pragma solidity ^0.5.5;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*
* _Available since v2.4.0._
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*
* _Available since v2.4.0._
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// According to EIP-1052, 0x0 is the value returned for not-yet created accounts
// and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
// for accounts without code, i.e. `keccak256('')`
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != accountHash && codehash != 0x0);
}
/**
* @dev Converts an `address` into `address payable`. Note that this is
* simply a type cast: the actual underlying value is not changed.
*
* _Available since v2.4.0._
*/
function toPayable(address account) internal pure returns (address payable) {
return address(uint160(account));
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*
* _Available since v2.4.0._
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-call-value
(bool success, ) = recipient.call.value(amount)("");
require(success, "Address: unable to send value, recipient may have reverted");
}
}
/**
* @title Roles
* @dev Library for managing addresses assigned to a Role.
*/
library Roles {
struct Role {
mapping (address => bool) bearer;
}
/**
* @dev Give an account access to this role.
*/
function add(Role storage role, address account) internal {
require(!has(role, account), "Roles: account already has role");
role.bearer[account] = true;
}
/**
* @dev Remove an account's access to this role.
*/
function remove(Role storage role, address account) internal {
require(has(role, account), "Roles: account does not have role");
role.bearer[account] = false;
}
/**
* @dev Check if an account has this role.
* @return bool
*/
function has(Role storage role, address account) internal view returns (bool) {
require(account != address(0), "Roles: account is the zero address");
return role.bearer[account];
}
}
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*
* _Since v2.5.0:_ this module is now much more gas efficient, given net gas
* metering changes introduced in the Istanbul hardfork.
*/
contract ReentrancyGuard {
bool private _notEntered;
constructor () internal {
// Storing an initial non-zero value makes deployment a bit more
// expensive, but in exchange the refund on every call to nonReentrant
// will be lower in amount. Since refunds are capped to a percetange of
// the total transaction's gas, it is best to keep them low in cases
// like this one, to increase the likelihood of the full refund coming
// into effect.
_notEntered = true;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and make it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
// On the first call to nonReentrant, _notEntered will be true
require(_notEntered, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_notEntered = false;
_;
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_notEntered = true;
}
}
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
contract Context {
// Empty internal constructor, to prevent people from mistakenly deploying
// an instance of this contract, which should be used via inheritance.
constructor () internal { }
// solhint-disable-previous-line no-empty-blocks
function _msgSender() internal view returns (address payable) {
return msg.sender;
}
function _msgData() internal view returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
contract ManagerRole is Context {
using Roles for Roles.Role;
event ManagerAdded(address indexed account);
event ManagerRemoved(address indexed account);
Roles.Role private _managers;
constructor () internal {
_addManager(_msgSender());
}
modifier onlyManager() {
require(isManager(_msgSender()), "ManagerRole: caller does not have the Manager role");
_;
}
function isManager(address account) public view returns (bool) {
return _managers.has(account);
}
function addManager(address account) public onlyManager {
_addManager(account);
}
function renounceManager() public {
_removeManager(_msgSender());
}
function _addManager(address account) internal {
_managers.add(account);
emit ManagerAdded(account);
}
function _removeManager(address account) internal {
_managers.remove(account);
emit ManagerRemoved(account);
}
}
contract SupporterRole is Context {
using Roles for Roles.Role;
event SupporterAdded(address indexed account);
event SupporterRemoved(address indexed account);
Roles.Role private _supporters;
constructor () internal {
_addSupporter(_msgSender());
}
modifier onlySupporter() {
require(isSupporter(_msgSender()), "SupporterRole: caller does not have the Supporter role");
_;
}
function isSupporter(address account) public view returns (bool) {
return _supporters.has(account);
}
function addSupporter(address account) public onlySupporter {
_addSupporter(account);
}
function renounceSupporter() public {
_removeSupporter(_msgSender());
}
function _addSupporter(address account) internal {
_supporters.add(account);
emit SupporterAdded(account);
}
function _removeSupporter(address account) internal {
_supporters.remove(account);
emit SupporterRemoved(account);
}
}
contract PauserRole is Context {
using Roles for Roles.Role;
event PauserAdded(address indexed account);
event PauserRemoved(address indexed account);
Roles.Role private _pausers;
constructor () internal {
_addPauser(_msgSender());
}
modifier onlyPauser() {
require(isPauser(_msgSender()), "PauserRole: caller does not have the Pauser role");
_;
}
function isPauser(address account) public view returns (bool) {
return _pausers.has(account);
}
function addPauser(address account) public onlyPauser {
_addPauser(account);
}
function renouncePauser() public {
_removePauser(_msgSender());
}
function _addPauser(address account) internal {
_pausers.add(account);
emit PauserAdded(account);
}
function _removePauser(address account) internal {
_pausers.remove(account);
emit PauserRemoved(account);
}
}
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
contract Pausable is Context, PauserRole {
/**
* @dev Emitted when the pause is triggered by a pauser (`account`).
