all the indices of `search` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory search)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
if iszero(gt(searchLength, subjectLength)) {
subject := add(subject, 0x20)
search := add(search, 0x20)
result := add(mload(0x40), 0x20)
let subjectStart := subject
let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Append to `result`.
mstore(result, sub(subject, subjectStart))
result := add(result, 0x20)
// Advance `subject` by `searchLength`.
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
let resultEnd := result
// Assign `result` to the free memory pointer.
result := mload(0x40)
// Store the length of `result`.
mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(resultEnd, 0x20))
}
}
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
let prevIndex := 0
for {} 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let elementLength := sub(index, prevIndex)
mstore(element, elementLength)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(element, 0x20), elementLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
// Store the `element` into the array.
mstore(indexPtr, element)
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
result := mload(0x40)
let aLength := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(mload(a), 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLength := mload(b)
let output := add(result, mload(a))
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLength, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLength := add(aLength, bLength)
let last := add(add(result, 0x20), totalLength)
// Zeroize the slot after the string.
mstore(last, 0)
// Stores the length.
mstore(result, totalLength)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, and(add(last, 0x1f), w))
}
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let length := mload(subject)
if length {
result := add(mload(0x40), 0x20)
subject := add(subject, 1)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
let w := not(0)
for { let o := length } 1 {} {
o := add(o, w)
let b := and(0xff, mload(add(subject, o)))
mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
if iszero(o) { break }
}
result := mload(0x40)
mstore(result, length) // Store the length.
let last := add(add(result, 0x20), length)
mstore(last, 0) // Zeroize the slot after the string.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
for {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(result, c)
result := add(result, 1)
continue
}
let t := shr(248, mload(c))
mstore(result, mload(and(t, 0x1f)))
result := add(result, shr(5, t))
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
for {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(result, c)
result := add(result, 1)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), c)
result := add(result, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(result, mload(0x19)) // "\\u00XX".
result := add(result, 6)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), mload(add(c, 8)))
result := add(result, 2)
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behaviour is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// Grab the free memory pointer.
result := mload(0x40)
// Allocate 2 words (1 for the length, 1 for the bytes).
mstore(0x40, add(result, 0x40))
// Zeroize the length slot.
mstore(result, 0)
// Store the length and bytes.
mstore(add(result, 0x1f), packed)
// Right pad with zeroes.
mstore(add(add(result, 0x20), mload(result)), 0)
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLength := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes of `a` and `b`.
or(
shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
mload(sub(add(b, 0x1e), aLength))
),
// `totalLength != 0 && totalLength < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLength, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behaviour is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
// Grab the free memory pointer.
resultA := mload(0x40)
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retSize), 0)
// Store the return offset.
mstore(retStart, 0x20)
// End the transaction, returning the string.
return(retStart, retSize)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
/// @dev While the ownable portion follows [EIP-173](https://eips.ethereum.org/EIPS/eip-173)
/// for compatibility, the nomenclature for the 2-step ownership handover
/// may be unique to this codebase.
abstract contract Ownable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The caller is not authorized to call the function.
error Unauthorized();
/// @dev The `newOwner` cannot be the zero address.
error NewOwnerIsZeroAddress();
/// @dev The `pendingOwner` does not have a valid handover request.
error NoHandoverRequest();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership is transferred from `oldOwner` to `newOwner`.
/// This event is intentionally kept the same as OpenZeppelin's Ownable to be
/// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
/// despite it not being as lightweight as a single argument event.
event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
/// @dev An ownership handover to `pendingOwner` has been requested.
event OwnershipHandoverRequested(address indexed pendingOwner);
/// @dev The ownership handover to `pendingOwner` has been canceled.
event OwnershipHandoverCanceled(address indexed pendingOwner);
/// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
/// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
/// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The owner slot is given by: `not(_OWNER_SLOT_NOT)`.
/// It is intentionally choosen to be a high value
/// to avoid collision with lower slots.
/// The choice of manual storage layout is to enable compatibility
/// with both regular and upgradeable contracts.
uint256 private constant _OWNER_SLOT_NOT = 0x8b78c6d8;
/// The ownership handover slot of `newOwner` is given by:
/// ```
/// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
/// let handoverSlot := keccak256(0x00, 0x20)
/// ```
/// It stores the expiry timestamp of the two-step ownership handover.
uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Initializes the owner directly without authorization guard.
/// This function must be called upon initialization,
/// regardless of whether the contract is upgradeable or not.
/// This is to enable generalization to both regular and upgradeable contracts,
/// and to save gas in case the initial owner is not the caller.
/// For performance reasons, this function will not check if there
/// is an existing owner.
function _initializeOwner(address newOwner) internal virtual {
/// @solidity memory-safe-assembly
assembly {
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(not(_OWNER_SLOT_NOT), newOwner)
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
}
/// @dev Sets the owner directly without authorization guard.
function _setOwner(address newOwner) internal virtual {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := not(_OWNER_SLOT_NOT)
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, newOwner)
}
}
/// @dev Throws if the sender is not the owner.
function _checkOwner() internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// If the caller is not the stored owner, revert.
if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC UPDATE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Allows the owner to transfer the ownership to `newOwner`.
function transferOwnership(address newOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
if iszero(shl(96, newOwner)) {
mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
revert(0x1c, 0x04)
}
}
_setOwner(newOwner);
}
/// @dev Allows the owner to renounce their ownership.
function renounceOwnership() public payable virtual onlyOwner {
_setOwner(address(0));
}
/// @dev Request a two-step ownership handover to the caller.
/// The request will be automatically expire in 48 hours (172800 seconds) by default.
function requestOwnershipHandover() public payable virtual {
unchecked {
uint256 expires = block.timestamp + ownershipHandoverValidFor();
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to `expires`.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), expires)
// Emit the {OwnershipHandoverRequested} event.
log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
}
}
}
/// @dev Cancels the two-step ownership handover to the caller, if any.
function cancelOwnershipHandover() public payable virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), 0)
// Emit the {OwnershipHandoverCanceled} event.
log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
}
}
/// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
/// Reverts if there is no existing ownership handover requested by `pendingOwner`.
function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
let handoverSlot := keccak256(0x0c, 0x20)
// If the handover does not exist, or has expired.
if gt(timestamp(), sload(handoverSlot)) {
mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
revert(0x1c, 0x04)
}
// Set the handover slot to 0.
sstore(handoverSlot, 0)
}
_setOwner(pendingOwner);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC READ FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of the contract.
function owner() public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := sload(not(_OWNER_SLOT_NOT))
}
}
/// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
function ownershipHandoverExpiresAt(address pendingOwner)
public
view
virtual
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
// Compute the handover slot.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
// Load the handover slot.
result := sload(keccak256(0x0c, 0x20))
}
}
/// @dev Returns how long a two-step ownership handover is valid for in seconds.
function ownershipHandoverValidFor() public view virtual returns (uint64) {
return 48 * 3600;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Marks a function as only callable by the owner.
modifier onlyOwner() virtual {
_checkOwner();
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller.
library SafeTransferLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ETH transfer has failed.
error ETHTransferFailed();
/// @dev The ERC20 `transferFrom` has failed.
error TransferFromFailed();
/// @dev The ERC20 `transfer` has failed.
error TransferFailed();
/// @dev The ERC20 `approve` has failed.
error ApproveFailed();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Suggested gas stipend for contract receiving ETH
/// that disallows any storage writes.
uint256 internal constant _GAS_STIPEND_NO_STORAGE_WRITES = 2300;
/// @dev Suggested gas stipend for contract receiving ETH to perform a few
/// storage reads and writes, but low enough to prevent griefing.
/// Multiply by a small constant (e.g. 2), if needed.
uint256 internal constant _GAS_STIPEND_NO_GRIEF = 100000;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ETH OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sends `amount` (in wei) ETH to `to`.
