// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/*
https://twitter.com/Tallbits404
https://www.tallbits.xyz/
https://t.me/Tallbits
*/
// File: https://github.com/Vectorized/solady/blob/main/src/utils/SafeTransferLib.sol
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
/// - For ERC20s, this implementation won't check that a token has code,
/// responsibility is delegated to the caller.
library SafeTransferLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ETH transfer has failed.
error ETHTransferFailed();
/// @dev The ERC20 `transferFrom` has failed.
error TransferFromFailed();
/// @dev The ERC20 `transfer` has failed.
error TransferFailed();
/// @dev The ERC20 `approve` has failed.
error ApproveFailed();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;
/// @dev Suggested gas stipend for contract receiving ETH to perform a few
/// storage reads and writes, but low enough to prevent griefing.
uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ETH OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
//
// The regular variants:
// - Forwards all remaining gas to the target.
// - Reverts if the target reverts.
// - Reverts if the current contract has insufficient balance.
//
// The force variants:
// - Forwards with an optional gas stipend
// (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
// - If the target reverts, or if the gas stipend is exhausted,
// creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
// Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
// - Reverts if the current contract has insufficient balance.
//
// The try variants:
// - Forwards with a mandatory gas stipend.
// - Instead of reverting, returns whether the transfer succeeded.
/// @dev Sends `amount` (in wei) ETH to `to`.
function safeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Sends all the ETH in the current contract to `to`.
function safeTransferAllETH(address to) internal {
/// @solidity memory-safe-assembly
assembly {
// Transfer all the ETH and check if it succeeded or not.
if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
if lt(selfbalance(), amount) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
function forceSafeTransferETH(address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
if lt(selfbalance(), amount) {
mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
revert(0x1c, 0x04)
}
if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
function forceSafeTransferAllETH(address to) internal {
/// @solidity memory-safe-assembly
assembly {
// forgefmt: disable-next-item
if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
mstore(0x00, to) // Store the address in scratch space.
mstore8(0x0b, 0x73) // Opcode `PUSH20`.
mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
}
}
}
/// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
}
}
/// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
function trySafeTransferAllETH(address to, uint256 gasStipend)
internal
returns (bool success)
{
/// @solidity memory-safe-assembly
assembly {
success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC20 OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have at least `amount` approved for
/// the current contract to manage.
function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x60, amount) // Store the `amount` argument.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends all of ERC20 `token` from `from` to `to`.
/// Reverts upon failure.
///
/// The `from` account must have their entire balance approved for
/// the current contract to manage.
function safeTransferAllFrom(address token, address from, address to)
internal
returns (uint256 amount)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x40, to) // Store the `to` argument.
mstore(0x2c, shl(96, from)) // Store the `from` argument.
mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
// Read the balance, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
)
) {
mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
revert(0x1c, 0x04)
}
mstore(0x60, 0) // Restore the zero slot to zero.
mstore(0x40, m) // Restore the free memory pointer.
}
}
/// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransfer(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sends all of ERC20 `token` from the current contract to `to`.
/// Reverts upon failure.
function safeTransferAll(address token, address to) internal returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
mstore(0x20, address()) // Store the address of the current contract.
// Read the balance, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x14, to) // Store the `to` argument.
amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
// Perform the transfer, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// Reverts upon failure.
function safeApprove(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
// Perform the approval, reverting upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
revert(0x1c, 0x04)
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
/// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
/// then retries the approval again (some tokens, e.g. USDT, requires this).
/// Reverts upon failure.
function safeApproveWithRetry(address token, address to, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, to) // Store the `to` argument.
mstore(0x34, amount) // Store the `amount` argument.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
// Perform the approval, retrying upon failure.
if iszero(
and( // The arguments of `and` are evaluated from right to left.
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x34, 0) // Store 0 for the `amount`.
mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
mstore(0x34, amount) // Store back the original `amount`.
// Retry the approval, reverting upon failure.
if iszero(
and(
or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing.
call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
)
) {
mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
revert(0x1c, 0x04)
}
}
mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
}
}
/// @dev Returns the amount of ERC20 `token` owned by `account`.
/// Returns zero if the `token` does not exist.
function balanceOf(address token, address account) internal view returns (uint256 amount) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x14, account) // Store the `account` argument.
mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
amount :=
mul(
mload(0x20),
and( // The arguments of `and` are evaluated from right to left.
gt(returndatasize(), 0x1f), // At least 32 bytes returned.
staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
)
)
}
}
}
// File: https://github.com/Vectorized/solady/blob/main/src/utils/LibString.sol
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The length of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/// @dev The length of the string is more than 32 bytes.
error TooBigForSmallString();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
str := add(mload(0x40), 0x80)
// Update the free memory pointer to allocate.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end of the memory to calculate the length later.
let end := str
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 1)`.
// Write the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(str, add(48, mod(temp, 10)))
// Keep dividing `temp` until zero.
temp := div(temp, 10)
if iszero(temp) { break }
}
let length := sub(end, str)
// Move the pointer 32 bytes leftwards to make room for the length.
str := sub(str, 0x20)
// Store the length.
mstore(str, length)
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory str) {
if (value >= 0) {
return toString(uint256(value));
}
unchecked {
str = toString(~uint256(value) + 1);
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let length := mload(str) // Load the string length.
mstore(str, 0x2d) // Store the '-' character.
str := sub(str, 1) // Move back the string pointer by a byte.
mstore(str, add(length, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2 + 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value, length);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 length)
internal
pure
returns (string memory str)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
// Allocate the memory.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end to calculate the length later.
let end := str
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(str, add(length, length))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(str, start)) { break }
}
if temp {
mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
revert(0x1c, 0x04)
}
// Compute the string's length.
let strLength := sub(end, str)
// Move the pointer and write the length.
str := sub(str, 0x20)
mstore(str, strLength)
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x".
/// The output excludes leading "0" from the `toHexString` output.
/// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
let strLength := add(mload(str), 2) // Compute the length.
mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output excludes leading "0" from the `toHexStringNoPrefix` output.
/// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
let strLength := mload(str) // Get the length.
str := add(str, o) // Move the pointer, accounting for leading zero.
mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
str := add(mload(0x40), 0x80)
// Allocate the memory.
mstore(0x40, add(str, 0x20))
// Zeroize the slot after the string.
mstore(str, 0)
// Cache the end to calculate the length later.
let end := str
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
str := add(str, w) // `sub(str, 2)`.
mstore8(add(str, 1), mload(and(temp, 15)))
mstore8(str, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
// Compute the string's length.
let strLength := sub(end, str)
// Move the pointer and write the length.
str := sub(str, 0x20)
mstore(str, strLength)
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksummed(address value) internal pure returns (string memory str) {
str = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(str, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory str) {
str = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
str := mload(0x40)
// Allocate the memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(str, 0x80))
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
str := add(str, 2)
mstore(str, 40)
let o := add(str, 0x20)
mstore(add(o, 40), 0)
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory str) {
str = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let strLength := add(mload(str), 2) // Compute the length.
mstore(str, 0x3078) // Write the "0x" prefix.
str := sub(str, 2) // Move the pointer.
mstore(str, strLength) // Write the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
/// @solidity memory-safe-assembly
assembly {
let length := mload(raw)
str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(str, add(length, length)) // Store the length of the output.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let o := add(str, 0x20)
let end := add(raw, length)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate the memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let mask := shl(7, div(not(0), 255))
result := 1
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, byte string operations are restricted
// to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
// Usage of byte string operations on charsets with runes spanning two or more bytes
// can lead to undefined behavior.
/// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
function replace(string memory subject, string memory search, string memory replacement)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
let replacementLength := mload(replacement)
subject := add(subject, 0x20)
search := add(search, 0x20)
replacement := add(replacement, 0x20)
result := add(mload(0x40), 0x20)
let subjectEnd := add(subject, subjectLength)
if iszero(gt(searchLength, subjectLength)) {
let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(result, o), mload(add(replacement, o)))
o := add(o, 0x20)
if iszero(lt(o, replacementLength)) { break }
}
result := add(result, replacementLength)
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
mstore(result, t)
result := add(result, 1)
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
}
let resultRemainder := result
result := add(mload(0x40), 0x20)
let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
// Copy the rest of the string one word at a time.
for {} lt(subject, subjectEnd) {} {
mstore(resultRemainder, mload(subject))
resultRemainder := add(resultRemainder, 0x20)
subject := add(subject, 0x20)
}
result := sub(result, 0x20)
let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
mstore(last, 0)
mstore(0x40, add(last, 0x20)) // Allocate the memory.
mstore(result, k) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for { let subjectLength := mload(subject) } 1 {} {
if iszero(mload(search)) {
if iszero(gt(from, subjectLength)) {
result := from
break
}
result := subjectLength
break
}
let searchLength := mload(search)
let subjectStart := add(subject, 0x20)
result := not(0) // Initialize to `NOT_FOUND`.