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by a pauser (`account`).
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state. Assigns the Pauser role
* to the deployer.
*/
constructor () internal {
_paused = false;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view returns (bool) {
return _paused;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*/
modifier whenNotPaused() {
require(!_paused, "Pausable: paused");
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*/
modifier whenPaused() {
require(_paused, "Pausable: not paused");
_;
}
/**
* @dev Called by a pauser to pause, triggers stopped state.
*/
function pause() public onlyPauser whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Called by a pauser to unpause, returns to normal state.
*/
function unpause() public onlyPauser whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() internal view returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(isOwner(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Returns true if the caller is the current owner.
*/
function isOwner() internal view returns (bool) {
return _msgSender() == _owner;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
*/
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves.
// A Solidity high level call has three parts:
// 1. The target address is checked to verify it contains contract code
// 2. The call itself is made, and success asserted
// 3. The return value is decoded, which in turn checks the size of the returned data.
// solhint-disable-next-line max-line-length
require(address(token).isContract(), "SafeERC20: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = address(token).call(data);
require(success, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see {ERC20Detailed}.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
/**
* @title Crowdsale
* @dev Crowdsale is a base contract for managing a token crowdsale,
* allowing investors to purchase tokens with ether. This contract implements
* such functionality in its most fundamental form and can be extended to provide additional
* functionality and/or custom behavior.
* The external interface represents the basic interface for purchasing tokens, and conforms
* the base architecture for crowdsales. It is *not* intended to be modified / overridden.
* The internal interface conforms the extensible and modifiable surface of crowdsales. Override
* the methods to add functionality. Consider using 'super' where appropriate to concatenate
* behavior.
*/
contract Crowdsale is Ownable, ReentrancyGuard {
using SafeMath for uint256;
using SafeERC20 for IERC20;
struct Rate {
uint256 rate;
uint256 adapter;
}
// The token being sold
IERC20 private _token;
// How many token units a buyer gets per wei.
// The rate is the conversion between wei and the smallest and indivisible token unit.
// So, if you are using a rate of 1 with a ERC20Detailed token with 3 decimals called TOK
// 1 wei will give you 1 unit, or 0.001 TOK.
uint256 private _sold;
mapping(address => Rate) private _rates;
/**
* Event for token purchase logging
* @param purchaser who paid for the tokens
* @param beneficiary who got the tokens
* @param value weis paid for purchase
* @param amount amount of tokens purchased
*/
event TokensPurchased(address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount);
/**
* @dev The rate is the conversion between wei and the smallest and indivisible
* token unit. So, if you are using a rate of 1 with a ERC20Detailed token
* with 3 decimals called TOK, 1 wei will give you 1 unit, or 0.001 TOK.
* @param token Address of the token being sold
*/
constructor (IERC20 token) Ownable() public {
require(address(token) != address(0), "Crowdsale: token is the zero address");
_rates[0xdAC17F958D2ee523a2206206994597C13D831ec7].rate = 4e12;
_rates[0xdAC17F958D2ee523a2206206994597C13D831ec7].adapter = 1;
_token = token;
}
/**
* @dev Checks whether the token is accepted.