/// Reverts upon failure.
function safeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and check if it succeeded or not.
if iszero(call(gas(), to, amount, 0, 0, 0, 0)) {
// Store the function selector of `ETHTransferFailed()`.
mstore(0x00, 0xb12d13eb)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
/// The `gasStipend` can be set to a low enough value to prevent
/// storage writes or gas griefing.
///
/// If sending via the normal procedure fails, force sends the ETH by
/// creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH.
///
/// Reverts if the current contract has insufficient balance.
function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
// If insufficient balance, revert.
if lt(selfbalance(), amount) {
// Store the function selector of `ETHTransferFailed()`.
mstore(0x00, 0xb12d13eb)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Transfer the ETH and check if it succeeded or not.
if iszero(call(gasStipend, to, amount, 0, 0, 0, 0)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
// We can directly use `SELFDESTRUCT` in the contract creation.
// Compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758
if iszero(create(amount, 0x0b, 0x16)) {
// For better gas estimation.
if iszero(gt(gas(), 1000000)) { revert(0, 0) }
}
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with a gas stipend
/// equal to `_GAS_STIPEND_NO_GRIEF`. This gas stipend is a reasonable default
/// for 99% of cases and can be overriden with the three-argument version of this
/// function if necessary.
///
/// If sending via the normal procedure fails, force sends the ETH by
/// creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH.
///
/// Reverts if the current contract has insufficient balance.
function forceSafeTransferETH(address to, uint256 amount) internal {
// Manually inlined because the compiler doesn't inline functions with branches.
/// @solidity memory-safe-assembly
assembly {
// If insufficient balance, revert.
if lt(selfbalance(), amount) {
// Store the function selector of `ETHTransferFailed()`.
mstore(0x00, 0xb12d13eb)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Transfer the ETH and check if it succeeded or not.
if iszero(call(_GAS_STIPEND_NO_GRIEF, to, amount, 0, 0, 0, 0)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
// We can directly use `SELFDESTRUCT` in the contract creation.
// Compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758
if iszero(create(amount, 0x0b, 0x16)) {
// For better gas estimation.
if iszero(gt(gas(), 1000000)) { revert(0, 0) }
}
}
}
}
/// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
/// The `gasStipend` can be set to a low enough value to prevent
/// storage writes or gas griefing.
///
/// Simply use `gasleft()` for `gasStipend` if you don't need a gas stipend.
///
/// Note: Does NOT revert upon failure.
/// Returns whether the transfer of ETH is successful instead.
function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
// Transfer the ETH and check if it succeeded or not.
success := call(gasStipend, to, amount, 0, 0, 0, 0)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have at least `amount` approved for
/// the current contract to manage.
function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x60, amount) // Store the `amount` argument.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
// Store the function selector of `transferFrom(address,address,uint256)`.
mstore(0x0c, 0x23b872dd000000000000000000000000)
if iszero(
and( // The arguments of `and` are evaluated from right to left.
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(eq(mload(0x00), 1), iszero(returndatasize())),
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
// Store the function selector of `TransferFromFailed()`.
mstore(0x00, 0x7939f424)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends all of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have at least `amount` approved for
/// the current contract to manage.
function safeTransferAllFrom(address token, address from, address to)
internal
returns (uint256 amount)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
// Store the function selector of `balanceOf(address)`.
mstore(0x0c, 0x70a08231000000000000000000000000)
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
)
) {
// Store the function selector of `TransferFromFailed()`.
mstore(0x00, 0x7939f424)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Store the function selector of `transferFrom(address,address,uint256)`.
mstore(0x00, 0x23b872dd)
// The `amount` argument is already written to the memory word at 0x6c.
amount := mload(0x60)
if iszero(
and( // The arguments of `and` are evaluated from right to left.
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(eq(mload(0x00), 1), iszero(returndatasize())),
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
// Store the function selector of `TransferFromFailed()`.
mstore(0x00, 0x7939f424)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransfer(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
// Store the function selector of `transfer(address,uint256)`.
mstore(0x00, 0xa9059cbb000000000000000000000000)
if iszero(
and( // The arguments of `and` are evaluated from right to left.
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(eq(mload(0x00), 1), iszero(returndatasize())),
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
// Store the function selector of `TransferFailed()`.
mstore(0x00, 0x90b8ec18)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the part of the free memory pointer that was overwritten.
mstore(0x34, 0)
}
}
/// @dev Sends all of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransferAll(address token, address to) internal returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
mstore(0x20, address()) // Store the address of the current contract.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
)
) {
// Store the function selector of `TransferFailed()`.
mstore(0x00, 0x90b8ec18)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
mstore(0x14, to) // Store the `to` argument.
// The `amount` argument is already written to the memory word at 0x34.
amount := mload(0x34)
// Store the function selector of `transfer(address,uint256)`.
mstore(0x00, 0xa9059cbb000000000000000000000000)
if iszero(
and( // The arguments of `and` are evaluated from right to left.
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(eq(mload(0x00), 1), iszero(returndatasize())),
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
// Store the function selector of `TransferFailed()`.
mstore(0x00, 0x90b8ec18)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the part of the free memory pointer that was overwritten.
mstore(0x34, 0)
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// Reverts upon failure.
function safeApprove(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
// Store the function selector of `approve(address,uint256)`.
mstore(0x00, 0x095ea7b3000000000000000000000000)
if iszero(
and( // The arguments of `and` are evaluated from right to left.
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(eq(mload(0x00), 1), iszero(returndatasize())),
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
// Store the function selector of `ApproveFailed()`.
mstore(0x00, 0x3e3f8f73)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the part of the free memory pointer that was overwritten.
mstore(0x34, 0)
}
}
/// @dev Returns the amount of ERC20 `token` owned by `account`.
/// Returns zero if the `token` does not exist.
function balanceOf(address token, address account) internal view returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, account) // Store the `account` argument.
// Store the function selector of `balanceOf(address)`.
mstore(0x00, 0x70a08231000000000000000000000000)
amount :=
mul(
mload(0x20),
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
)
)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
struct PublicDrop {
uint80 mintPrice; // 80/256 bits
uint48 startTime; // 128/256 bits
uint48 endTime; // 176/256 bits
uint16 maxTotalMintableByWallet; // 224/256 bits
uint16 feeBps; // 240/256 bits
bool restrictFeeRecipients; // 248/256 bits
}
interface ISeaDrop {
/**
* @notice Updates the public drop data for the nft contract
* and emits an event.
*
* This method assume msg.sender is an nft contract and its
* ERC165 interface id matches INonFungibleSeaDropToken.
*
* Note: Be sure only authorized users can call this from
* token contracts that implement INonFungibleSeaDropToken.
*
* @param publicDrop The public drop data.
*/
function updatePublicDrop(PublicDrop calldata publicDrop) external;
/**
* @notice Updates the creator payout address and emits an event.
*
* This method assume msg.sender is an nft contract and its
* ERC165 interface id matches INonFungibleSeaDropToken.
*
* Note: Be sure only authorized users can call this from
* token contracts that implement INonFungibleSeaDropToken.
*
* @param payoutAddress The creator payout address.
*/
function updateCreatorPayoutAddress(address payoutAddress) external;
/**
* @notice Updates the allowed fee recipient and emits an event.
*
* This method assume msg.sender is an nft contract and its
* ERC165 interface id matches INonFungibleSeaDropToken.
*
* Note: Be sure only authorized users can call this from
* token contracts that implement INonFungibleSeaDropToken.
*
* @param feeRecipient The fee recipient.
* @param allowed If the fee recipient is allowed.
*/
function updateAllowedFeeRecipient(address feeRecipient, bool allowed) external;
/**
* @notice Updates the allowed payer and emits an event.