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(add(search, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }
if iszero(lt(searchLength, 0x20)) {
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function indexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = indexOf(subject, search, 0);
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let searchLength := mload(search)
if gt(searchLength, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), searchLength)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
if eq(keccak256(subject, searchLength), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `search` in `subject`,
/// searching from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
function lastIndexOf(string memory subject, string memory search)
internal
pure
returns (uint256 result)
{
result = lastIndexOf(subject, search, uint256(int256(-1)));
}
/// @dev Returns true if `search` is found in `subject`, false otherwise.
function contains(string memory subject, string memory search) internal pure returns (bool) {
return indexOf(subject, search) != NOT_FOUND;
}
/// @dev Returns whether `subject` starts with `search`.
function startsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
iszero(gt(searchLength, mload(subject))),
eq(
keccak256(add(subject, 0x20), searchLength),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns whether `subject` ends with `search`.
function endsWith(string memory subject, string memory search)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLength := mload(search)
let subjectLength := mload(subject)
// Whether `search` is not longer than `subject`.
let withinRange := iszero(gt(searchLength, subjectLength))
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
withinRange,
eq(
keccak256(
// `subject + 0x20 + max(subjectLength - searchLength, 0)`.
add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
searchLength
),
keccak256(add(search, 0x20), searchLength)
)
)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(or(iszero(times), iszero(subjectLength))) {
subject := add(subject, 0x20)
result := mload(0x40)
let output := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let o := 0 } 1 {} {
mstore(add(output, o), mload(add(subject, o)))
o := add(o, 0x20)
if iszero(lt(o, subjectLength)) { break }
}
output := add(output, subjectLength)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(output, 0) // Zeroize the slot after the string.
let resultLength := sub(output, add(result, 0x20))
mstore(result, resultLength) // Store the length.
// Allocate the memory.
mstore(0x40, add(result, add(resultLength, 0x20)))
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
if iszero(gt(subjectLength, end)) { end := subjectLength }
if iszero(gt(subjectLength, start)) { start := subjectLength }
if lt(start, end) {
result := mload(0x40)
let resultLength := sub(end, start)
mstore(result, resultLength)
subject := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
mstore(add(result, o), mload(add(subject, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(result, 0x20), resultLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start)
internal
pure
returns (string memory result)
{
result = slice(subject, start, uint256(int256(-1)));
}
/// @dev Returns all the indices of `search` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory search)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLength := mload(subject)
let searchLength := mload(search)
if iszero(gt(searchLength, subjectLength)) {
subject := add(subject, 0x20)
search := add(search, 0x20)
result := add(mload(0x40), 0x20)
let subjectStart := subject
let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
let h := 0
if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
let s := mload(search)
for {} 1 {} {
let t := mload(subject)
// Whether the first `searchLength % 32` bytes of
// `subject` and `search` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(subject, searchLength), h)) {
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
// Append to `result`.
mstore(result, sub(subject, subjectStart))
result := add(result, 0x20)
// Advance `subject` by `searchLength`.
subject := add(subject, searchLength)
if searchLength {
if iszero(lt(subject, subjectSearchEnd)) { break }
continue
}
}
subject := add(subject, 1)
if iszero(lt(subject, subjectSearchEnd)) { break }
}
let resultEnd := result
// Assign `result` to the free memory pointer.
result := mload(0x40)
// Store the length of `result`.
mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(resultEnd, 0x20))
}
}
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
let prevIndex := 0
for {} 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let elementLength := sub(index, prevIndex)
mstore(element, elementLength)
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
// Zeroize the slot after the string.
mstore(add(add(element, 0x20), elementLength), 0)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
// Store the `element` into the array.
mstore(indexPtr, element)
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
result := mload(0x40)
let aLength := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(aLength, 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLength := mload(b)
let output := add(result, aLength)
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLength, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLength := add(aLength, bLength)
let last := add(add(result, 0x20), totalLength)
// Zeroize the slot after the string.
mstore(last, 0)
// Stores the length.
mstore(result, totalLength)
// Allocate memory for the length and the bytes,
// rounded up to a multiple of 32.
mstore(0x40, and(add(last, 0x1f), w))
}
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let length := mload(subject)
if length {
result := add(mload(0x40), 0x20)
subject := add(subject, 1)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
let w := not(0)
for { let o := length } 1 {} {
o := add(o, w)
let b := and(0xff, mload(add(subject, o)))
mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
if iszero(o) { break }
}
result := mload(0x40)
mstore(result, length) // Store the length.
let last := add(add(result, 0x20), length)
mstore(last, 0) // Zeroize the slot after the string.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
}
/// @dev Returns a string from a small bytes32 string.
/// `s` must be null-terminated, or behavior will be undefined.
function fromSmallString(bytes32 s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let n := 0
for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
mstore(result, n)
let o := add(result, 0x20)
mstore(o, s)
mstore(add(o, n), 0)
mstore(0x40, add(result, 0x40))
}
}
/// @dev Returns the small string, with all bytes after the first null byte zeroized.
function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
mstore(0x00, s)
mstore(result, 0x00)
result := mload(0x00)
}
}
/// @dev Returns the string as a normalized null-terminated small string.
function toSmallString(string memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(s)
if iszero(lt(result, 33)) {
mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
revert(0x1c, 0x04)
}
result := shl(shl(3, sub(32, result)), mload(add(s, result)))
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(result, c)
result := add(result, 1)
continue
}
let t := shr(248, mload(c))
mstore(result, mload(and(t, 0x1f)))
result := add(result, shr(5, t))
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
/// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
function escapeJSON(string memory s, bool addDoubleQuotes)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let end := add(s, mload(s))
result := add(mload(0x40), 0x20)
if addDoubleQuotes {
mstore8(result, 34)
result := add(1, result)
}
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(result, c)
result := add(result, 1)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), c)
result := add(result, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(result, mload(0x19)) // "\\u00XX".
result := add(result, 6)
continue
}
mstore8(result, 0x5c) // "\\".
mstore8(add(result, 1), mload(add(c, 8)))
result := add(result, 2)
}
if addDoubleQuotes {
mstore8(result, 34)
result := add(1, result)
}
let last := result
mstore(last, 0) // Zeroize the slot after the string.
result := mload(0x40)
mstore(result, sub(last, add(result, 0x20))) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate the memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
result = escapeJSON(s, false);
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behavior is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// Grab the free memory pointer.
result := mload(0x40)
// Allocate 2 words (1 for the length, 1 for the bytes).
mstore(0x40, add(result, 0x40))
// Zeroize the length slot.
mstore(result, 0)
// Store the length and bytes.
mstore(add(result, 0x1f), packed)
// Right pad with zeroes.
mstore(add(add(result, 0x20), mload(result)), 0)
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLength := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes of `a` and `b`.
or(
shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
mload(sub(add(b, 0x1e), aLength))
),
// `totalLength != 0 && totalLength < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLength, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behavior is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
// Grab the free memory pointer.
resultA := mload(0x40)
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retSize), 0)
// Store the return offset.
mstore(retStart, 0x20)
// End the transaction, returning the string.
return(retStart, retSize)
}
}
}
// File: https://github.com/Vectorized/solady/blob/main/src/auth/Ownable.sol
/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The caller is not authorized to call the function.
error Unauthorized();
/// @dev The `newOwner` cannot be the zero address.
error NewOwnerIsZeroAddress();
/// @dev The `pendingOwner` does not have a valid handover request.
error NoHandoverRequest();
/// @dev Cannot double-initialize.
error AlreadyInitialized();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership is transferred from `oldOwner` to `newOwner`.
