// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
pragma solidity ^0.8.0;
import "./IAccessControlEnumerable.sol";
import "./AccessControl.sol";
import "../utils/structs/EnumerableSet.sol";
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
return _roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
return _roleMembers[role].length();
}
/**
* @dev Overload {_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account) internal virtual override {
super._grantRole(role, account);
_roleMembers[role].add(account);
}
/**
* @dev Overload {_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account) internal virtual override {
super._revokeRole(role, account);
_roleMembers[role].remove(account);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
/**
* @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
*/
interface IAccessControlEnumerable is IAccessControl {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity 0.8.9;
/*
*@#+:-*== .:. : =#*=. .. :=**- :+%@@@@@#*+-.......... .-.-@@
*%%*.. +*: =%.-- :+***+=++**=. .+%@@@@@*- . . . . -+=
* -==+++. :#: .. .=#@@@@@*- .:=*#%@@@@%#*=. ...:::::
* .:-======+=--%@*. .*@@@@@@+ .=#@@@@@@##*#%@@@@@*-
*-:::-===-::------+#@@@*. :*@@@@@@= :*@@@%*==------=--+@@@@@#=: .-=
*=++==::: .:=+=:.-=. .-**+++#**#@@@+ -#@@%=-::== :*+--*@@@@@@@@@@@@
*.....-=*+***+-. .+#*- +@@@@@@@@@+. -%@@%-::. .- .::-@@@%- -#@@@@@@@@@
* :*=@@@@@@@@@@#=. -*@%#%@@@@@@@@*. :#@@%-:: := =*%@@@@@@@%++*+*%@@@@@
* .+*%@#+-:-=+*##*#@#=. -*%@@@@@#=. -#@@%-:: -: :+@@@@@@@@*: ..
*@@@%= .-. :*@@#=. ... .=%@@#-:- :-=++#####+=: -#@@@@@@@@%*+++
*@*: :-=+::.. -#@@%+==--=+#@@%=.:+*= :=*%@@@@%@@@@@@@@@*- .+%@@@@ SMG @
*. .+%@@=%%%##=.... :+*%%@@%#+-. =%@@@@@@%@@@@@@@@@@@%%%%@@@@@#=:-+%@@@@@@@
*/
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./OperatorRole.sol";
/**
* @title OperatorRecoverable
* @notice Copyright (c) 2023 Special Mechanisms Group
*
* @author SMG <dev@mechanism.org>
*
* @dev The OperatorRecoverable contract is designed to allow a contract's
* operator to recover tokens which were accidentally transferred to
* it, but which the contract does not otherwise support. This prevents
* users having their tokens "bricked", and also allows the operator to
* clean out any spurious tokens that may have been transferred to it
* on purpose.
*/
abstract contract OperatorRecoverable is OperatorRole {
using SafeERC20 for IERC20;
/**
* @notice Maps token addresses to whether they are unrecoverable.
*/
mapping(address => bool) private isTokenUnrecoverable;
event SetUnrecoverable(address indexed token);
event Recovered(address indexed token, address indexed operator);
/**
* @notice Marks a token address as unrecoverable by the operator.
*
* @dev Only the operator may call this function.
* @dev Once a token is marked as unrecoverable there is no way for
* anyone, operator included, to mark it as recoverable again.
*
* @param _token Address of the token that will be unrecoverable.
*/
function setTokenUnrecoverable(
address _token
)
public
onlyOperator
{
isTokenUnrecoverable[_token] = true;
emit SetUnrecoverable(_token);
}
/**
* @notice Recovers recoverable tokens.
*
* @dev Only the operator may call this function.
* @dev The purpose of this function is to allow the operator to assist
* users who accidentally transferred the wrong kind of tokens to
* the smart contract.
* @dev If the token being recovered is ETH (which is not an ERC20 and
* hence does not have a token address), the caller should provide
* `0x0` as the value of `_token`.