*
* This method assume msg.sender is an nft contract and its
* ERC165 interface id matches INonFungibleSeaDropToken.
*
* Note: Be sure only authorized users can call this from
* token contracts that implement INonFungibleSeaDropToken.
*
* @param payer The payer to add or remove.
* @param allowed Whether to add or remove the payer.
*/
function updatePayer(address payer, bool allowed) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {XXYYZZMetadata} from "./XXYYZZMetadata.sol";
import {XXYYZZBurn} from "./XXYYZZBurn.sol";
import {XXYYZZSeaDrop} from "./XXYYZZSeaDrop.sol";
import {XXYYZZCore} from "./XXYYZZCore.sol";
import {XXYYZZRerollFinalize} from "./XXYYZZRerollFinalize.sol";
import {XXYYZZCore} from "./XXYYZZCore.sol";
import {LibString} from "solady/utils/LibString.sol";
import {Base64} from "solady/utils/Base64.sol";
/**
* @title XXYYZZ
* @author emo.eth
* @notice XXYYZZ is a collection of fully onchain, collectible colors. Each token has a unique hex value.
* Tokens may be "rerolled" to new hex values, unless they are "finalized," in which case, they are immutable.
*
* Finalizing tokens also adds the finalizer's wallet address to the token's metadata.
* Tokens may be burned, which removes it from the token supply, but unless the token was finalized, its
* particular hex value may be minted or rerolled again.
*
* Mints and rerolls are pseudorandom by default, unless one of the "Specific" methods is called.
* To prevent front-running "specific" mint transactions, the XXYYZZ contract uses a commit-reveal scheme.
* Users must commit a hash of their desired hex value with a secret salt, wait at least one minute, and then
* submit their mint or reroll transaction with the original hex value(s) and salt.
* Multiple IDs may be minted or rerolled in a single transaction by committixng the result of hash of all IDs in order
* with a single secret salt.
* In batch methods, unavailable IDs are skipped, and excess payment is refunded to the caller.
*/
contract XXYYZZ is XXYYZZMetadata, XXYYZZBurn, XXYYZZSeaDrop, XXYYZZRerollFinalize {
using LibString for uint256;
using LibString for address;
using Base64 for bytes;
constructor(
address initialOwner,
address creatorPayout,
uint256 maxBatchSize,
uint24[] memory preMintIds,
address seaDrop
) XXYYZZSeaDrop(seaDrop, creatorPayout, initialOwner, maxBatchSize) {
for (uint256 i; i < preMintIds.length;) {
_mint(initialOwner, preMintIds[i]);
_finalizeToken(preMintIds[i], initialOwner);
unchecked {
++i;
}
}
_numMinted = uint32(preMintIds.length);
}
function supportsInterface(bytes4 interfaceId)
public
pure
virtual
override(XXYYZZSeaDrop, XXYYZZCore)
returns (bool)
{
return XXYYZZSeaDrop.supportsInterface(interfaceId);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {XXYYZZCore} from "./XXYYZZCore.sol";
abstract contract XXYYZZBurn is XXYYZZCore {
//////////
// BURN //
//////////
/**
* @notice Permanently burn a token that the caller owns or is approved for.
* @param xxyyzz The token to burn.
* @param onlyFinalized If true, only tokens that have been finalized can be burned. Useful if an approved operator
* is burning tokens on behalf of a user.
*/
function burn(uint256 xxyyzz, bool onlyFinalized) public {
// cannot overflow as there are at most 2^24 tokens, and _numBurned is a uint32
unchecked {
_numBurned += 1;
}
if (onlyFinalized) {
if (!_isFinalized(xxyyzz)) {
revert OnlyFinalized();
}
}
_burn(msg.sender, xxyyzz);
}
/**
* @notice Permanently burn multiple tokens. All must be owned by the same address.
* @param ids The tokens to burn.
* @param onlyFinalized If true, only tokens that have been finalized can be burned. Useful if an approved operator
* is burning tokens on behalf of a user.
*/
function batchBurn(uint256[] calldata ids, bool onlyFinalized) public {
if (ids.length == 0) {
revert NoIdsProvided();
}
uint256 packedOwnerFinalizedSlot = _packedOwnershipSlot(ids[0]);
address initialTokenOwner = address(uint160(packedOwnerFinalizedSlot));
if (onlyFinalized) {
if (packedOwnerFinalizedSlot < type(uint160).max) {
revert OnlyFinalized();
}
}
// validate that msg.sender has approval to burn all tokens
if (initialTokenOwner != msg.sender) {
if (!isApprovedForAll(initialTokenOwner, msg.sender)) {
revert BatchBurnerNotApprovedForAll();
}
}
// safe because there are at most 2^24 tokens, and ownerships are checked
unchecked {
_numBurned += uint32(ids.length);
}
_burn(ids[0]);
for (uint256 i = 1; i < ids.length;) {
uint256 id = ids[i];
packedOwnerFinalizedSlot = _packedOwnershipSlot(id);
address owner = address(uint160(packedOwnerFinalizedSlot));
// ensure that all tokens are owned by the same address
if (owner != initialTokenOwner) {
revert OwnerMismatch();
}
if (onlyFinalized) {
if (packedOwnerFinalizedSlot < type(uint160).max) {
revert OnlyFinalized();
}
}
// no need to specify msg.sender since caller is approved for all tokens
// this also checks token exists
_burn(id);
unchecked {
++i;
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {ERC721} from "solady/tokens/ERC721.sol";
import {CommitReveal} from "./lib/CommitReveal.sol";
import {Ownable} from "solady/auth/Ownable.sol";
import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol";
import {IERC4906, IERC165} from "./interfaces/IERC4906.sol";
/**
* @title XXYYZZCore
* @author emo.eth
* @notice Core contract for XXYYZZ NFTs. Contains errors, constants, core token information, and helper functions.
*/
abstract contract XXYYZZCore is ERC721, IERC4906, CommitReveal, Ownable {
error InvalidPayment();
error InvalidHex();
error MaximumSupplyExceeded();
error AlreadyFinalized();
error OnlyTokenOwner();
error NoIdsProvided();
error OwnerMismatch();
error BatchBurnerNotApprovedForAll();
error ArrayLengthMismatch();
error MintClosed();
error InvalidTimestamp();
error OnlyFinalized();
error Unavailable();
error NoneAvailable();
error MaxBatchSizeExceeded();
uint256 public constant MINT_PRICE = 0.005 ether;
uint256 public constant REROLL_PRICE = 0.00025 ether;
uint256 public constant FINALIZE_PRICE = 0.005 ether;
uint256 public constant REROLL_AND_FINALIZE_PRICE = 0.00525 ether;
uint256 public immutable MAX_SPECIFIC_BATCH_SIZE;
uint256 constant BYTES3_UINT_SHIFT = 232;
uint256 constant MAX_UINT24 = 0xFFFFFF;
uint96 constant FINALIZED = 1;
uint96 constant NOT_FINALIZED = 0;
// re-declared from solady ERC721 for custom gas optimizations
uint256 private constant _ERC721_MASTER_SLOT_SEED = 0x7d8825530a5a2e7a << 192;
mapping(uint256 tokenId => address finalizer) public finalizers;
uint128 _numBurned;
uint128 _numMinted;
constructor(address initialOwner, uint256 maxBatchSize)
// lifespan
CommitReveal(
1 days,
// delay – MM/RPC will report a tx will revert until first eligible block is validated,
// so 48 seconds will result in 60 seconds of delay before the frontend will report
// that a tx will succeed
48 seconds
)
{
_initializeOwner(initialOwner);
MAX_SPECIFIC_BATCH_SIZE = maxBatchSize;
}
receive() external payable {
// send ether – see what happens! :)
}
///////////////////
// OWNER METHODS //
///////////////////
/**
* @notice Withdraws all funds from the contract to the current owner. onlyOwner.