/// This event is intentionally kept the same as OpenZeppelin's Ownable to be
/// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
/// despite it not being as lightweight as a single argument event.
event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);
/// @dev An ownership handover to `pendingOwner` has been requested.
event OwnershipHandoverRequested(address indexed pendingOwner);
/// @dev The ownership handover to `pendingOwner` has been canceled.
event OwnershipHandoverCanceled(address indexed pendingOwner);
/// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;
/// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;
/// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The owner slot is given by:
/// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
/// It is intentionally chosen to be a high value
/// to avoid collision with lower slots.
/// The choice of manual storage layout is to enable compatibility
/// with both regular and upgradeable contracts.
bytes32 internal constant _OWNER_SLOT =
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;
/// The ownership handover slot of `newOwner` is given by:
/// ```
/// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
/// let handoverSlot := keccak256(0x00, 0x20)
/// ```
/// It stores the expiry timestamp of the two-step ownership handover.
uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
function _guardInitializeOwner() internal pure virtual returns (bool guard) {}
/// @dev Initializes the owner directly without authorization guard.
/// This function must be called upon initialization,
/// regardless of whether the contract is upgradeable or not.
/// This is to enable generalization to both regular and upgradeable contracts,
/// and to save gas in case the initial owner is not the caller.
/// For performance reasons, this function will not check if there
/// is an existing owner.
function _initializeOwner(address newOwner) internal virtual {
if (_guardInitializeOwner()) {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
if sload(ownerSlot) {
mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
revert(0x1c, 0x04)
}
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
} else {
/// @solidity memory-safe-assembly
assembly {
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Store the new value.
sstore(_OWNER_SLOT, newOwner)
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
}
}
}
/// @dev Sets the owner directly without authorization guard.
function _setOwner(address newOwner) internal virtual {
if (_guardInitializeOwner()) {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
}
} else {
/// @solidity memory-safe-assembly
assembly {
let ownerSlot := _OWNER_SLOT
// Clean the upper 96 bits.
newOwner := shr(96, shl(96, newOwner))
// Emit the {OwnershipTransferred} event.
log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
// Store the new value.
sstore(ownerSlot, newOwner)
}
}
}
/// @dev Throws if the sender is not the owner.
function _checkOwner() internal view virtual {
/// @solidity memory-safe-assembly
assembly {
// If the caller is not the stored owner, revert.
if iszero(eq(caller(), sload(_OWNER_SLOT))) {
mstore(0x00, 0x82b42900) // `Unauthorized()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns how long a two-step ownership handover is valid for in seconds.
/// Override to return a different value if needed.
/// Made internal to conserve bytecode. Wrap it in a public function if needed.
function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
return 48 * 3600;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC UPDATE FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Allows the owner to transfer the ownership to `newOwner`.
function transferOwnership(address newOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
if iszero(shl(96, newOwner)) {
mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
revert(0x1c, 0x04)
}
}
_setOwner(newOwner);
}
/// @dev Allows the owner to renounce their ownership.
function renounceOwnership() public payable virtual onlyOwner {
_setOwner(address(0));
}
/// @dev Request a two-step ownership handover to the caller.
/// The request will automatically expire in 48 hours (172800 seconds) by default.
function requestOwnershipHandover() public payable virtual {
unchecked {
uint256 expires = block.timestamp + _ownershipHandoverValidFor();
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to `expires`.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), expires)
// Emit the {OwnershipHandoverRequested} event.
log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
}
}
}
/// @dev Cancels the two-step ownership handover to the caller, if any.
function cancelOwnershipHandover() public payable virtual {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x20), 0)
// Emit the {OwnershipHandoverCanceled} event.
log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
}
}
/// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
/// Reverts if there is no existing ownership handover requested by `pendingOwner`.
function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
/// @solidity memory-safe-assembly
assembly {
// Compute and set the handover slot to 0.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
let handoverSlot := keccak256(0x0c, 0x20)
// If the handover does not exist, or has expired.
if gt(timestamp(), sload(handoverSlot)) {
mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
revert(0x1c, 0x04)
}
// Set the handover slot to 0.
sstore(handoverSlot, 0)
}
_setOwner(pendingOwner);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PUBLIC READ FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of the contract.
function owner() public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
result := sload(_OWNER_SLOT)
}
}
/// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
function ownershipHandoverExpiresAt(address pendingOwner)
public
view
virtual
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
// Compute the handover slot.
mstore(0x0c, _HANDOVER_SLOT_SEED)
mstore(0x00, pendingOwner)
// Load the handover slot.
result := sload(keccak256(0x0c, 0x20))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MODIFIERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Marks a function as only callable by the owner.
modifier onlyOwner() virtual {
_checkOwner();
_;
}
}
// File: https://github.com/Vectorized/dn404/blob/main/src/DN404Mirror.sol
/// @title DN404Mirror
/// @notice DN404Mirror provides an interface for interacting with the
/// NFT tokens in a DN404 implementation.
///
/// @author vectorized.eth (@optimizoor)
/// @author Quit (@0xQuit)
/// @author Michael Amadi (@AmadiMichaels)
/// @author cygaar (@0xCygaar)
/// @author Thomas (@0xjustadev)
/// @author Harrison (@PopPunkOnChain)
///
/// @dev Note:
/// - The ERC721 data is stored in the base DN404 contract.
contract DN404Mirror is Ownable {
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* EVENTS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Emitted when token `id` is transferred from `from` to `to`.
event Transfer(address indexed from, address indexed to, uint256 indexed id);
/// @dev Emitted when `owner` enables `account` to manage the `id` token.
event Approval(address indexed owner, address indexed account, uint256 indexed id);
/// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens.
event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved);
/// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
uint256 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
/// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
uint256 private constant _APPROVAL_EVENT_SIGNATURE =
0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
/// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`.
uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE =
0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31;
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* CUSTOM ERRORS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Thrown when a call for an NFT function did not originate
/// from the base DN404 contract.
error SenderNotBase();
/// @dev Thrown when a call for an NFT function did not originate from the deployer.
error SenderNotDeployer();
/// @dev Thrown when transferring an NFT to a contract address that
/// does not implement ERC721Receiver.
error TransferToNonERC721ReceiverImplementer();
/// @dev Thrown when linking to the DN404 base contract and the
/// DN404 supportsInterface check fails or the call reverts.
error CannotLink();
/// @dev Thrown when a linkMirrorContract call is received and the
/// NFT mirror contract has already been linked to a DN404 base contract.
error AlreadyLinked();
/// @dev Thrown when retrieving the base DN404 address when a link has not
/// been established.
error NotLinked();
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* STORAGE */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Struct contain the NFT mirror contract storage.
struct DN404NFTStorage {
address baseERC20;
address deployer;
}
/// @dev Returns a storage pointer for DN404NFTStorage.
function _getDN404NFTStorage() internal pure virtual returns (DN404NFTStorage storage $) {
/// @solidity memory-safe-assembly
assembly {
// `uint72(bytes9(keccak256("DN404_MIRROR_STORAGE")))`.
$.slot := 0x3602298b8c10b01230 // Truncate to 9 bytes to reduce bytecode size.
}
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* CONSTRUCTOR */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
constructor(address deployer) {
// For non-proxies, we will store the deployer so that only the deployer can
// link the base contract.
_getDN404NFTStorage().deployer = deployer;
_initializeOwner(deployer);
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* ERC721 OPERATIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the token collection name from the base DN404 contract.
function name() public view virtual returns (string memory result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
mstore(0x00, 0x06fdde03) // `name()`.
if iszero(staticcall(gas(), base, 0x1c, 0x04, 0x00, 0x00)) {
returndatacopy(result, 0x00, returndatasize())
revert(result, returndatasize())
}
returndatacopy(0x00, 0x00, 0x20)
returndatacopy(result, mload(0x00), 0x20)
returndatacopy(add(result, 0x20), add(mload(0x00), 0x20), mload(result))
mstore(0x40, add(add(result, 0x20), mload(result)))
}
}
/// @dev Returns the token collection symbol from the base DN404 contract.
function symbol() public view virtual returns (string memory result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
mstore(0x00, 0x95d89b41) // `symbol()`.
if iszero(staticcall(gas(), base, 0x1c, 0x04, 0x00, 0x00)) {
returndatacopy(result, 0x00, returndatasize())
revert(result, returndatasize())
}
returndatacopy(0x00, 0x00, 0x20)
returndatacopy(result, mload(0x00), 0x20)
returndatacopy(add(result, 0x20), add(mload(0x00), 0x20), mload(result))
mstore(0x40, add(add(result, 0x20), mload(result)))
}
}
/// @dev Returns the Uniform Resource Identifier (URI) for token `id` from
/// the base DN404 contract.