* @return Whether the token is accepted.
*/
function isTokenAccepted(address token) public view returns (bool) {
return _rates[token].rate != 0;
}
/**
* @dev Update accepted token rate
*/
function updateTokenRate(address token, uint256 _rate, uint256 _adapter)
public onlyOwner returns (bool) {
_rates[token].rate = _rate;
_rates[token].adapter = _adapter;
return true;
}
/**
* @dev View current rate
*/
function rate(address token) public view onlyOwner returns (uint256, uint256) {
return (
_rates[token].rate,
_rates[token].adapter
);
}
/**
* @return the token being sold.
*/
function token() public view returns (IERC20) {
return _token;
}
/**
* @return the amount of token sold.
*/
function sold() public view returns (uint256) {
return _sold;
}
/**
* @dev This function has a non-reentrancy guard, so it shouldn't be called by
* another `nonReentrant` function.
* @param sentTokens Amount of tokens sent
* @param _erc20Token Address of the token contract
*/
function buyTokensWithTokens(uint256 sentTokens, address _erc20Token) public nonReentrant {
require(isTokenAccepted(_erc20Token), "Token is not accepted");
address beneficiary = _msgSender();
_preValidatePurchase(beneficiary, sentTokens);
IERC20 erc20Token = IERC20(_erc20Token);
uint256 amountRecieved = _getTokenAmount(sentTokens, _erc20Token);
require(sentTokens <= erc20Token.allowance(beneficiary, address(this)), "Insufficient Funds");
_forwardFundsToken(erc20Token, sentTokens);
_sold = _sold.add(amountRecieved);
_processPurchase(beneficiary, amountRecieved);
emit TokensPurchased(beneficiary, beneficiary, 0, amountRecieved);
_updatePurchasingState(beneficiary, amountRecieved);
}
function checkRate(uint256 amount, address tokenAddress) public onlyOwner view returns (uint256) {
return _getTokenAmount(amount, tokenAddress);
}
/**
* @dev Validation of an incoming purchase. Use require statements to revert state when conditions are not met.
* Use `super` in contracts that inherit from Crowdsale to extend their validations.
* Example from CappedCrowdsale.sol's _preValidatePurchase method:
* super._preValidatePurchase(beneficiary, weiAmount);
* require(weiRaised().add(weiAmount) <= cap);
* @param beneficiary Address performing the token purchase
* @param weiAmount Value in wei involved in the purchase
*/
function _preValidatePurchase(address beneficiary, uint256 weiAmount) internal view {
require(beneficiary != address(0), "Crowdsale: beneficiary is the zero address");
require(weiAmount != 0, "Crowdsale: weiAmount is 0");
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
}
/**
* @dev Validation of an executed purchase. Observe state and use revert statements to undo rollback when valid
* conditions are not met.
* @param weiAmount Value in wei involved in the purchase
*/
function _forwardFundsToken(IERC20 erc20Token, uint256 weiAmount) internal {
// solhint-disable-previous-line no-empty-blocks
}
/**
* @dev Source of tokens. Override this method to modify the way in which the crowdsale ultimately gets and sends
* its tokens.
* @param beneficiary Address performing the token purchase
* @param tokenAmount Number of tokens to be emitted
*/
function _deliverTokens(address beneficiary, uint256 tokenAmount) internal {
_token.transfer(beneficiary, tokenAmount);
}
/**
* @dev Executed when a purchase has been validated and is ready to be executed. Doesn't necessarily emit/send
* tokens.
* @param beneficiary Address receiving the tokens
* @param tokenAmount Number of tokens to be purchased
*/
function _processPurchase(address beneficiary, uint256 tokenAmount) internal {
_deliverTokens(beneficiary, tokenAmount);
}
/**
* @dev Override for extensions that require an internal state to check for validity (current user contributions,
* etc.)