*/
function withdraw() public onlyOwner {
assembly ("memory-safe") {
let succ := call(gas(), caller(), selfbalance(), 0, 0, 0, 0)
// revert with returndata if call failed
if iszero(succ) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
}
///////////////////
// INFORMATIONAL //
///////////////////
/**
* @notice Get the total number of tokens in circulation
*/
function totalSupply() public view returns (uint256) {
return _numMinted - _numBurned;
}
/**
* @notice Get the total number of tokens minted
*/
function numMinted() external view returns (uint256) {
return _numMinted;
}
/**
* @notice Get the total number of tokens burned
*/
function numBurned() external view returns (uint256) {
return _numBurned;
}
/**
* @notice Get the name of the token
*/
function name() public pure override returns (string memory) {
// note that this is unsafe to call internally, as it abi-encodes the name and
// performs a low-level return
assembly {
mstore(0x20, 0x20)
mstore(0x46, 0x06585859595a5a)
return(0x20, 0x80)
}
}
/**
* @notice Get the symbol of the token
*/
function symbol() public pure override returns (string memory) {
// note that this is unsafe to call internally, as it abi-encodes the symbol and
// performs a low-level return
assembly {
mstore(0x20, 0x20)
mstore(0x46, 0x06585859595a5a)
return(0x20, 0x80)
}
}
/**
* @notice Check if a specific token ID has been finalized. Will return true for tokens that were finalized and
* then burned. Will not revert if the tokenID does not currently exist. Will revert on invalid tokenIds.
* @param id The token ID to check
* @return True if the token ID has been finalized, false otherwise
*/
function isFinalized(uint256 id) public view returns (bool) {
_validateId(id);
return _isFinalized(id);
}
///@inheritdoc IERC165
function supportsInterface(bytes4 interfaceId)
public
pure
virtual
override(ERC721, IERC165)
returns (bool result)
{
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f. ERC4906: 0x49064906
result := or(or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f)), eq(s, 0x49064906))
}
}
/////////////////
// COMMITMENTS //
/////////////////
/**
* @notice Get a commitment hash for a given sender, tokenId, and salt. Note that this could expose your desired
* ID to the RPC provider. Won't revert if the ID is invalid, but will return an invalid hash.
* @param sender The address of the account that will mint or reroll the token ID
* @param id The 6-hex-digit token ID to mint or reroll
* @param salt The salt to use for the commitment
*/
function computeCommitment(address sender, uint256 id, bytes32 salt)
public
pure
returns (bytes32 committmentHash)
{
assembly ("memory-safe") {
// shift sender left by 24 bits; id stays in bottom 24
mstore(0, or(shl(24, sender), and(id, MAX_UINT24)))
mstore(0x20, salt)
// start hashing at 0x09 to skip 9 empty bytes (32 - (20 + 3))
committmentHash := keccak256(0x09, 0x40)
}
}
/**
* @notice Get a commitment hash for a given sender, array of tokenIds, and salt. This allows for a single
* commitment for a batch of IDs, but note that order and length of IDs matters.
* If 5 IDs are passed, all 5 must be passed to either batchMintSpecific or batchRerollSpecific, in the
* same order. Note that this could expose your desired IDs to the RPC provider.
* Won't revert if any IDs are invalid or duplicated.
* @param sender The address of the account that will mint or reroll the token IDs
* @param ids The 6-hex-digit token IDs to mint or reroll
* @param salt The salt to use for the batch commitment
*/
function computeBatchCommitment(address sender, uint256[] calldata ids, bytes32 salt)
public
pure
returns (bytes32 commitmentHash)
{
assembly ("memory-safe") {
// cache free mem pointer
let freeMemPtr := mload(0x40)
// multiply length of elements by 32 bytes for each element
let numBytes := shl(5, ids.length)
// copy contents of array to unallocated free memory
calldatacopy(freeMemPtr, ids.offset, numBytes)
// hash contents of array, without length
let arrayHash :=
keccak256(
// start of array contents
freeMemPtr,
//length of array contents
numBytes
)
// store sender in first memory slot
mstore(0, sender)
// store array hash in second memory slot
mstore(0x20, arrayHash)
// clobber free memory pointer with salt
mstore(0x40, salt)
// compute commitment hash
// start hashing at 12 bytes since addresses are 20 bytes
commitmentHash := keccak256(0x0c, 0x60)
// restore free memory pointer
mstore(0x40, freeMemPtr)
}
}
/////////////
// HELPERS //
/////////////
/**
* @dev Mint a token with a specific hex value and validate it was committed to
* @param id The 6-hex-digit token ID to mint
* @param salt The salt to use for the commitment
*/
function _mintSpecific(uint256 id, bytes32 salt) internal {
bytes32 computedCommitment = computeCommitment(msg.sender, id, salt);
// validate ID is valid 6-hex-digit number
_validateId(id);
// validate commitment to prevent front-running
_assertCommittedReveal(computedCommitment);
// don't allow minting of tokens that were finalized and then burned
if (_isFinalized(id)) {
revert AlreadyFinalized();
}
_mint(msg.sender, id);
}
/**
* @dev Mint a token with a specific hex value and validate it was committed to
* @param id The 6-hex-digit token ID to mint
* @param computedCommitment The commitment hash to validate
*/
function _mintSpecificWithCommitment(uint256 id, bytes32 computedCommitment) internal {
// validate ID is valid 6-hex-digit number
_validateId(id);
// validate commitment to prevent front-running
_assertCommittedReveal(computedCommitment);
// don't allow minting of tokens that were finalized and then burned
if (_packedOwnershipSlot(id) != 0) {
revert AlreadyFinalized();
}
_mint(msg.sender, id);
}
/**
* @dev Mint a token with a specific hex value without validating it was committed to
* @param id The 6-hex-digit token ID to mint
* @return True if the token was minted, false otherwise
*/
function _mintSpecificUnprotected(uint256 id) internal returns (bool) {
// validate ID is valid 6-hex-digit number
_validateId(id);
// don't allow minting of tokens that exist or were finalized and then burned
if (_packedOwnershipSlot(id) != 0) {
// return false indicating a no-op
return false;
}
// otherwise mint the token
_mint(msg.sender, id);
return true;
}
/**
* @dev Find the first unminted token ID based on the current number minted and PREVRANDAO
* @param seed The seed to use for the random number generation – when minting, should be _numMinted, when
* re-rolling, should be a function of the caller. In the case of re-rolling, this means that if a single caller makes
* multiple re-rolls in the same block, there will be collisions. This is fine, as the extra gas cost
* discourages batch re-rolling with bots or scripts (at least from the same address).
*/
function _findAvailableHex(uint256 seed) internal view returns (uint256) {
uint256 tokenId;
assembly {
mstore(0, seed)
mstore(0x20, prevrandao())
// hash the two values together and then mask to a uint24
// seed is max an address, so start hashing at 0x0c
tokenId := and(keccak256(0x0c, 0x40), MAX_UINT24)
}
// check for the small chance that the token ID is already minted or finalized – if so, increment until we
// find one that isn't
while (_packedOwnershipSlot(tokenId) != 0) {
// safe to do unchecked math here as it is modulo 2^24
unchecked {
tokenId = (tokenId + 1) & MAX_UINT24;
}
}
return tokenId;
}
///@dev Check if an ID is a valid six-hex-digit number
function _validateId(uint256 xxyyzz) internal pure {
if (xxyyzz > MAX_UINT24) {
revert InvalidHex();
}
}
///@dev Validate msg value is equal to total price
function _validatePayment(uint256 unitPrice, uint256 quantity) internal view {
// can't overflow because there are at most uint24 tokens, and existence is checked for each token down the line
unchecked {
if (msg.value != (unitPrice * quantity)) {
revert InvalidPayment();
}
}
}
/**
* @dev Refund any overpayment
* @param unitPrice The price per action (mint, reroll, reroll+finalize)
* @param availableQuantity The number of tokens (mints, rerolls) that were actually available for purchase
*/
function _refundOverpayment(uint256 unitPrice, uint256 availableQuantity) internal {
unchecked {
// can't underflow because payment was already validated; even if it did, value would be larger than ether
// supply
uint256 overpayment = msg.value - (unitPrice * availableQuantity);
if (overpayment != 0) {
SafeTransferLib.safeTransferETH(msg.sender, overpayment);
}
}
}
/**
* @dev Check if a specific token has been finalized. Does not check if token exists.