function tokenURI(uint256 id) public view virtual returns (string memory result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
mstore(0x20, id)
mstore(0x00, 0xc87b56dd) // `tokenURI()`.
if iszero(staticcall(gas(), base, 0x1c, 0x24, 0x00, 0x00)) {
returndatacopy(result, 0x00, returndatasize())
revert(result, returndatasize())
}
returndatacopy(0x00, 0x00, 0x20)
returndatacopy(result, mload(0x00), 0x20)
returndatacopy(add(result, 0x20), add(mload(0x00), 0x20), mload(result))
mstore(0x40, add(add(result, 0x20), mload(result)))
}
}
/// @dev Returns the total NFT supply from the base DN404 contract.
function totalSupply() public view virtual returns (uint256 result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0xe2c79281) // `totalNFTSupply()`.
if iszero(
and(gt(returndatasize(), 0x1f), staticcall(gas(), base, 0x1c, 0x04, 0x00, 0x20))
) {
returndatacopy(mload(0x40), 0x00, returndatasize())
revert(mload(0x40), returndatasize())
}
result := mload(0x00)
}
}
/// @dev Returns the number of NFT tokens owned by `owner` from the base DN404 contract.
///
/// Requirements:
/// - `owner` must not be the zero address.
function balanceOf(address owner) public view virtual returns (uint256 result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, shr(96, shl(96, owner)))
mstore(0x00, 0xf5b100ea) // `balanceOfNFT(address)`.
if iszero(
and(gt(returndatasize(), 0x1f), staticcall(gas(), base, 0x1c, 0x24, 0x00, 0x20))
) {
returndatacopy(mload(0x40), 0x00, returndatasize())
revert(mload(0x40), returndatasize())
}
result := mload(0x00)
}
}
/// @dev Returns the owner of token `id` from the base DN404 contract.
///
/// Requirements:
/// - Token `id` must exist.
function ownerOf(uint256 id) public view virtual returns (address result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x6352211e) // `ownerOf(uint256)`.
mstore(0x20, id)
if iszero(
and(gt(returndatasize(), 0x1f), staticcall(gas(), base, 0x1c, 0x24, 0x00, 0x20))
) {
returndatacopy(mload(0x40), 0x00, returndatasize())
revert(mload(0x40), returndatasize())
}
result := shr(96, mload(0x0c))
}
}
/// @dev Sets `spender` as the approved account to manage token `id` in
/// the base DN404 contract.
///
/// Requirements:
/// - Token `id` must exist.
/// - The caller must be the owner of the token,
/// or an approved operator for the token owner.
///
/// Emits an {Approval} event.
function approve(address spender, uint256 id) public virtual {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
spender := shr(96, shl(96, spender))
let m := mload(0x40)
mstore(0x00, 0xd10b6e0c) // `approveNFT(address,uint256,address)`.
mstore(0x20, spender)
mstore(0x40, id)
mstore(0x60, caller())
if iszero(
and(
gt(returndatasize(), 0x1f),
call(gas(), base, callvalue(), 0x1c, 0x64, 0x00, 0x20)
)
) {
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
mstore(0x40, m) // Restore the free memory pointer.
mstore(0x60, 0) // Restore the zero pointer.
// Emit the {Approval} event.
log4(codesize(), 0x00, _APPROVAL_EVENT_SIGNATURE, shr(96, mload(0x0c)), spender, id)
}
}
/// @dev Returns the account approved to manage token `id` from
/// the base DN404 contract.
///
/// Requirements:
/// - Token `id` must exist.
function getApproved(uint256 id) public view virtual returns (address result) {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x081812fc) // `getApproved(uint256)`.
mstore(0x20, id)
if iszero(
and(gt(returndatasize(), 0x1f), staticcall(gas(), base, 0x1c, 0x24, 0x00, 0x20))
) {
returndatacopy(mload(0x40), 0x00, returndatasize())
revert(mload(0x40), returndatasize())
}
result := shr(96, mload(0x0c))
}
}
/// @dev Sets whether `operator` is approved to manage the tokens of the caller in
/// the base DN404 contract.
///
/// Emits an {ApprovalForAll} event.
function setApprovalForAll(address operator, bool approved) public virtual {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
operator := shr(96, shl(96, operator))
let m := mload(0x40)
mstore(0x00, 0x813500fc) // `setApprovalForAll(address,bool,address)`.
mstore(0x20, operator)
mstore(0x40, iszero(iszero(approved)))
mstore(0x60, caller())
if iszero(
and(eq(mload(0x00), 1), call(gas(), base, callvalue(), 0x1c, 0x64, 0x00, 0x20))
) {
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
// Emit the {ApprovalForAll} event.
log3(0x40, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), operator)
mstore(0x40, m) // Restore the free memory pointer.
mstore(0x60, 0) // Restore the zero pointer.
}
}
/// @dev Returns whether `operator` is approved to manage the tokens of `owner` from
/// the base DN404 contract.
function isApprovedForAll(address owner, address operator)
public
view
virtual
returns (bool result)
{
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40)
mstore(0x40, operator)
mstore(0x2c, shl(96, owner))
mstore(0x0c, 0xe985e9c5000000000000000000000000) // `isApprovedForAll(address,address)`.
if iszero(
and(gt(returndatasize(), 0x1f), staticcall(gas(), base, 0x1c, 0x44, 0x00, 0x20))
) {
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
mstore(0x40, m) // Restore the free memory pointer.
result := iszero(iszero(mload(0x00)))
}
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function transferFrom(address from, address to, uint256 id) public virtual {
address base = baseERC20();
/// @solidity memory-safe-assembly
assembly {
from := shr(96, shl(96, from))
to := shr(96, shl(96, to))
let m := mload(0x40)
mstore(m, 0xe5eb36c8) // `transferFromNFT(address,address,uint256,address)`.
mstore(add(m, 0x20), from)
mstore(add(m, 0x40), to)
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), caller())
if iszero(
and(eq(mload(m), 1), call(gas(), base, callvalue(), add(m, 0x1c), 0x84, m, 0x20))
) {
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
}
/// @dev Equivalent to `safeTransferFrom(from, to, id, "")`.
function safeTransferFrom(address from, address to, uint256 id) public payable virtual {
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function safeTransferFrom(address from, address to, uint256 id, bytes calldata data)
public
virtual
{
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Returns true if this contract implements the interface defined by `interfaceId`.
/// See: https://eips.ethereum.org/EIPS/eip-165
/// This function call must use less than 30000 gas.
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f.
result := or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f))
}
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* MIRROR OPERATIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the address of the base DN404 contract.
function baseERC20() public view virtual returns (address base) {
base = _getDN404NFTStorage().baseERC20;
if (base == address(0)) revert NotLinked();
}
/// @dev Fallback modifier to execute calls from the base DN404 contract.
modifier dn404NFTFallback() virtual {
DN404NFTStorage storage $ = _getDN404NFTStorage();
uint256 fnSelector = _calldataload(0x00) >> 224;
// `logTransfer(uint256[])`.
if (fnSelector == 0x263c69d6) {
if (msg.sender != $.baseERC20) revert SenderNotBase();
/// @solidity memory-safe-assembly
assembly {
// When returndatacopy copies 1 or more out-of-bounds bytes, it reverts.
returndatacopy(0x00, returndatasize(), lt(calldatasize(), 0x20))
let o := add(0x24, calldataload(0x04)) // Packed logs offset.
returndatacopy(0x00, returndatasize(), lt(calldatasize(), o))
let end := add(o, shl(5, calldataload(sub(o, 0x20))))
returndatacopy(0x00, returndatasize(), lt(calldatasize(), end))
for {} iszero(eq(o, end)) { o := add(0x20, o) } {
let d := calldataload(o) // Entry in the packed logs.
let a := shr(96, d) // The address.
let b := and(1, d) // Whether it is a burn.
log4(
codesize(),
0x00,
_TRANSFER_EVENT_SIGNATURE,
mul(a, b),
mul(a, iszero(b)),
shr(168, shl(160, d))
)
}
mstore(0x00, 0x01)
return(0x00, 0x20)
}
}
// `linkMirrorContract(address)`.
if (fnSelector == 0x0f4599e5) {
if ($.deployer != address(0)) {
if (address(uint160(_calldataload(0x04))) != $.deployer) {
revert SenderNotDeployer();
}
}
if ($.baseERC20 != address(0)) revert AlreadyLinked();
$.baseERC20 = msg.sender;
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x01)
return(0x00, 0x20)
}
}
_;
}
/// @dev Fallback function for calls from base DN404 contract.
fallback() external payable virtual dn404NFTFallback {}
receive() external payable virtual {}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* PRIVATE HELPERS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the calldata value at `offset`.
function _calldataload(uint256 offset) private pure returns (uint256 value) {
/// @solidity memory-safe-assembly
assembly {
value := calldataload(offset)
}
}
/// @dev Returns if `a` has bytecode of non-zero length.
function _hasCode(address a) private view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := extcodesize(a) // Can handle dirty upper bits.