*
* @param _token Address of the token that the operator will recover.
*/
function recoverToken(
address _token
)
external
onlyOperator
{
require(
!isTokenUnrecoverable[_token],
"OperatorRecoverable: cannot recover, token marked as unrecoverable."
);
if (_token == address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE)) {
/* ETH */
(bool success,) = msg.sender.call{ value: address(this).balance }("");
require(success, "OperatorRecoverable: ETH transfer failed.");
} else {
/* ERC20 */
IERC20(_token).safeTransfer(
msg.sender,
IERC20(_token).balanceOf(address(this))
);
}
emit Recovered(_token, msg.sender);
}
}
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity 0.8.9;
/*
*@#+:-*== .:. : =#*=. .. :=**- :+%@@@@@#*+-.......... .-.-@@
*%%*.. +*: =%.-- :+***+=++**=. .+%@@@@@*- . . . . -+=
* -==+++. :#: .. .=#@@@@@*- .:=*#%@@@@%#*=. ...:::::
* .:-======+=--%@*. .*@@@@@@+ .=#@@@@@@##*#%@@@@@*-
*-:::-===-::------+#@@@*. :*@@@@@@= :*@@@%*==------=--+@@@@@#=: .-=
*=++==::: .:=+=:.-=. .-**+++#**#@@@+ -#@@%=-::== :*+--*@@@@@@@@@@@@
*.....-=*+***+-. .+#*- +@@@@@@@@@+. -%@@%-::. .- .::-@@@%- -#@@@@@@@@@
* :*=@@@@@@@@@@#=. -*@%#%@@@@@@@@*. :#@@%-:: := =*%@@@@@@@%++*+*%@@@@@
* .+*%@#+-:-=+*##*#@#=. -*%@@@@@#=. -#@@%-:: -: :+@@@@@@@@*: ..
*@@@%= .-. :*@@#=. ... .=%@@#-:- :-=++#####+=: -#@@@@@@@@%*+++
*@*: :-=+::.. -#@@%+==--=+#@@%=.:+*= :=*%@@@@%@@@@@@@@@*- .+%@@@@ SMG @
*. .+%@@=%%%##=.... :+*%%@@%#+-. =%@@@@@@%@@@@@@@@@@@%%%%@@@@@#=:-+%@@@@@@@
*/
import "@openzeppelin/contracts/access/AccessControlEnumerable.sol";
/**
* @title OperatorRole
* @notice Copyright (c) 2023 Special Mechanisms Group
*
* @author SMG <dev@mechanism.org>
*
* @dev The OperatorRole contract defines a role called OPERATOR_ROLE which can
* be assigned to certain addresses, and which can be used to control
* access to certain functions on the smart contract. In addition, this
* contract sets up the DEFAULT_ADMIN_ROLE.
*/
abstract contract OperatorRole is AccessControlEnumerable {
bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");
event AddedOperator(address indexed _address);
event RemovedOperator(address indexed _address);
/**
* @notice Constructor
*
* @dev The deployer will be set as the first address with the roles
* DEFAULT_ADMIN_ROLE and OPERATOR_ROLE. DEFAULT_ADMIN_ROLE is set
* as the administrator of OPERATOR_ROLE, which means that only a
* caller with the DEFAULT_ADMIN_ROLE can call the `grantRole` or
* `renounceRole` functions for OPERATOR_ROLE.
*/
constructor()
{
_grantRole(DEFAULT_ADMIN_ROLE, _msgSender());
_grantRole(OPERATOR_ROLE, _msgSender());
}
/**
* @notice Allows only the Operator role to call certain functions.
*/
modifier onlyOperator()
{
require(isOperator(_msgSender()), "OperatorRole: caller does not have the Operator role.");
_;
}
/**
* @notice Checks whether an address has been granted OPERATOR_ROLE.
*
* @param _address Address to check.
