// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)pragmasolidity ^0.8.20;/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/abstractcontractContext{
function_msgSender() internalviewvirtualreturns (address) {
returnmsg.sender;
}
function_msgData() internalviewvirtualreturns (bytescalldata) {
returnmsg.data;
}
function_contextSuffixLength() internalviewvirtualreturns (uint256) {
return0;
}
}
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)pragmasolidity ^0.8.20;/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/interfaceIERC20{
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/eventTransfer(addressindexedfrom, addressindexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/eventApproval(addressindexed owner, addressindexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/functiontotalSupply() externalviewreturns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/functionbalanceOf(address account) externalviewreturns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransfer(address to, uint256 value) externalreturns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/functionallowance(address owner, address spender) externalviewreturns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/functionapprove(address spender, uint256 value) externalreturns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/functiontransferFrom(addressfrom, address to, uint256 value) externalreturns (bool);
}
Contract Source Code
File 7 of 12: Ownable.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)pragmasolidity ^0.8.20;import {Context} from"../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/abstractcontractOwnableisContext{
addressprivate _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/errorOwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/errorOwnableInvalidOwner(address owner);
eventOwnershipTransferred(addressindexed previousOwner, addressindexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/constructor(address initialOwner) {
if (initialOwner ==address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/modifieronlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/functionowner() publicviewvirtualreturns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/function_checkOwner() internalviewvirtual{
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/functionrenounceOwnership() publicvirtualonlyOwner{
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/functiontransferOwnership(address newOwner) publicvirtualonlyOwner{
if (newOwner ==address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/function_transferOwnership(address newOwner) internalvirtual{
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
Contract Source Code
File 8 of 12: ReentrancyGuard.sol
// SPDX-License-Identifier: MIT// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)pragmasolidity ^0.8.20;/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/abstractcontractReentrancyGuard{
// Booleans are more expensive than uint256 or any type that takes up a full// word because each write operation emits an extra SLOAD to first read the// slot's contents, replace the bits taken up by the boolean, and then write// back. This is the compiler's defense against contract upgrades and// pointer aliasing, and it cannot be disabled.// The values being non-zero value makes deployment a bit more expensive,// but in exchange the refund on every call to nonReentrant will be lower in// amount. Since refunds are capped to a percentage of the total// transaction's gas, it is best to keep them low in cases like this one, to// increase the likelihood of the full refund coming into effect.uint256privateconstant NOT_ENTERED =1;
uint256privateconstant ENTERED =2;
uint256private _status;
/**
* @dev Unauthorized reentrant call.
*/errorReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/modifiernonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function_nonReentrantBefore() private{
// On the first call to nonReentrant, _status will be NOT_ENTEREDif (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function_nonReentrantAfter() private{
// By storing the original value once again, a refund is triggered (see// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/function_reentrancyGuardEntered() internalviewreturns (bool) {
return _status == ENTERED;
}
}
Contract Source Code
File 9 of 12: SafeMath.sol
// SPDX-License-Identifier: UNLICENSEDpragmasolidity 0.8.20;librarySafeMath{
functionadd(uint256 a, uint256 b) internalpurereturns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
functionsub(uint256 a, uint256 b) internalpurereturns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
functionsub(uint256 a,
uint256 b,
stringmemory errorMessage
) internalpurereturns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
functionmul(uint256 a, uint256 b) internalpurereturns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the// benefit is lost if 'b' is also tested.// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522if (a ==0) {
return0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
functiondiv(uint256 a, uint256 b) internalpurereturns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
functiondiv(uint256 a,
uint256 b,
stringmemory errorMessage
) internalpurereturns (uint256) {
require(b >0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't holdreturn c;
}
functionmod(uint256 a, uint256 b) internalpurereturns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
functionmod(uint256 a,
uint256 b,
stringmemory errorMessage
) internalpurereturns (uint256) {
require(b !=0, errorMessage);
return a % b;
}
functionmin(uint256 x, uint256 y) internalpurereturns (uint256 z) {
z = x < y ? x : y;
}
functionsqrt(uint256 y) internalpurereturns (uint256 z) {
if (y >3) {
z = y;
uint256 x = y /2+1;
while (x < z) {
z = x;
x = (y / x + x) /2;
}
} elseif (y !=0) {
z =1;
}
}
}
Contract Source Code
File 10 of 12: SafeMathInt.sol
// SPDX-License-Identifier: UNLICENSEDpragmasolidity 0.8.20;librarySafeMathInt{
int256privateconstant MIN_INT256 =int256(1) <<255;
int256privateconstant MAX_INT256 =~(int256(1) <<255);
/**
* @dev Multiplies two int256 variables and fails on overflow.
*/functionmul(int256 a, int256 b) internalpurereturns (int256) {
int256 c = a * b;
// Detect overflow when multiplying MIN_INT256 with -1require(c != MIN_INT256 || (a & MIN_INT256) != (b & MIN_INT256));
require((b ==0) || (c / b == a));
return c;
}
/**
* @dev Division of two int256 variables and fails on overflow.
*/functiondiv(int256 a, int256 b) internalpurereturns (int256) {
// Prevent overflow when dividing MIN_INT256 by -1require(b !=-1|| a != MIN_INT256);
// Solidity already throws when dividing by 0.return a / b;
}
/**
* @dev Subtracts two int256 variables and fails on overflow.
*/functionsub(int256 a, int256 b) internalpurereturns (int256) {
int256 c = a - b;
require((b >=0&& c <= a) || (b <0&& c > a));
return c;
}
/**
* @dev Adds two int256 variables and fails on overflow.
*/functionadd(int256 a, int256 b) internalpurereturns (int256) {
int256 c = a + b;
require((b >=0&& c >= a) || (b <0&& c < a));
return c;
}
/**
* @dev Converts to absolute value, and fails on overflow.
*/functionabs(int256 a) internalpurereturns (int256) {
require(a != MIN_INT256);
return a <0 ? -a : a;
}
functiontoUint256Safe(int256 a) internalpurereturns (uint256) {
require(a >=0);
returnuint256(a);
}
}
Contract Source Code
File 11 of 12: SafeMathUint.sol
// SPDX-License-Identifier: UNLICENSEDpragmasolidity 0.8.20;librarySafeMathUint{
functiontoInt256Safe(uint256 a) internalpurereturns (int256) {
int256 b =int256(a);
require(b >=0);
return b;
}
}