}
}
/// @dev Perform a call to invoke {IERC721Receiver-onERC721Received} on `to`.
/// Reverts if the target does not support the function correctly.
function _checkOnERC721Received(address from, address to, uint256 id, bytes memory data)
private
{
/// @solidity memory-safe-assembly
assembly {
// Prepare the calldata.
let m := mload(0x40)
let onERC721ReceivedSelector := 0x150b7a02
mstore(m, onERC721ReceivedSelector)
mstore(add(m, 0x20), caller()) // The `operator`, which is always `msg.sender`.
mstore(add(m, 0x40), shr(96, shl(96, from)))
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), 0x80)
let n := mload(data)
mstore(add(m, 0xa0), n)
if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) }
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it.
if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) {
mstore(0x00, 0xd1a57ed6) // `TransferToNonERC721ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
}
// File: https://github.com/Vectorized/dn404/blob/main/src/DN404.sol
/// @title DN404
/// @notice DN404 is a hybrid ERC20 and ERC721 implementation that mints
/// and burns NFTs based on an account's ERC20 token balance.
///
/// @author vectorized.eth (@optimizoor)
/// @author Quit (@0xQuit)
/// @author Michael Amadi (@AmadiMichaels)
/// @author cygaar (@0xCygaar)
/// @author Thomas (@0xjustadev)
/// @author Harrison (@PopPunkOnChain)
///
/// @dev Note:
/// - The ERC721 data is stored in this base DN404 contract, however a
/// DN404Mirror contract ***MUST*** be deployed and linked during
/// initialization.
abstract contract DN404 {
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* EVENTS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
event Transfer(address indexed from, address indexed to, uint256 amount);
/// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
event Approval(address indexed owner, address indexed spender, uint256 amount);
/// @dev Emitted when `target` sets their skipNFT flag to `status`.
event SkipNFTSet(address indexed target, bool status);
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* CUSTOM ERRORS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Thrown when attempting to double-initialize the contract.
error DNAlreadyInitialized();
/// @dev Thrown when attempting to transfer or burn more tokens than sender's balance.
error InsufficientBalance();
/// @dev Thrown when a spender attempts to transfer tokens with an insufficient allowance.
error InsufficientAllowance();
/// @dev Thrown when minting an amount of tokens that would overflow the max tokens.
error TotalSupplyOverflow();
/// @dev Thrown when the caller for a fallback NFT function is not the mirror contract.
error SenderNotMirror();
/// @dev Thrown when attempting to transfer tokens to the zero address.
error TransferToZeroAddress();
/// @dev Thrown when the mirror address provided for initialization is the zero address.
error MirrorAddressIsZero();
/// @dev Thrown when the link call to the mirror contract reverts.
error LinkMirrorContractFailed();
/// @dev Thrown when setting an NFT token approval
/// and the caller is not the owner or an approved operator.
error ApprovalCallerNotOwnerNorApproved();
/// @dev Thrown when transferring an NFT
/// and the caller is not the owner or an approved operator.
error TransferCallerNotOwnerNorApproved();
/// @dev Thrown when transferring an NFT and the from address is not the current owner.
error TransferFromIncorrectOwner();
/// @dev Thrown when checking the owner or approved address for an non-existent NFT.
error TokenDoesNotExist();
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* CONSTANTS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Amount of token balance that is equal to one NFT.
uint256 internal constant _WAD = 10 ** 18;
/// @dev The maximum token ID allowed for an NFT.
uint256 internal constant _MAX_TOKEN_ID = 0xffffffff;
/// @dev The maximum possible token supply.
uint256 internal constant _MAX_SUPPLY = 10 ** 18 * 0xffffffff - 1;
/// @dev The flag to denote that the address data is initialized.
uint8 internal constant _ADDRESS_DATA_INITIALIZED_FLAG = 1 << 0;
/// @dev The flag to denote that the address should skip NFTs.
uint8 internal constant _ADDRESS_DATA_SKIP_NFT_FLAG = 1 << 1;
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* STORAGE */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Struct containing an address's token data and settings.
struct AddressData {
// Auxiliary data.
uint88 aux;
// Flags for `initialized` and `skipNFT`.
uint8 flags;
// The alias for the address. Zero means absence of an alias.
uint32 addressAlias;
// The number of NFT tokens.
uint32 ownedLength;
// The token balance in wei.
uint96 balance;
}
/// @dev A uint32 map in storage.
struct Uint32Map {
mapping(uint256 => uint256) map;
}
/// @dev Struct containing the base token contract storage.
struct DN404Storage {
// Current number of address aliases assigned.
uint32 numAliases;
// Next token ID to assign for an NFT mint.
uint32 nextTokenId;
// Total supply of minted NFTs.
uint32 totalNFTSupply;
// Total supply of tokens.
uint96 totalSupply;
// Address of the NFT mirror contract.
address mirrorERC721;
// Mapping of a user alias number to their address.
mapping(uint32 => address) aliasToAddress;
// Mapping of user operator approvals for NFTs.
mapping(address => mapping(address => bool)) operatorApprovals;
// Mapping of NFT token approvals to approved operators.
mapping(uint256 => address) tokenApprovals;
// Mapping of user allowances for token spenders.
mapping(address => mapping(address => uint256)) allowance;
// Mapping of NFT token IDs owned by an address.
mapping(address => Uint32Map) owned;
// Even indices: owner aliases. Odd indices: owned indices.
Uint32Map oo;
// Mapping of user account AddressData
mapping(address => AddressData) addressData;
}
/// @dev Returns a storage pointer for DN404Storage.
function _getDN404Storage() internal pure virtual returns (DN404Storage storage $) {
/// @solidity memory-safe-assembly
assembly {
// `uint72(bytes9(keccak256("DN404_STORAGE")))`.
$.slot := 0xa20d6e21d0e5255308 // Truncate to 9 bytes to reduce bytecode size.
}
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* INITIALIZER */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Initializes the DN404 contract with an
/// `initialTokenSupply`, `initialTokenOwner` and `mirror` NFT contract address.
function _initializeDN404(
uint256 initialTokenSupply,
address initialSupplyOwner,
address mirror
) internal virtual {
DN404Storage storage $ = _getDN404Storage();
if ($.nextTokenId != 0) revert DNAlreadyInitialized();
if (mirror == address(0)) revert MirrorAddressIsZero();
_linkMirrorContract(mirror);
$.nextTokenId = 1;
$.mirrorERC721 = mirror;
if (initialTokenSupply > 0) {
if (initialSupplyOwner == address(0)) revert TransferToZeroAddress();
if (initialTokenSupply > _MAX_SUPPLY) revert TotalSupplyOverflow();
$.totalSupply = uint96(initialTokenSupply);
AddressData storage initialOwnerAddressData = _addressData(initialSupplyOwner);
initialOwnerAddressData.balance = uint96(initialTokenSupply);
emit Transfer(address(0), initialSupplyOwner, initialTokenSupply);
_setSkipNFT(initialSupplyOwner, true);
}
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* METADATA FUNCTIONS TO OVERRIDE */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the name of the token.
function name() public view virtual returns (string memory);
/// @dev Returns the symbol of the token.
function symbol() public view virtual returns (string memory);
/// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
function tokenURI(uint256 id) public view virtual returns (string memory);
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* ERC20 OPERATIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the decimals places of the token. Always 18.
function decimals() public pure returns (uint8) {
return 18;
}
/// @dev Returns the amount of tokens in existence.
function totalSupply() public view virtual returns (uint256) {
return uint256(_getDN404Storage().totalSupply);
}
/// @dev Returns the amount of tokens owned by `owner`.
function balanceOf(address owner) public view virtual returns (uint256) {
return _getDN404Storage().addressData[owner].balance;
}
/// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
function allowance(address owner, address spender) public view returns (uint256) {
return _getDN404Storage().allowance[owner][spender];
}
/// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
///
/// Emits a {Approval} event.
function approve(address spender, uint256 amount) public virtual returns (bool) {
DN404Storage storage $ = _getDN404Storage();
$.allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
/// @dev Transfer `amount` tokens from the caller to `to`.