* @return bool 'true' if the address has the role, otherwise 'false'.
*/
function isOperator(
address _address
)
public
view
returns (bool)
{
return hasRole(OPERATOR_ROLE, _address);
}
/**
* @notice Give an address OPERATOR_ROLE.
*
* @dev Caller must have DEFAULT_ADMIN_ROLE.
*
* @param _address Address to be granted OPERATOR_ROLE.
*/
function addOperator(
address _address
)
public
{
_addOperator(_address);
}
/**
* @notice Remove OPERATOR_ROLE from msg.sender.
*
* @dev Caller must have OPERATOR_ROLE.
*/
function renounceOperator()
public
virtual
{
_removeOperator(msg.sender);
}
/**
* @notice Add OPERATOR_ROLE to an address.
*
* @dev Caller must have DEFAULT_ADMIN_ROLE.
*
* @param _address Address to have OPERATOR_ROLE granted.
*/
function _addOperator(
address _address
)
internal
{
grantRole(OPERATOR_ROLE, _address);
emit AddedOperator(_address);
}
/**
* @notice Remove OPERATOR_ROLE from an address.
*
* @dev Caller must have DEFAULT_ADMIN_ROLE.
*
* @param _address Address to have OPERATOR_ROLE renounced.
*/
function _removeOperator(
address _address
)
internal
{
renounceRole(OPERATOR_ROLE, _address);
emit RemovedOperator(_address);
}
/**
* @dev Overload {AccessControlEnumerable-_revokeRole} to ensure at least one operator/admin remains
*/
function _revokeRole(bytes32 role, address account) internal virtual override {
super._revokeRole(role, account);
uint256 roleMemberCount = getRoleMemberCount(role);
require (roleMemberCount > 0, "OperatorRole: contract must have at least one operator");
}
/**
* @dev Overload {AccessControl-_renounceRole} to ensure at least one operator/admin remains
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;
/*
*@#+:-*== .:. : =#*=. .. :=**- :+%@@@@@#*+-.......... .-.-@@
*%%*.. +*: =%.-- :+***+=++**=. .+%@@@@@*- . . . . -+=
* -==+++. :#: .. .=#@@@@@*- .:=*#%@@@@%#*=. ...:::::
* .:-======+=--%@*. .*@@@@@@+ .=#@@@@@@##*#%@@@@@*-
*-:::-===-::------+#@@@*. :*@@@@@@= :*@@@%*==------=--+@@@@@#=: .-=
*=++==::: .:=+=:.-=. .-**+++#**#@@@+ -#@@%=-::== :*+--*@@@@@@@@@@@@
*.....-=*+***+-. .+#*- +@@@@@@@@@+. -%@@%-::. .- .::-@@@%- -#@@@@@@@@@
* :*=@@@@@@@@@@#=. -*@%#%@@@@@@@@*. :#@@%-:: := =*%@@@@@@@%++*+*%@@@@@
* .+*%@#+-:-=+*##*#@#=. -*%@@@@@#=. -#@@%-:: -: :+@@@@@@@@*: ..
*@@@%= .-. :*@@#=. ... .=%@@#-:- :-=++#####+=: -#@@@@@@@@%*+++
*@*: :-=+::.. -#@@%+==--=+#@@%=.:+*= :=*%@@@@%@@@@@@@@@*- .+%@@@@ SMG @
*. .+%@@=%%%##=.... :+*%%@@%#+-. =%@@@@@@%@@@@@@@@@@@%%%%@@@@@#=:-+%@@@@@@@
*/
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "./OperatorRecoverable.sol";
interface IWETH {
function withdraw(uint wad) external;
}
/**
* @title PaymentChannels
* @notice Copyright (c) 2023 Special Mechanisms Group
*
* @author SMG <dev@mechanism.org>
*
* @notice The PaymentChannels contract implements the on-chain portion of a
* payment channel system.