* @param id The 6-hex-digit token ID to check
*/
function _isFinalized(uint256 id) internal view returns (bool) {
return _getExtraData(id) == FINALIZED;
}
/**
* @dev Load the raw ownership slot for a given token ID, which contains both the owner and the extra data
* (finalization status). This allows for succint checking of whether or not a token is mintable,
* i.e., whether it does not currently exist and has not been finalized. It also allows for avoiding
* an extra SLOAD in cases when checking both owner/existence and finalization status.
* @param id The 6-hex-digit token ID to check
*/
function _packedOwnershipSlot(uint256 id) internal view returns (uint256 result) {
assembly {
// since all ids are < uint24, this basically just clears the 0-slot before writing 4 bytes of slot seed
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := sload(add(id, add(id, keccak256(0x00, 0x20))))
}
}
function _checkCallerIsOwnerAndNotFinalized(uint256 id) internal view {
uint256 packedSlot = _packedOwnershipSlot(id);
// clean and cast to address
address owner = address(uint160(packedSlot));
if ((packedSlot) > type(uint160).max) {
revert AlreadyFinalized();
}
// check that caller is owner
if (owner != msg.sender) {
revert OnlyTokenOwner();
}
}
/**
* @dev Check that array lengths match, the batch size is not too large, and that the payment is correct
* @param a The first array to check
* @param b The second array to check
* @param unitPrice The price per action (mint, reroll, reroll+finalize)
*/
function _validateRerollBatchAndPayment(uint256[] calldata a, uint256[] calldata b, uint256 unitPrice)
internal
view
{
if (a.length != b.length) {
revert ArrayLengthMismatch();
}
if (a.length > MAX_SPECIFIC_BATCH_SIZE) {
revert MaxBatchSizeExceeded();
}
_validatePayment(a.length, unitPrice);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {XXYYZZCore} from "./XXYYZZCore.sol";
import {LibString} from "solady/utils/LibString.sol";
import {Base64} from "solady/utils/Base64.sol";
/**
* @title XXYYZZMetadata
* @author emo.eth
* @notice XXYYZZMetadata implements the onchain metadata for XXYYZZ tokens.
*/
abstract contract XXYYZZMetadata is XXYYZZCore {
using LibString for uint256;
using LibString for address;
using Base64 for bytes;
/**
* @notice Return the base64-encoded token metadata. Won't revert if the token doesn't exist.
* Will revert if the id is not a valid six-hex-digit ID.
*/
function tokenURI(uint256 id) public view virtual override returns (string memory) {
_validateId(id);
return string.concat("data:application/json;base64,", bytes(_stringURI(id)).encode());
}
///@notice Return the base64-encoded contract-level metadata
function contractURI() public pure returns (string memory) {
return string.concat("data:application/json;base64,", bytes(_stringContractURI()).encode());
}
///@dev Return a token-level JSON string
function _stringURI(uint256 id) internal view virtual returns (string memory) {
return string.concat(
"{",
_kv("name", _name(id)),
",",
_kv("external_link", "https://xxyyzz.art"),
",",
_kv(
"description",
"Proof of color. XXYYZZ is a collection of fully onchain, unique, composable, and collectable colors."
),
",",
_kv("image", _imageURI(id)),
",",
_kRawV("attributes", _traits(id)),
"}"
);
}
///@dev Return a contract-level JSON string
function _stringContractURI() internal pure returns (string memory) {
return
'{"name":"XXYYZZ","description":"Collectible, composable, and unique onchain colors.","external_link":"https://xxyyzz.art"}';
}
///@dev Return a name like "#aabbcc"
function _name(uint256 id) internal pure returns (string memory) {
return string.concat("#", id.toHexStringNoPrefix({length: 3}));
}
///@dev Return an svg as a base64-encoded data uri string
function _imageURI(uint256 id) internal pure returns (string memory) {
return string.concat("data:image/svg+xml;base64,", bytes(_svg(id)).encode());
}
///@dev Return a 690x690 SVG with a single rect of the token's color
function _svg(uint256 id) internal pure returns (string memory) {
return string.concat(
'<svg xmlns="http://www.w3.org/2000/svg" width="690" height="690"><rect width="690" height="690" fill="#',
id.toHexStringNoPrefix({length: 3}),
'" /></svg>'
);
}
///@dev Return a JSON array of {"trait_type":"key","value":"value"} pairs
function _traits(uint256 id) internal view returns (string memory) {
string memory color = _trait("Color", _name(id));
if (isFinalized(id)) {
string memory finalizedProp = _trait("Finalized", "Yes");
return string.concat(
"[", color, ",", finalizedProp, ",", _trait("Finalizer", finalizers[id].toHexString()), "]"
);
} else {
return string.concat("[", color, ",", _trait("Finalized", "No"), "]");
}
}
///@dev return a {"trait_type":"key","value":"value"} pair
function _trait(string memory key, string memory value) internal pure returns (string memory) {
return string.concat('{"trait_type":"', key, '","value":"', value, '"}');
}
///@dev return a "key":"value" pair
function _kv(string memory key, string memory value) internal pure returns (string memory) {
return string.concat('"', key, '":"', value, '"');
}
///@dev Return a "key":value pair without quoting value
function _kRawV(string memory key, string memory value) internal pure returns (string memory) {
return string.concat('"', key, '":', value);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {XXYYZZCore} from "./XXYYZZCore.sol";
/**
* @title XXYYZZMint
* @author emo.eth
* @notice This contract handles minting of XXYYZZ tokens.
* Tokens may be minted with a pseudorandom hex value, or with a specific hex value.
* The "Specific" methods allow for minting tokens with specific hex values with a commit-reveal scheme.
* Users may protect themselves against front-running by
*/
abstract contract XXYYZZMint is XXYYZZCore {
uint256 public immutable MAX_MINT_CLOSE_TIMESTAMP;
constructor(address initialOwner, uint256 maxBatchSize) XXYYZZCore(initialOwner, maxBatchSize) {
MAX_MINT_CLOSE_TIMESTAMP = block.timestamp + 14 days;
}
//////////
// MINT //
//////////
/**
* @notice Mint a token with a pseudorandom hex value.
* @return The token ID
*/
function mint() public payable returns (uint256) {
uint256 newAmount = _checkMintAndIncrementNumMinted(1);
// get pseudorandom hex id – doesn't need to be derived from caller
uint256 tokenId = _findAvailableHex(newAmount);
_mint(msg.sender, tokenId);
return tokenId;
}
/**
* @notice Mint a number of tokens with pseudorandom hex values.
* @param quantity The number of tokens to mint
* @return The token IDs
*/
function mint(uint256 quantity) public payable returns (uint256[] memory) {
return _checkMintTo(msg.sender, quantity);
}
function mintTo(address to, uint256 quantity) public payable returns (uint256[] memory) {
return _checkMintTo(to, quantity);
}
/**
* @notice Mint a token with a specific hex value.
* A user must first call commit(bytes32) or batchCommit(bytes32[]) with the result(s) of
* computeCommittment(address,uint256,bytes32), and wait at least one minute.
* When calling mintSpecific, the "salt" should be the bytes32 salt provided to `computeCommitment` when
* creating the commitment hash.