///
/// Will burn sender NFTs if balance after transfer is less than
/// the amount required to support the current NFT balance.
///
/// Will mint NFTs to `to` if the recipient's new balance supports
/// additional NFTs ***AND*** the `to` address's skipNFT flag is
/// set to false.
///
/// Requirements:
/// - `from` must at least have `amount`.
///
/// Emits a {Transfer} event.
function transfer(address to, uint256 amount) public virtual returns (bool) {
_transfer(msg.sender, to, amount);
return true;
}
/// @dev Transfers `amount` tokens from `from` to `to`.
///
/// Note: Does not update the allowance if it is the maximum uint256 value.
///
/// Will burn sender NFTs if balance after transfer is less than
/// the amount required to support the current NFT balance.
///
/// Will mint NFTs to `to` if the recipient's new balance supports
/// additional NFTs ***AND*** the `to` address's skipNFT flag is
/// set to false.
///
/// Requirements:
/// - `from` must at least have `amount`.
/// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
///
/// Emits a {Transfer} event.
function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
DN404Storage storage $ = _getDN404Storage();
uint256 allowed = $.allowance[from][msg.sender];
if (allowed != type(uint256).max) {
if (amount > allowed) revert InsufficientAllowance();
unchecked {
$.allowance[from][msg.sender] = allowed - amount;
}
}
_transfer(from, to, amount);
return true;
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* INTERNAL MINT FUNCTIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Mints `amount` tokens to `to`, increasing the total supply.
///
/// Will mint NFTs to `to` if the recipient's new balance supports
/// additional NFTs ***AND*** the `to` address's skipNFT flag is
/// set to false.
///
/// Emits a {Transfer} event.
function _mint(address to, uint256 amount) internal virtual {
if (to == address(0)) revert TransferToZeroAddress();
DN404Storage storage $ = _getDN404Storage();
AddressData storage toAddressData = _addressData(to);
unchecked {
uint256 currentTokenSupply = uint256($.totalSupply) + amount;
if (amount > _MAX_SUPPLY || currentTokenSupply > _MAX_SUPPLY) {
revert TotalSupplyOverflow();
}
$.totalSupply = uint96(currentTokenSupply);
uint256 toBalance = toAddressData.balance + amount;
toAddressData.balance = uint96(toBalance);
if (toAddressData.flags & _ADDRESS_DATA_SKIP_NFT_FLAG == 0) {
Uint32Map storage toOwned = $.owned[to];
uint256 toIndex = toAddressData.ownedLength;
uint256 toEnd = toBalance / _WAD;
_PackedLogs memory packedLogs = _packedLogsMalloc(_zeroFloorSub(toEnd, toIndex));
if (packedLogs.logs.length != 0) {
uint256 maxNFTId = $.totalSupply / _WAD;
uint32 toAlias = _registerAndResolveAlias(toAddressData, to);
uint256 id = $.nextTokenId;
$.totalNFTSupply += uint32(packedLogs.logs.length);
toAddressData.ownedLength = uint32(toEnd);
// Mint loop.
do {
while (_get($.oo, _ownershipIndex(id)) != 0) {
if (++id > maxNFTId) id = 1;
}
_set(toOwned, toIndex, uint32(id));
_setOwnerAliasAndOwnedIndex($.oo, id, toAlias, uint32(toIndex++));
_packedLogsAppend(packedLogs, to, id, 0);
if (++id > maxNFTId) id = 1;
} while (toIndex != toEnd);
$.nextTokenId = uint32(id);
_packedLogsSend(packedLogs, $.mirrorERC721);
}
}
}
emit Transfer(address(0), to, amount);
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* INTERNAL BURN FUNCTIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Burns `amount` tokens from `from`, reducing the total supply.
///
/// Will burn sender NFTs if balance after transfer is less than
/// the amount required to support the current NFT balance.
///
/// Emits a {Transfer} event.
function _burn(address from, uint256 amount) internal virtual {
DN404Storage storage $ = _getDN404Storage();
AddressData storage fromAddressData = _addressData(from);
uint256 fromBalance = fromAddressData.balance;
if (amount > fromBalance) revert InsufficientBalance();
uint256 currentTokenSupply = $.totalSupply;
unchecked {
fromBalance -= amount;
fromAddressData.balance = uint96(fromBalance);
currentTokenSupply -= amount;
$.totalSupply = uint96(currentTokenSupply);
Uint32Map storage fromOwned = $.owned[from];
uint256 fromIndex = fromAddressData.ownedLength;
uint256 nftAmountToBurn = _zeroFloorSub(fromIndex, fromBalance / _WAD);
if (nftAmountToBurn != 0) {
$.totalNFTSupply -= uint32(nftAmountToBurn);
_PackedLogs memory packedLogs = _packedLogsMalloc(nftAmountToBurn);
uint256 fromEnd = fromIndex - nftAmountToBurn;
// Burn loop.
do {
uint256 id = _get(fromOwned, --fromIndex);
_setOwnerAliasAndOwnedIndex($.oo, id, 0, 0);
delete $.tokenApprovals[id];
_packedLogsAppend(packedLogs, from, id, 1);
} while (fromIndex != fromEnd);
fromAddressData.ownedLength = uint32(fromIndex);
_packedLogsSend(packedLogs, $.mirrorERC721);
}
}
emit Transfer(from, address(0), amount);
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* INTERNAL TRANSFER FUNCTIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Moves `amount` of tokens from `from` to `to`.
///
/// Will burn sender NFTs if balance after transfer is less than
/// the amount required to support the current NFT balance.
///
/// Will mint NFTs to `to` if the recipient's new balance supports
/// additional NFTs ***AND*** the `to` address's skipNFT flag is
/// set to false.
///
/// Emits a {Transfer} event.
function _transfer(address from, address to, uint256 amount) internal virtual {
if (to == address(0)) revert TransferToZeroAddress();
DN404Storage storage $ = _getDN404Storage();
AddressData storage fromAddressData = _addressData(from);
AddressData storage toAddressData = _addressData(to);
_TransferTemps memory t;
t.fromOwnedLength = fromAddressData.ownedLength;
t.toOwnedLength = toAddressData.ownedLength;
t.fromBalance = fromAddressData.balance;
if (amount > t.fromBalance) revert InsufficientBalance();
unchecked {
t.fromBalance -= amount;
fromAddressData.balance = uint96(t.fromBalance);
toAddressData.balance = uint96(t.toBalance = toAddressData.balance + amount);
t.nftAmountToBurn = _zeroFloorSub(t.fromOwnedLength, t.fromBalance / _WAD);
if (toAddressData.flags & _ADDRESS_DATA_SKIP_NFT_FLAG == 0) {
if (from == to) t.toOwnedLength = t.fromOwnedLength - t.nftAmountToBurn;
t.nftAmountToMint = _zeroFloorSub(t.toBalance / _WAD, t.toOwnedLength);
}
_PackedLogs memory packedLogs = _packedLogsMalloc(t.nftAmountToBurn + t.nftAmountToMint);
if (t.nftAmountToBurn != 0) {
Uint32Map storage fromOwned = $.owned[from];
uint256 fromIndex = t.fromOwnedLength;
uint256 fromEnd = fromIndex - t.nftAmountToBurn;
$.totalNFTSupply -= uint32(t.nftAmountToBurn);
fromAddressData.ownedLength = uint32(fromEnd);
// Burn loop.
do {
uint256 id = _get(fromOwned, --fromIndex);
_setOwnerAliasAndOwnedIndex($.oo, id, 0, 0);
delete $.tokenApprovals[id];
_packedLogsAppend(packedLogs, from, id, 1);
} while (fromIndex != fromEnd);
}
if (t.nftAmountToMint != 0) {
Uint32Map storage toOwned = $.owned[to];
uint256 toIndex = t.toOwnedLength;
uint256 toEnd = toIndex + t.nftAmountToMint;
uint32 toAlias = _registerAndResolveAlias(toAddressData, to);
uint256 maxNFTId = $.totalSupply / _WAD;
uint256 id = $.nextTokenId;
$.totalNFTSupply += uint32(t.nftAmountToMint);
toAddressData.ownedLength = uint32(toEnd);
// Mint loop.
do {
while (_get($.oo, _ownershipIndex(id)) != 0) {
if (++id > maxNFTId) id = 1;
}
_set(toOwned, toIndex, uint32(id));
_setOwnerAliasAndOwnedIndex($.oo, id, toAlias, uint32(toIndex++));
_packedLogsAppend(packedLogs, to, id, 0);
if (++id > maxNFTId) id = 1;
} while (toIndex != toEnd);
$.nextTokenId = uint32(id);
}
if (packedLogs.logs.length != 0) {
_packedLogsSend(packedLogs, $.mirrorERC721);
}
}
emit Transfer(from, to, amount);
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Call must originate from the mirror contract.