*
* A payment channel allows for two parties to conduct a series of
* transactions of the main blockchain, then record the final result
* onto the main blockchain in one transaction.
*
* Their efficiency makes them ideally suited for high-performance
* micropayments.
*
* A payment channel is created by locking funds in a smart contract,
* then exchanging of-chain commitments with the channel's counterparty.
* The channel can be "settled" at any time by providing a more recent
* commitment, and "closed" when both parties agree on the final state.
*
* Closing a channel is done either by providing a special commitment
* that both parties agree is the last, or by providing a commitment
* and waiting for a challenge period where the counterparty is free to
* provide a more recent commitment if one exists.
*/
contract PaymentChannels is OperatorRecoverable {
using SafeERC20 for IERC20;
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
IERC20 constant WETH = IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
bytes constant public INSTANT_UNSTAKE_COMMITMENT_DATA = bytes("INSTANT");
// EIP-712 constants
string private constant CONTRACT_NAME = "PaymentChannels";
string private constant CONTRACT_VERSION = "1.0";
bytes32 private constant TYPEHASH_DOMAIN = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
bytes32 private constant TYPEHASH_STAKE_COMMITMENT = keccak256(
"StakeCommitment(address stakerAddress,uint256 stakeSpentAmount,uint256 stakeCommitmentNonce,uint256 stakeChannelNonce,bytes data)"
);
bytes32 private constant TYPEHASH_CLAIM_COMMITMENT = keccak256(
"ClaimCommitment(address claimerAddress,uint256 claimsEarnedAmount)"
);
bytes32 private immutable DOMAIN_SEPARATOR;
/*//////////////////////////////////////////////////////////////
ADDRESSES
//////////////////////////////////////////////////////////////*/
/**
* @notice Address of the stakeNotary
* @dev The stakeNotary is an Ethereum account which co-signs commitments
* made by the stakerAddress on the stake payment channels.
*/
address public stakeNotaryAddress;
/**
* @notice Address of the claimNotary
* @dev The claimNotary is an Ethereum account which co-signs commitments
* made by the claimerAddress on the claim payment channels.
*/
address public claimNotaryAddress;
/*//////////////////////////////////////////////////////////////
PAYMENT CHANNEL STATE (STAKE)
//////////////////////////////////////////////////////////////*/
/**
* @notice Amount of WETH staked by a stakerAddress.
*
* @dev This value is only changed after calling the functions `stake`,
* `unstake`, or `safeUnstake`, the latter who of which reset its
* value to 0.
*/
mapping (address => uint256) public stakedAmount;
/**
* @notice Nonce used to order StakeCommitments.
*
* @dev This nonce increments each time a StakeCommitment is made on the
* payment channel, but will only increment on this contract when
* those StakeCommitments are brought on-chain using the functions
* `settleStakeCommitments`, `unstake`, or `startTimelockedUnstake`.
* Its value is reset to 0 when the payment channel is closed.
*/
mapping (address => uint256) public stakeCommitmentNonce;
/**
* @notice Amount of WETH spent since the payment channel was opened.
*
* @dev Cannot exceed `stakedAmount`. Resets to 0 when the payment channel
* is closed.
*/
mapping (address => uint256) public stakeSpentAmount;
/**
* @notice Nonce used to order each time the payment channel is opened.
*
* @dev This nonce increments each time the payment channel is closed,
* so that if the same address opens a new payment channel after
* having closed one, it will be unique. This prevents certain
* channel re-use attacks.
*/
mapping (address => uint256) public stakeChannelNonce;
/**
* @notice Timestamp used to measure the timelock for unstaking.
*
* @dev When this value is non-zero, it means the payment channel is in
* its timelocked unstaking period, limiting certain operations.
* @dev Unlike the other mappings, this one is indexed by a hash of a
* StakeCommitment rather than an address. This is to prevent the need
* for another write to zero out the timestamp each time a channel is
* closed. By using a StakeCommitment hash instead (which is unique
* due to the `stakeCommitmentNonce` and `stakeChannelNonce`), we
* avoid the need for that additional write, saving gas.