*
* Example: To register 0x123456 with salt bytes32(0xDEADBEEF)
* 1. Call `computeCommitment(<minting addr>, 0x123456, bytes32(0xDEADBEEF))` for `bytes32 result`
* 2. Call `commit(result)`
* 3. Wait at least 1 minute, but less than 1 day
* 4. Call `mintSpecific(0x123456, bytes32(0xDEADBEEF))`
* @param id The 6-hex-digit token ID to mint
* @param salt The salt used in the commitment for the commitment
*/
function mintSpecific(uint256 id, bytes32 salt) public payable {
_checkMintAndIncrementNumMinted(1);
_mintSpecific(id, salt);
}
/**
* @notice Mint a number of tokens with specific hex values.
* A user must first call commit(bytes32) with the result of
* `computeBatchCommitment(address,uint256[],bytes32)`, and wait at least COMMITMENT_LIFESPAN seconds.
* @param ids The 6-hex-digit token IDs to mint
* @param salt The salt used in the batch commitment
* @return An array of booleans indicating whether each token was minted
*/
function batchMintSpecific(uint256[] calldata ids, bytes32 salt) public payable returns (bool[] memory) {
_validateBatchMintAndTimestamp(ids);
bytes32 computedCommitment = computeBatchCommitment(msg.sender, ids, salt);
_assertCommittedReveal(computedCommitment);
return _batchMintAndIncrementAndRefund(ids);
}
/////////////
// HELPERS //
/////////////
/**
* @dev Mint tokens, validate that tokens were minted, and increment the number of minted tokens
* @param to Recipient of the tokens
* @param quantity Number of tokens to mint
*/
function _checkMintTo(address to, uint256 quantity) internal returns (uint256[] memory) {
// check payment and quantity once
uint256 newAmount = _checkMintAndIncrementNumMinted(quantity);
return _mintTo(to, quantity, newAmount);
}
/**
* @dev Mint tokens, validate that tokens were minted, and increment the number of minted tokens
* @param to Recipient of the tokens
* @param quantity Number of tokens to mint
*/
function _mintTo(address to, uint256 quantity, uint256 newAmount) internal returns (uint256[] memory) {
uint256[] memory tokenIds = new uint256[](quantity);
for (uint256 i; i < quantity;) {
// get pseudorandom hex id
uint256 tokenId = _findAvailableHex(newAmount);
_mint(to, tokenId);
tokenIds[i] = tokenId;
unchecked {
++i;
++newAmount;
}
}
return tokenIds;
}
/**
* @dev Mint tokens, validate that tokens were minted, increment the number of minted tokens, and refund any
* overpayment
* @param ids The 6-hex-digit token IDs to mint
*/
function _batchMintAndIncrementAndRefund(uint256[] calldata ids) internal returns (bool[] memory) {
bool[] memory minted = new bool[](ids.length);
uint256 quantityMinted;
for (uint256 i; i < ids.length;) {
if (_mintSpecificUnprotected(ids[i])) {
minted[i] = true;
unchecked {
++quantityMinted;
}
}
unchecked {
++i;
}
}
if (quantityMinted == 0) {
revert NoneAvailable();
}
_incrementNumMintedAndRefundOverpayment(quantityMinted);
return minted;
}
/**
* @dev Check payment and quantity validation – quantityRequested for payment, quantityAvailable for updating
* the number of minted tokens, which may be different
* @param quantityRequested The number of tokens requested by the user, which must be paid for
* @return The new number of minted tokens
*/
function _checkMintAndIncrementNumMinted(uint256 quantityRequested) internal returns (uint256) {
if (block.timestamp > MAX_MINT_CLOSE_TIMESTAMP) {
revert MintClosed();
}
_validatePayment(MINT_PRICE, quantityRequested);
// increment supply before minting
uint128 newAmount;
// this can be unchecked because an ID can only be minted once, and all IDs are later validated to be uint24s
unchecked {
newAmount = _numMinted + uint128(quantityRequested);
}
_numMinted = newAmount;
return newAmount;
}
/**
* @dev Increment the number of minted tokens and refund any overpayment
* @param quantity The number of tokens actually minted
*/
function _incrementNumMintedAndRefundOverpayment(uint256 quantity) internal returns (uint256) {
uint256 newAmount;
// this can be unchecked because an ID can only be minted once, and all IDs are validated to be uint24s
// overflow here implies invalid IDs down the line, which will cause a revert when minting
unchecked {
newAmount = _numMinted + quantity;
}
_numMinted = uint32(newAmount);
_refundOverpayment(MINT_PRICE, quantity);
return newAmount;
}
/**
* @dev Validate the timestamp and payment for a batch mint
* @param ids The 6-hex-digit token IDs to mint
*/
function _validateBatchMintAndTimestamp(uint256[] calldata ids) internal view {
if (block.timestamp > MAX_MINT_CLOSE_TIMESTAMP) {
revert MintClosed();
}
if (ids.length > MAX_SPECIFIC_BATCH_SIZE) {
revert MaxBatchSizeExceeded();
}
_validatePayment(ids.length, MINT_PRICE);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {XXYYZZCore} from "./XXYYZZCore.sol";
/**
* @title XXYYZZRerollFinalize
* @author emo.eth
* @notice This contract handles "rerolling" and "finalizing" tokens.
* Rerolling allows users to burn a token they own in exchange for a new one. The new token may be either
* pseudorandom, or a specific color when using one of the "Specific" methods.
* Finalizing allows users to prevent a token from being rerolled again, in addition to adding their
* wallet address to the token's metadata as the "Finalizer" trait.
*/
abstract contract XXYYZZRerollFinalize is XXYYZZCore {
////////////
// REROLL //
////////////
/**
* @notice Burn a token you own and mint a new one with a pseudorandom hex value.
* @param oldId The 6-hex-digit token ID to burn
* @return The new token ID
*/
function reroll(uint256 oldId) public payable returns (uint256) {
_validatePayment(REROLL_PRICE, 1);
// use the caller as the seed to derive the new token ID
// this means multiple calls in the same block will be gas-inefficient
// which may somewhat discourage botting
return _rerollWithSeed(oldId, uint160(msg.sender));
}
/**
* @notice Burn a number of tokens you own and mint new ones with pseudorandom hex values.
* @param ids The 6-hex-digit token IDs to burn in exchange for new tokens
* @return The new token IDs
*/
function batchReroll(uint256[] calldata ids) public payable returns (uint256[] memory) {
_validatePayment(REROLL_PRICE, ids.length);
// use the caller as the seed to derive the new token IDs
// this means multiple calls in the same block will be gas-inefficient
// which may somewhat discourage botting
uint256 seed = uint256(uint160(msg.sender));
uint256[] memory newIds = new uint256[](ids.length);
for (uint256 i; i < ids.length;) {
newIds[i] = _rerollWithSeed(ids[i], seed);
unchecked {
++i;
++seed;
}
}
return newIds;
}
/**
* @notice Burn and re-mint a token with a specific hex ID. Uses a commit-reveal scheme to prevent front-running.
* Only callable by the owner of the token. Users must call `commit(bytes32)` with the result of
* `computeCommitment(address,uint256,bytes32)` and wait at least COMMITMENT_LIFESPAN seconds before
* calling `rerollSpecific`.
* @param oldId The 6-hex-digit token ID to burn
* @param newId The 6-hex-digit token ID to mint
* @param salt The salt used in the commitment for the new ID commitment
*/
function rerollSpecific(uint256 oldId, uint256 newId, bytes32 salt) public payable {
_validatePayment(REROLL_PRICE, 1);
_rerollSpecificWithSalt(oldId, newId, salt);
}
/**
* @notice Burn and re-mint a number of tokens with specific hex values. Uses a commit-reveal scheme to prevent
* front-running. Only callable by the owner of the tokens. Users must call `commit(bytes32)` with the
* result of `computeBatchCommitment(address,uint256[],bytes32)` and wait at least COMMITMENT_LIFESPAN
* seconds before calling `batchRerollSpecific`.