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// `msgSender` must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _transferFromNFT(address from, address to, uint256 id, address msgSender)
internal
virtual
{
DN404Storage storage $ = _getDN404Storage();
if (to == address(0)) revert TransferToZeroAddress();
address owner = $.aliasToAddress[_get($.oo, _ownershipIndex(id))];
if (from != owner) revert TransferFromIncorrectOwner();
if (msgSender != from) {
if (!$.operatorApprovals[from][msgSender]) {
if (msgSender != $.tokenApprovals[id]) {
revert TransferCallerNotOwnerNorApproved();
}
}
}
AddressData storage fromAddressData = _addressData(from);
AddressData storage toAddressData = _addressData(to);
fromAddressData.balance -= uint96(_WAD);
unchecked {
toAddressData.balance += uint96(_WAD);
_set($.oo, _ownershipIndex(id), _registerAndResolveAlias(toAddressData, to));
delete $.tokenApprovals[id];
uint256 updatedId = _get($.owned[from], --fromAddressData.ownedLength);
_set($.owned[from], _get($.oo, _ownedIndex(id)), uint32(updatedId));
uint256 n = toAddressData.ownedLength++;
_set($.oo, _ownedIndex(updatedId), _get($.oo, _ownedIndex(id)));
_set($.owned[to], n, uint32(id));
_set($.oo, _ownedIndex(id), uint32(n));
}
emit Transfer(from, to, _WAD);
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* DATA HITCHHIKING FUNCTIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the auxiliary data for `owner`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _getAux(address owner) internal view virtual returns (uint88) {
return _getDN404Storage().addressData[owner].aux;
}
/// @dev Set the auxiliary data for `owner` to `value`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _setAux(address owner, uint88 value) internal virtual {
_getDN404Storage().addressData[owner].aux = value;
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* SKIP NFT FUNCTIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns true if account `a` will skip NFT minting on token mints and transfers.
/// Returns false if account `a` will mint NFTs on token mints and transfers.
function getSkipNFT(address a) public view virtual returns (bool) {
AddressData storage d = _getDN404Storage().addressData[a];
if (d.flags & _ADDRESS_DATA_INITIALIZED_FLAG == 0) return _hasCode(a);
return d.flags & _ADDRESS_DATA_SKIP_NFT_FLAG != 0;
}
/// @dev Sets the caller's skipNFT flag to `skipNFT`
///
/// Emits a {SkipNFTSet} event.
function setSkipNFT(bool skipNFT) public virtual {
_setSkipNFT(msg.sender, skipNFT);
}
/// @dev Internal function to set account `a` skipNFT flag to `state`
///
/// Initializes account `a` AddressData if it is not currently initialized.
///
/// Emits a {SkipNFTSet} event.
function _setSkipNFT(address a, bool state) internal virtual {
AddressData storage d = _addressData(a);
if ((d.flags & _ADDRESS_DATA_SKIP_NFT_FLAG != 0) != state) {
d.flags ^= _ADDRESS_DATA_SKIP_NFT_FLAG;
}
emit SkipNFTSet(a, state);
}
/// @dev Returns a storage data pointer for account `a` AddressData
///
/// Initializes account `a` AddressData if it is not currently initialized.
function _addressData(address a) internal virtual returns (AddressData storage d) {
DN404Storage storage $ = _getDN404Storage();
d = $.addressData[a];
if (d.flags & _ADDRESS_DATA_INITIALIZED_FLAG == 0) {
uint8 flags = _ADDRESS_DATA_INITIALIZED_FLAG;
if (_hasCode(a)) flags |= _ADDRESS_DATA_SKIP_NFT_FLAG;
d.flags = flags;
}
}
/// @dev Returns the `addressAlias` of account `to`.
///
/// Assigns and registers the next alias if `to` alias was not previously registered.
function _registerAndResolveAlias(AddressData storage toAddressData, address to)
internal
virtual
returns (uint32 addressAlias)
{
DN404Storage storage $ = _getDN404Storage();
addressAlias = toAddressData.addressAlias;
if (addressAlias == 0) {
addressAlias = ++$.numAliases;
toAddressData.addressAlias = addressAlias;
$.aliasToAddress[addressAlias] = to;
}
}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* MIRROR OPERATIONS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Returns the address of the mirror NFT contract.
function mirrorERC721() public view virtual returns (address) {
return _getDN404Storage().mirrorERC721;
}
/// @dev Returns the total NFT supply.
function _totalNFTSupply() internal view virtual returns (uint256) {
return _getDN404Storage().totalNFTSupply;
}
/// @dev Returns `owner` NFT balance.
function _balanceOfNFT(address owner) internal view virtual returns (uint256) {
return _getDN404Storage().addressData[owner].ownedLength;
}
/// @dev Returns the owner of token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _ownerAt(uint256 id) internal view virtual returns (address) {
DN404Storage storage $ = _getDN404Storage();
return $.aliasToAddress[_get($.oo, _ownershipIndex(id))];
}
/// @dev Returns the owner of token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function _ownerOf(uint256 id) internal view virtual returns (address) {
if (!_exists(id)) revert TokenDoesNotExist();
return _ownerAt(id);
}
/// @dev Returns if token `id` exists.
function _exists(uint256 id) internal view virtual returns (bool) {
return _ownerAt(id) != address(0);
}
/// @dev Returns the account approved to manage token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function _getApproved(uint256 id) internal view virtual returns (address) {
if (!_exists(id)) revert TokenDoesNotExist();
return _getDN404Storage().tokenApprovals[id];
}
/// @dev Sets `spender` as the approved account to manage token `id`, using `msgSender`.
///
/// Requirements:
/// - `msgSender` must be the owner or an approved operator for the token owner.
function _approveNFT(address spender, uint256 id, address msgSender)
internal
virtual
returns (address)
{
DN404Storage storage $ = _getDN404Storage();
address owner = $.aliasToAddress[_get($.oo, _ownershipIndex(id))];
if (msgSender != owner) {
if (!$.operatorApprovals[owner][msgSender]) {
revert ApprovalCallerNotOwnerNorApproved();
}
}
$.tokenApprovals[id] = spender;
return owner;
}
/// @dev Approve or remove the `operator` as an operator for `msgSender`,
/// without authorization checks.
function _setApprovalForAll(address operator, bool approved, address msgSender)
internal
virtual
{
_getDN404Storage().operatorApprovals[msgSender][operator] = approved;
}
/// @dev Calls the mirror contract to link it to this contract.