* @param beneficiary Address receiving the tokens
* @param weiAmount Value in wei involved in the purchase
*/
function _updatePurchasingState(address beneficiary, uint256 weiAmount) internal {
// solhint-disable-previous-line no-empty-blocks
}
/**
* @dev Override to extend the way in which ether is converted to tokens.
* @param amount Value in wei to be converted into tokens
* @return Number of tokens that can be purchased with the specified _amount
*/
function _getTokenAmount(uint256 amount, address _erc20Token) internal view returns (uint256) {
Rate memory exchangeRate = _rates[_erc20Token];
return amount
.mul(exchangeRate.rate)
.div(exchangeRate.adapter);
}
}
/**
* @title TimedCrowdsale
* @dev Crowdsale accepting contributions only within a time frame.
*/
contract TimedCrowdsale is Crowdsale {
using SafeMath for uint256;
uint256 private _openingTime;
uint256 private _closingTime;
/**
* Event for crowdsale extending
* @param newClosingTime new closing time
* @param prevClosingTime old closing time
*/
event TimedCrowdsaleExtended(uint256 prevClosingTime, uint256 newClosingTime);
/**
* @dev Reverts if not in crowdsale time range.
*/
modifier onlyWhileOpen {
require(isOpen(), "TimedCrowdsale: not open");
_;
}
/**
* @dev Constructor, takes crowdsale opening and closing times.
* @param openingTime Crowdsale opening time
* @param closingTime Crowdsale closing time
*/
constructor (uint256 openingTime, uint256 closingTime) public {
// solhint-disable-next-line not-rely-on-time
require(openingTime >= block.timestamp, "TimedCrowdsale: opening time is before current time");
// solhint-disable-next-line max-line-length
require(closingTime > openingTime, "TimedCrowdsale: opening time is not before closing time");
_openingTime = openingTime;
_closingTime = closingTime;
}
/**
* @return the crowdsale opening time.
*/
function openingTime() public view returns (uint256) {
return _openingTime;
}
/**
* @return the crowdsale closing time.
*/
function closingTime() public view returns (uint256) {
return _closingTime;
}
/**
* @return true if the crowdsale is open, false otherwise.
*/
function isOpen() public view returns (bool) {
// solhint-disable-next-line not-rely-on-time
return block.timestamp >= _openingTime && block.timestamp <= _closingTime;
}
/**
* @dev Checks whether the period in which the crowdsale is open has already elapsed.
* @return Whether crowdsale period has elapsed
*/
function hasClosed() public view returns (bool) {
// solhint-disable-next-line not-rely-on-time
return block.timestamp > _closingTime;
}
/**
* @dev Extend parent behavior requiring to be within contributing period.
* @param beneficiary Token purchaser
* @param weiAmount Amount of wei contributed
*/
function _preValidatePurchase(address beneficiary, uint256 weiAmount)
internal onlyWhileOpen view {
super._preValidatePurchase(beneficiary, weiAmount);
}
/**
* @dev Extend crowdsale.
* @param newOpeningTime Crowdsale Opening time
* @param newClosingTime Crowdsale closing time
*/
function _extendTime(uint256 newOpeningTime, uint256 newClosingTime) internal {
emit TimedCrowdsaleExtended(_closingTime, newClosingTime);
_openingTime = newOpeningTime;
_closingTime = newClosingTime;
}
}
/**
* @dev A Secondary contract can only be used by its primary account (the one that created it).
*/
contract Secondary is Context {
address private _primary;
/**
* @dev Emitted when the primary contract changes.
*/
event PrimaryTransferred(
address recipient
);
/**
* @dev Sets the primary account to the one that is creating the Secondary contract.
*/
constructor () internal {
address msgSender = _msgSender();
_primary = msgSender;
emit PrimaryTransferred(msgSender);
}
/**
* @dev Reverts if called from any account other than the primary.
*/
modifier onlyPrimary() {
require(_msgSender() == _primary, "Secondary: caller is not the primary account");
_;
}
/**
* @return the address of the primary.