* @param oldIds The 6-hex-digit token IDs to burn
* @param newIds The 6-hex-digit token IDs to mint
* @param salt The salt used in the commitment for the new IDs commitment
* @return An array of booleans indicating whether each token was successfully rerolled
*/
function batchRerollSpecific(uint256[] calldata oldIds, uint256[] calldata newIds, bytes32 salt)
public
payable
returns (bool[] memory)
{
_validateRerollBatchAndPayment(oldIds, newIds, REROLL_PRICE);
bytes32 computedCommitment = computeBatchCommitment(msg.sender, newIds, salt);
_assertCommittedReveal(computedCommitment);
return _batchRerollAndRefund(oldIds, newIds);
}
/**
* @notice Burn and re-mint a token with a specific hex ID, then finalize it. Uses a commit-reveal scheme to
* prevent front-running. Only callable by the owner of the token. Users must call `commit(bytes32)`
* with the result of `computeCommitment(address,uint256,bytes32)` and wait at least COMMITMENT_LIFESPAN
* seconds before calling `rerollSpecificAndFinalize`.
* @param oldId The 6-hex-digit token ID to burn
* @param newId The 6-hex-digit token ID to mint
* @param salt The salt used in the commitment for the new ID commitment
*/
function rerollSpecificAndFinalize(uint256 oldId, uint256 newId, bytes32 salt) public payable {
_validatePayment(REROLL_AND_FINALIZE_PRICE, 1);
_rerollSpecificWithSalt(oldId, newId, salt);
// won't re-validate price, but above function already did
_finalizeToken(newId, msg.sender);
}
/**
* @notice Burn and re-mint a number of tokens with specific hex values, then finalize them.
* @param oldIds The 6-hex-digit token IDs to burn
* @param newIds The 6-hex-digit token IDs to mint
* @param salt The salt used in the batch commitment for the new ID commitment
* @return An array of booleans indicating whether each token was successfully rerolled
*/
function batchRerollSpecificAndFinalize(uint256[] calldata oldIds, uint256[] calldata newIds, bytes32 salt)
public
payable
returns (bool[] memory)
{
_validateRerollBatchAndPayment(oldIds, newIds, REROLL_AND_FINALIZE_PRICE);
bytes32 computedCommitment = computeBatchCommitment(msg.sender, newIds, salt);
_assertCommittedReveal(computedCommitment);
return _batchRerollAndFinalizeAndRefund(oldIds, newIds);
}
//////////////
// FINALIZE //
//////////////
/**
* @notice Finalize a token, which updates its metadata with a "Finalizer" trait and prevents it from being
* rerolled in the future.
* @param id The 6-hex-digit token ID to finalize. Must be owned by the caller.
*/
function finalize(uint256 id) public payable {
_validatePayment(FINALIZE_PRICE, 1);
_finalize(id);
}
/**
* @notice Finalize a number of tokens, which updates their metadata with a "Finalizer" trait and prevents them
* from being rerolled in the future. The caller must pay the finalization price for each token, and must
* own all tokens.
* @param ids The 6-hex-digit token IDs to finalize
*/
function batchFinalize(uint256[] calldata ids) public payable {
_validatePayment(FINALIZE_PRICE, ids.length);
for (uint256 i; i < ids.length;) {
_finalize(ids[i]);
unchecked {
++i;
}
}
}
//////////////
// INTERNAL //
//////////////
/**
* @dev Internal function to burn and re-mint tokens with a specific hex ID. Does not check initial payment.
* Does refund any overpayment.
* @param oldIds The 6-hex-digit token IDs to burn
* @param newIds The 6-hex-digit token IDs to mint
* @return An array of booleans indicating whether each token was successfully rerolled
*/
function _batchRerollAndRefund(uint256[] calldata oldIds, uint256[] calldata newIds)
internal
returns (bool[] memory)
{
bool[] memory rerolled = new bool[](oldIds.length);
uint256 quantityRerolled;
for (uint256 i; i < oldIds.length;) {
if (_rerollSpecificUnprotected(oldIds[i], newIds[i])) {
rerolled[i] = true;
unchecked {
++quantityRerolled;
}
}
unchecked {
++i;
}
}
// if none were rerolled, revert to avoid wasting further gas
if (quantityRerolled == 0) {
revert NoneAvailable();
}
// refund any overpayment
_refundOverpayment(REROLL_PRICE, quantityRerolled);
return rerolled;
}
/**
* @dev Internal function to burn and re-mint tokens with a specific hex ID, then finalize them. Does not check
* initial payment. Does refund any overpayment.
* @param oldIds The 6-hex-digit token IDs to burn
* @param newIds The 6-hex-digit token IDs to mint
* @return An array of booleans indicating whether each token was successfully rerolled
*/
function _batchRerollAndFinalizeAndRefund(uint256[] calldata oldIds, uint256[] calldata newIds)
internal
returns (bool[] memory)
{
bool[] memory rerolled = new bool[](oldIds.length);
uint256 quantityRerolled;
for (uint256 i; i < oldIds.length;) {
if (_rerollSpecificUnprotected(oldIds[i], newIds[i])) {
_finalizeToken(newIds[i], msg.sender);
rerolled[i] = true;
unchecked {
++quantityRerolled;
}
}
unchecked {
++i;
}
}
// if none were rerolled, revert to avoid wasting gas
if (quantityRerolled == 0) {
revert NoneAvailable();
}
// refund any overpayment
_refundOverpayment(REROLL_AND_FINALIZE_PRICE, quantityRerolled);
return rerolled;
}
/**
* @dev Validate an old tokenId is rerollable, burn it, then mint a token with a pseudorandom
* hex ID.
* @param oldId The old ID to reroll
* @param seed The seed to use for the reroll
*
*/
function _rerollWithSeed(uint256 oldId, uint256 seed) internal returns (uint256) {
_checkCallerIsOwnerAndNotFinalized(oldId);
// burn old token
_burn(oldId);
uint256 tokenId = _findAvailableHex(seed);
_mint(msg.sender, tokenId);
return tokenId;
}
/**
* @dev Validate an old tokenId is rerollable, burn it, then mint a token with a specific
* hex ID, validating that the commit-reveal scheme was followed.
* @param oldId The old ID to reroll
* @param newId The new ID to mint
* @param salt The salt used in the commit-reveal scheme
*/
function _rerollSpecificWithSalt(uint256 oldId, uint256 newId, bytes32 salt) internal {
_checkCallerIsOwnerAndNotFinalized(oldId);
// burn old token
_burn(oldId);
_mintSpecific(newId, salt);
}
/**
* @dev Validate an old tokenId is rerollable, mint a token with a specific new hex ID (if available)
* and burn the old token.
* @param oldId The old ID to reroll
* @param newId The new ID to mint
* @return Whether the mint succeeded, ie, the new ID was available
*/
function _rerollSpecificUnprotected(uint256 oldId, uint256 newId) internal returns (bool) {
_checkCallerIsOwnerAndNotFinalized(oldId);
// only burn old token if mint succeeded
if (_mintSpecificUnprotected(newId)) {
_burn(oldId);
return true;
}
return false;
}
/**
* @dev Internal function to finalize a token, first checking that the caller is the owner and that the token
* has not already been finalized.
* @param id The 6-hex-digit token ID to finalize
*/
function _finalize(uint256 id) internal {
_checkCallerIsOwnerAndNotFinalized(id);
// set finalized flag
_finalizeToken(id, msg.sender);
// emit onchain metadata update event
emit MetadataUpdate(id);
}
/**
* @dev Finalize a tokenId, updating its metadata with a "Finalizer" trait, and preventing it from being rerolled in the future.