///
/// Reverts if the call to the mirror contract reverts.
function _linkMirrorContract(address mirror) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x0f4599e5) // `linkMirrorContract(address)`.
mstore(0x20, caller())
if iszero(and(eq(mload(0x00), 1), call(gas(), mirror, 0, 0x1c, 0x24, 0x00, 0x20))) {
mstore(0x00, 0xd125259c) // `LinkMirrorContractFailed()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Fallback modifier to dispatch calls from the mirror NFT contract
/// to internal functions in this contract.
modifier dn404Fallback() virtual {
DN404Storage storage $ = _getDN404Storage();
uint256 fnSelector = _calldataload(0x00) >> 224;
// `isApprovedForAll(address,address)`.
if (fnSelector == 0xe985e9c5) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x44) revert();
address owner = address(uint160(_calldataload(0x04)));
address operator = address(uint160(_calldataload(0x24)));
_return($.operatorApprovals[owner][operator] ? 1 : 0);
}
// `ownerOf(uint256)`.
if (fnSelector == 0x6352211e) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x24) revert();
uint256 id = _calldataload(0x04);
_return(uint160(_ownerOf(id)));
}
// `transferFromNFT(address,address,uint256,address)`.
if (fnSelector == 0xe5eb36c8) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x84) revert();
address from = address(uint160(_calldataload(0x04)));
address to = address(uint160(_calldataload(0x24)));
uint256 id = _calldataload(0x44);
address msgSender = address(uint160(_calldataload(0x64)));
_transferFromNFT(from, to, id, msgSender);
_return(1);
}
// `setApprovalForAll(address,bool,address)`.
if (fnSelector == 0x813500fc) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x64) revert();
address spender = address(uint160(_calldataload(0x04)));
bool status = _calldataload(0x24) != 0;
address msgSender = address(uint160(_calldataload(0x44)));
_setApprovalForAll(spender, status, msgSender);
_return(1);
}
// `approveNFT(address,uint256,address)`.
if (fnSelector == 0xd10b6e0c) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x64) revert();
address spender = address(uint160(_calldataload(0x04)));
uint256 id = _calldataload(0x24);
address msgSender = address(uint160(_calldataload(0x44)));
_return(uint160(_approveNFT(spender, id, msgSender)));
}
// `getApproved(uint256)`.
if (fnSelector == 0x081812fc) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x24) revert();
uint256 id = _calldataload(0x04);
_return(uint160(_getApproved(id)));
}
// `balanceOfNFT(address)`.
if (fnSelector == 0xf5b100ea) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x24) revert();
address owner = address(uint160(_calldataload(0x04)));
_return(_balanceOfNFT(owner));
}
// `totalNFTSupply()`.
if (fnSelector == 0xe2c79281) {
if (msg.sender != $.mirrorERC721) revert SenderNotMirror();
if (msg.data.length < 0x04) revert();
_return(_totalNFTSupply());
}
// `implementsDN404()`.
if (fnSelector == 0xb7a94eb8) {
_return(1);
}
_;
}
/// @dev Fallback function for calls from mirror NFT contract.
fallback() external payable virtual dn404Fallback {}
receive() external payable virtual {}
/*«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-«-*/
/* PRIVATE HELPERS */
/*-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»-»*/
/// @dev Struct containing packed log data for `Transfer` events to be
/// emitted by the mirror NFT contract.
struct _PackedLogs {
uint256[] logs;
uint256 offset;
}
/// @dev Initiates memory allocation for packed logs with `n` log items.
function _packedLogsMalloc(uint256 n) private pure returns (_PackedLogs memory p) {
/// @solidity memory-safe-assembly
assembly {
let logs := add(mload(0x40), 0x40) // Offset by 2 words for `_packedLogsSend`.
mstore(logs, n)
let offset := add(0x20, logs)
mstore(0x40, add(offset, shl(5, n)))
mstore(p, logs)
mstore(add(0x20, p), offset)
}
}
/// @dev Adds a packed log item to `p` with address `a`, token `id` and burn flag `burnBit`.
function _packedLogsAppend(_PackedLogs memory p, address a, uint256 id, uint256 burnBit)
private
pure
{
/// @solidity memory-safe-assembly
assembly {
let offset := mload(add(0x20, p))
mstore(offset, or(or(shl(96, a), shl(8, id)), burnBit))
mstore(add(0x20, p), add(offset, 0x20))
}
}
/// @dev Calls the `mirror` NFT contract to emit Transfer events for packed logs `p`.
function _packedLogsSend(_PackedLogs memory p, address mirror) private {
/// @solidity memory-safe-assembly
assembly {
let logs := mload(p)
let o := sub(logs, 0x40) // Start of calldata to send.
mstore(o, 0x263c69d6) // `logTransfer(uint256[])`.
mstore(add(o, 0x20), 0x20) // Offset of `logs` in the calldata to send.
let n := add(0x44, shl(5, mload(logs))) // Length of calldata to send.
if iszero(and(eq(mload(o), 1), call(gas(), mirror, 0, add(o, 0x1c), n, o, 0x20))) {
revert(o, 0x00)
}
}
}
/// @dev Struct of temporary variables for transfers.
struct _TransferTemps {
uint256 nftAmountToBurn;
uint256 nftAmountToMint;
uint256 fromBalance;
uint256 toBalance;
uint256 fromOwnedLength;
uint256 toOwnedLength;
}
/// @dev Returns if `a` has bytecode of non-zero length.
function _hasCode(address a) private view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := extcodesize(a) // Can handle dirty upper bits.
}
}
/// @dev Returns the calldata value at `offset`.
function _calldataload(uint256 offset) private pure returns (uint256 value) {
/// @solidity memory-safe-assembly
assembly {
value := calldataload(offset)
}
}
/// @dev Executes a return opcode to return `x` and end the current call frame.
function _return(uint256 x) private pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, x)
return(0x00, 0x20)
}
}
/// @dev Returns `max(0, x - y)`.
function _zeroFloorSub(uint256 x, uint256 y) private pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `i << 1`.
function _ownershipIndex(uint256 i) private pure returns (uint256) {
return i << 1;
}
/// @dev Returns `(i << 1) + 1`.
function _ownedIndex(uint256 i) private pure returns (uint256) {
unchecked {
return (i << 1) + 1;
}
}
/// @dev Returns the uint32 value at `index` in `map`.
function _get(Uint32Map storage map, uint256 index) private view returns (uint32 result) {
result = uint32(map.map[index >> 3] >> ((index & 7) << 5));
}
/// @dev Updates the uint32 value at `index` in `map`.
function _set(Uint32Map storage map, uint256 index, uint32 value) private {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, map.slot)
mstore(0x00, shr(3, index))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := shl(5, and(index, 7)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffffffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
/// @dev Sets the owner alias and the owned index together.
function _setOwnerAliasAndOwnedIndex(
Uint32Map storage map,
uint256 id,
uint32 ownership,
uint32 ownedIndex
) private {
/// @solidity memory-safe-assembly
assembly {
let value := or(shl(32, ownedIndex), and(0xffffffff, ownership))
mstore(0x20, map.slot)
mstore(0x00, shr(2, id))
let s := keccak256(0x00, 0x40) // Storage slot.
let o := shl(6, and(id, 3)) // Storage slot offset (bits).
let v := sload(s) // Storage slot value.
let m := 0xffffffffffffffff // Value mask.
sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value)))))
}
}
}
contract TallBits is DN404, Ownable {
string private _name;
string private _symbol;
string private _baseURI;
constructor(
string memory name_,
string memory symbol_,
uint96 initialTokenSupply,
address initialSupplyOwner
) {
_initializeOwner(msg.sender);
_name = name_;
_symbol = symbol_;
address mirror = address(new DN404Mirror(msg.sender));
_initializeDN404(initialTokenSupply, initialSupplyOwner, mirror);
}
function name() public view override returns (string memory) {
return _name;
}
function symbol() public view override returns (string memory) {
return _symbol;
}
function tokenURI(uint256 tokenId) public view override returns (string memory result) {
if (bytes(_baseURI).length != 0) {
uint256 seed = uint256(keccak256(abi.encodePacked(tokenId, address(this))));
result = string(abi.encodePacked(_baseURI, LibString.toString(seed)));
}
}
// This allows the owner of the contract to mint more tokens.
function mint(address to, uint256 amount) public onlyOwner {
_mint(to, amount);
}
function setBaseURI(string calldata baseURI_) public onlyOwner {
_baseURI = baseURI_;
}
function withdraw() public onlyOwner {
SafeTransferLib.safeTransferAllETH(msg.sender);
}
}
{
"compilationTarget": {
"TallBits.sol": "TallBits"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"uint96","name":"initialTokenSupply","type":"uint96"},{"internalType":"address","name":"initialSupplyOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"DNAlreadyInitialized","type":"error"},{"inputs":[],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"LinkMirrorContractFailed","type":"error"},{"inputs":[],"name":"MirrorAddressIsZero","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"SenderNotMirror","type":"error"},{"inputs":[],"name":"TokenDoesNotExist","type":"error"},{"inputs":[],"name":"TotalSupplyOverflow","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"bool","name":"status","type":"bool"}],"name":"SkipNFTSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"getSkipNFT","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mirrorERC721","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"string","name":"baseURI_","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"skipNFT","type":"bool"}],"name":"setSkipNFT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"result","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]