*/
function primary() public view returns (address) {
return _primary;
}
/**
* @dev Transfers contract to a new primary.
* @param recipient The address of new primary.
*/
function transferPrimary(address recipient) public onlyPrimary {
require(recipient != address(0), "Secondary: new primary is the zero address");
_primary = recipient;
emit PrimaryTransferred(recipient);
}
}
/**
* @title __unstable__TokenVault
* @dev Similar to an Escrow for tokens, this contract allows its primary account to spend its tokens as it sees fit.
* This contract is an internal helper for PostDeliveryCrowdsale, and should not be used outside of this context.
*/
// solhint-disable-next-line contract-name-camelcase
contract __unstable__TokenVault is Secondary {
function transferToken(IERC20 token, address to, uint256 amount) public onlyPrimary {
token.transfer(to, amount);
}
function transferFunds(address payable to, uint256 amount) public onlyPrimary {
require (address(this).balance >= amount);
to.transfer(amount);
}
function () external payable {}
}
/**
* @title MoonSale
*/
contract MoonSale is TimedCrowdsale, Pausable, SupporterRole, ManagerRole {
using SafeMath for uint256;
struct User {
address sponsor;
uint256 balance;
uint256 referralBonus;
}
__unstable__TokenVault private _vault;
mapping(address => User) _users;
/**
* @param token The token.
*/
constructor(IERC20 token)
//todo uint256 openingTime, uint256 closingTime
TimedCrowdsale(block.timestamp + 5 seconds, block.timestamp + 2 days)
Crowdsale(token) public {
_vault = new __unstable__TokenVault();
}
/**
* @dev Extend sale
* @param openingTime New opening time.
* @param closingTime New closing time.
*/
function extendTime(uint256 openingTime, uint256 closingTime)
public onlyOwner
returns (bool) {
_extendTime(openingTime, closingTime);
return true;
}
/**
* @dev Set sponsor for user
* @param sponsor Sponsor address
* @param user User address
*/
function delegateSetSponsor(address sponsor, address user)
public onlySupporter
returns (bool) {
require(sponsor != user, "User can not be his own sponsor");
User storage _user = _users[user];
require(_user.sponsor == address(0), "User already has a sponsor");
_user.sponsor = sponsor;
return true;
}
/**
* @dev Set sponsor
* @param sponsor Sponsor address
*/
function setSponsor(address sponsor) public returns (bool) {
require(sponsor != _msgSender(), "You can not be your own sponsor");
User storage _user = _users[_msgSender()];
require(_user.sponsor == address(0), "You already has a sponsor");
_user.sponsor = sponsor;
return true;
}
/**
* @dev Withdraw all available tokens.
*/
function withdraw() public whenNotPaused nonReentrant returns (bool) {
require(hasClosed(), "TimedCrowdsale: not closed");
User storage user = _users[_msgSender()];
uint256 available = user.referralBonus.add(user.balance);
require(available > 0, "Not available");
user.balance = 0;
user.referralBonus = 0;
_vault.transferToken(token(), _msgSender(), available);
return true;
}
/**
* @dev Get reserved token.
*/
function getReserved() public view onlyManager
returns (uint256 defaultTokens) {
address vaultAddress = address(_vault);
defaultTokens = IERC20(0xdAC17F958D2ee523a2206206994597C13D831ec7).balanceOf(vaultAddress);
}
/**
* @dev Get reserved token by address.
*/
function getReservedByAddress(IERC20 token) public view onlyManager returns (uint256) {
return token.balanceOf(address(_vault));
}
/**
* @dev Supply token for the vaults.
* @param amount Supply amount
*/
function supplyVault(uint256 amount)
public onlyManager
returns (bool) {
token().transferFrom(_msgSender(), address(_vault), amount);
return true;
}
/**
* @dev deprive tokens from vaults.
* @param vault Vault address
* @param amount The amount
*/
function depriveToken(address vault, IERC20 token, uint256 amount)
public onlyManager returns (bool) {
_vault.transferToken(token, vault, amount);
return true;
}
/**
* @dev deprive funds from vaults.