* @param id The 6-hex-digit token ID to finalize
* @param finalizer The address of the account finalizing the token
*/
function _finalizeToken(uint256 id, address finalizer) internal {
finalizers[id] = finalizer;
_setExtraData(id, 1);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {XXYYZZMint} from "./XXYYZZMint.sol";
import {ISeaDrop, PublicDrop} from "./lib/SeaDropSpecific.sol";
abstract contract XXYYZZSeaDrop is XXYYZZMint {
error OnlySeadrop();
address immutable SEADROP;
address immutable CREATOR_PAYOUT;
uint256 immutable DEPLOYED_TIME;
uint256 private constant SEADROP_TOKEN_CREATED_EVENT_TOPIC =
0xd7aca75208b9be5ffc04c6a01922020ffd62b55e68e502e317f5344960279af8;
address private constant SEADROP_FEE_RECIPIENT = 0x0000a26b00c1F0DF003000390027140000fAa719;
address private constant SEADROP_ALLOWED_PAYER_1 = 0xf408Bee3443D0397e2c1cdE588Fb060AC657006F;
address private constant SEADROP_ALLOWED_PAYER_2 = 0xE3d3D0eD702504e19825f44BC6542Ff2ec45cB9A;
uint256 private constant INONFUNGIBLESEADROP_INTERFACE_ID = 0x1890fe8e;
constructor(address seadrop, address creatorPayout, address initialOwner, uint256 maxBatchSize)
XXYYZZMint(initialOwner, maxBatchSize)
{
SEADROP = seadrop;
DEPLOYED_TIME = block.timestamp;
CREATOR_PAYOUT = creatorPayout;
// log without adding event to abi
assembly {
log1(0, 0, SEADROP_TOKEN_CREATED_EVENT_TOPIC)
}
}
/**
* @notice Configure the SeaDrop contract. onlyOwner.
* @dev SeaDrop calls supportsInterface, so this unfortunately can't live in the constructor.
*/
function configureSeaDrop() external onlyOwner {
ISeaDrop seadrop = ISeaDrop(SEADROP);
seadrop.updatePublicDrop(
PublicDrop({
mintPrice: uint80(0.005 ether),
startTime: uint48(DEPLOYED_TIME),
endTime: uint48(MAX_MINT_CLOSE_TIMESTAMP),
maxTotalMintableByWallet: type(uint16).max,
feeBps: uint16(1000),
restrictFeeRecipients: true
})
);
seadrop.updateCreatorPayoutAddress(CREATOR_PAYOUT);
seadrop.updateAllowedFeeRecipient(SEADROP_FEE_RECIPIENT, true);
seadrop.updatePayer(SEADROP_ALLOWED_PAYER_1, true);
seadrop.updatePayer(SEADROP_ALLOWED_PAYER_2, true);
}
function mintSeaDrop(address recipient, uint256 quantity) external {
if (msg.sender != SEADROP) {
revert OnlySeadrop();
}
// increment supply before minting
uint128 newAmount;
// this can be unchecked because an ID can only be minted once, and all IDs are later validated to be uint24s
unchecked {
newAmount = _numMinted + uint128(quantity);
}
_numMinted = newAmount;
_mintTo(recipient, quantity, newAmount);
}
/**
* @dev See {IERC165-supportsInterface}. Overridden to support SeaDrop.
*/
function supportsInterface(bytes4 interfaceId) public pure virtual override returns (bool result) {
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f. ERC4906: 0x49064906
result :=
or(
or(or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f)), eq(s, 0x49064906)),
eq(s, INONFUNGIBLESEADROP_INTERFACE_ID)
)
}
}
/**
* @dev Hard-coded for SeaDrop support
*/
function getMintStats(address) external view returns (uint256, uint256, uint256) {
return (0, _numMinted, 16777216);
}
/**
* @dev Hard-coded for SeaDrop support
*/
function maxSupply() external pure returns (uint256) {
return 16777216;
}
}
{
"compilationTarget": {
"src/XXYYZZ.sol": "XXYYZZ"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"appendCBOR": false,
"bytecodeHash": "none"
},
"optimizer": {
"enabled": true,
"runs": 1000000
},
"remappings": [
":create2-helpers/=lib/create2-helpers/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc721a/=lib/erc721a/contracts/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/create2-helpers/lib/openzeppelin-contracts/",
":solady-test/=lib/solady/test/",
":solady/=lib/solady/src/",
":solarray/=lib/solarray/src/"
]
}
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"creatorPayout","type":"address"},{"internalType":"uint256","name":"maxBatchSize","type":"uint256"},{"internalType":"uint24[]","name":"preMintIds","type":"uint24[]"},{"internalType":"address","name":"seaDrop","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccountBalanceOverflow","type":"error"},{"inputs":[],"name":"AlreadyFinalized","type":"error"},{"inputs":[],"name":"ArrayLengthMismatch","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"BatchBurnerNotApprovedForAll","type":"error"},{"inputs":[{"internalType":"uint256","name":"committedTimestamp","type":"uint256"}],"name":"InvalidCommitment","type":"error"},{"inputs":[],"name":"InvalidHex","type":"error"},{"inputs":[],"name":"InvalidPayment","type":"error"},{"inputs":[],"name":"InvalidTimestamp","type":"error"},{"inputs":[],"name":"MaxBatchSizeExceeded","type":"error"},{"inputs":[],"name":"MaximumSupplyExceeded","type":"error"},{"inputs":[],"name":"MintClosed","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"NoIdsProvided","type":"error"},{"inputs":[],"name":"NoneAvailable","type":"error"},{"inputs":[],"name":"NotOwnerNorApproved","type":"error"},{"inputs":[],"name":"OnlyFinalized","type":"error"},{"inputs":[],"name":"OnlySeadrop","type":"error"},{"inputs":[],"name":"OnlyTokenOwner","type":"error"},{"inputs":[],"name":"OwnerMismatch","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TokenDoesNotExist","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"Unavailable","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"isApproved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_toTokenId","type":"uint256"}],"name":"BatchMetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"MetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"COMMITMENT_DELAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"COMMITMENT_LIFESPAN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FINALIZE_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_MINT_CLOSE_TIMESTAMP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SPECIFIC_BATCH_SIZE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REROLL_AND_FINALIZE_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REROLL_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"bool","name":"onlyFinalized","type":"bool"}],"name":"batchBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"batchFinalize","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"batchMintSpecific","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"batchReroll","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"oldIds","type":"uint256[]"},{"internalType":"uint256[]","name":"newIds","type":"uint256[]"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"batchRerollSpecific","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"oldIds","type":"uint256[]"},{"internalType":"uint256[]","name":"newIds","type":"uint256[]"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"batchRerollSpecificAndFinalize","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"xxyyzz","type":"uint256"},{"internalType":"bool","name":"onlyFinalized","type":"bool"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"commitment","type":"bytes32"}],"name":"commit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"bytes32","name":"commitment","type":"bytes32"}],"name":"commitments","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"computeBatchCommitment","outputs":[{"internalType":"bytes32","name":"commitmentHash","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"computeCommitment","outputs":[{"internalType":"bytes32","name":"committmentHash","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"configureSeaDrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"finalize","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"finalizers","outputs":[{"internalType":"address","name":"finalizer","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"getMintStats","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"isFinalized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mintSeaDrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"mintSpecific","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mintTo","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"numBurned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ownershipHandoverValidFor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"oldId","type":"uint256"}],"name":"reroll","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"oldId","type":"uint256"},{"internalType":"uint256","name":"newId","type":"uint256"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"rerollSpecific","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"oldId","type":"uint256"},{"internalType":"uint256","name":"newId","type":"uint256"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"rerollSpecificAndFinalize","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"isApproved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]