* @param vault Vault address
* @param amount The amount
*/
function depriveFunds(address payable vault, uint256 amount)
public onlyManager
returns (bool) {
_vault.transferFunds(vault, amount);
return true;
}
/**
* @return the invested, referralBonus, airdropBonus, dailyIncome, stakes, withdrawn, available
*/
function personalStats(address account) public view returns (
address sponsor,
uint256 balance,
uint256 referralBonus,
uint256 available
) {
User memory user = _users[account];
return (
user.sponsor,
user.balance,
user.referralBonus,
user.balance.add(user.referralBonus)
);
}
/**
* @dev Fallback function
*/
function () external payable {
address(uint160((address(_vault)))).transfer(msg.value);
}
/**
* @dev Override parent behavior: Storing balance instead of issuing tokens right away.
* @param beneficiary Token purchaser
* @param tokenAmount Amount of tokens purchased
*/
function _processPurchase(address beneficiary, uint256 tokenAmount) internal {
_users[beneficiary].balance = _users[beneficiary].balance.add(tokenAmount);
}
/**
* @dev Override parent behavior: Pay bonus for sponsor.
* @param beneficiary Address receiving the tokens
* @param amount Value in token involved in the purchase
*/
function _updatePurchasingState(address beneficiary, uint256 amount) internal {
User storage user = _users[beneficiary];
if (user.sponsor != address(0)) {
_users[user.sponsor].referralBonus = amount
.mul(12).div(100).add(_users[user.sponsor].referralBonus);
}
}
/**
* @dev Extend parent behavior requiring minimum amount to be 1000.
* @param beneficiary Token purchaser
* @param _value Amount contributed
*/
function _preValidatePurchase(address beneficiary, uint256 _value)
internal view {
// require(_value >= 1000e18, "Minimum amount is 1000");
super._preValidatePurchase(beneficiary, _value);
}
/**
* @dev Extend parent behavior
* @param erc20Token ERC20 Token
* @param _value Amount contributed
*/
function _forwardFundsToken(IERC20 erc20Token, uint256 _value) internal {
erc20Token.transferFrom(_msgSender(), address(_vault), _value);
}
}
{
"compilationTarget": {
"MoonSale.sol": "MoonSale"
},
"evmVersion": "istanbul",
"libraries": {},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"ManagerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"ManagerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PauserAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"PauserRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"SupporterAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"}],"name":"SupporterRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"prevClosingTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newClosingTime","type":"uint256"}],"name":"TimedCrowdsaleExtended","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"purchaser","type":"address"},{"indexed":true,"internalType":"address","name":"beneficiary","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensPurchased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addManager","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addPauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"addSupporter","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"sentTokens","type":"uint256"},{"internalType":"address","name":"_erc20Token","type":"address"}],"name":"buyTokensWithTokens","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"checkRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"closingTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"sponsor","type":"address"},{"internalType":"address","name":"user","type":"address"}],"name":"delegateSetSponsor","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address payable","name":"vault","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"depriveFunds","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"depriveToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"openingTime","type":"uint256"},{"internalType":"uint256","name":"closingTime","type":"uint256"}],"name":"extendTime","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"getReserved","outputs":[{"internalType":"uint256","name":"defaultTokens","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getReservedByAddress","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"hasClosed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isManager","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"isOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isPauser","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isSupporter","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isTokenAccepted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"openingTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"pause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"personalStats","outputs":[{"internalType":"address","name":"sponsor","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"referralBonus","type":"uint256"},{"internalType":"uint256","name":"available","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"rate","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[],"name":"renounceManager","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renounceOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renouncePauser","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"renounceSupporter","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"sponsor","type":"address"}],"name":"setSponsor","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"sold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"supplyVault","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"unpause","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"_rate","type":"uint256"},{"internalType":"uint256","name":"_adapter","type":"uint256"}],"name":"updateTokenRate","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"withdraw","outputs":[{"internalType":"bool","name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"}]