*/
mapping (bytes32 => uint256) public timelockedUnstakeTimestamp;
/*//////////////////////////////////////////////////////////////
PAYMENT CHANNEL STATE (CLAIMS)
//////////////////////////////////////////////////////////////*/
/**
* @notice Amount of WETH each claimerAddress has claimed.
*
* @dev Note that this value never decreases and persists for the lifetime
* of the claimerAddress.
*/
mapping (address => uint256) public claimedAmount;
/**
* @notice Total amount of claimable WETH.
*
* @dev Updated when the functions `adjustTotalClaimableAmount`,
* `addToTotalClaimableAmount` or `settleClaim` are called.
*/
uint256 public totalClaimableAmount;
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Staked(address indexed _stakerAddress, uint256 _stakeChannelNonce, uint256 _amount);
event Claimed(address indexed _claimerAddress, uint256 _amount);
event SetStakeNotaryAddress(address indexed _oldStakeNotaryAddress, address indexed _newStakeNotaryAddress);
event SetClaimNotaryAddress(address indexed _oldClaimNotaryAddress, address indexed _newClaimNotaryAddress);
event Unstaked(address indexed _stakerAddress, uint256 _stakeChannelNonce, uint256 _amount);
event StartedTimelockedUnstake(
address indexed _stakerAddress,
uint256 _stakeSpentAmount,
uint256 _stakeCommitmentNonce,
uint256 _stakeChannelNonce,
uint256 _timelockedUnstakeTimestamp);
event AddedToTotalClaimableAmount(uint256 _amount);
event SettledStakeCommitments(uint256 _totalNewStakeRefundedAmount, uint256 _totalNewStakeSpentAmount);
/*//////////////////////////////////////////////////////////////
DATA STRUCTURES
//////////////////////////////////////////////////////////////*/
/**
* @notice A commitment on the stake payment channel.
*
* @dev The data in the StakeCommitment is how we represent a distinct
* state transition on the payment channel, such as a "spend," a
* "refund," or an "unstake". This data is periodically written
* on-chain using `settleStakeCommitments`, or when calling `unstake`
* or `startTimelockedUnstake` to begin the process of closing a
* payment channel.
*/
struct StakeCommitment {
/**
* @dev Address of the owner of the stake and the payment channel
*/
address stakerAddress;
/**
* @dev Amount of WETH that the owner has spent since opening the
* payment channel.
*/
uint256 stakeSpentAmount;
/**
* @dev The nonce of the commitment.
*/
uint256 stakeCommitmentNonce;
/**
* @dev The nonce of the channel.
*/
uint256 stakeChannelNonce;
/**
* @dev Reserved for off-chain use. Typically holds the hash of the
* previous commitment in a chain to ensure that the state remains
* consistent. However it is also used in `unstake` to signal a
* special StakeCommitment.
*/
bytes data;
/**
* @dev The signature of the staker on the output of the function
* `getStakeCommitmentHash` or a locally-computed equivalent.
*/
bytes stakerSignature;
/**
* @dev The signature of the stakeNotary on the output of the function
* `getStakeCommitmentHash` or a locally-computed equivalent.
*/
bytes stakeNotarySignature;
}
/*//////////////////////////////////////////////////////////////
UTILITY METHODS
//////////////////////////////////////////////////////////////*/
/**
* @notice Fetch the most recent settled state of a payment channel.
*
* @dev Remember that the actual most recent state of the payment channel
* may be running ahead of the one on-chain, if there are new
* off-chain StakeCommitments that have yet to be settled.
*
* @param _stakerAddress The staker address.
* @return _stakedAmount The amount of WETH staked.
* @return _stakeCommitmentNonce The stake commitment nonce.
* @return _stakeSpentAmount The amount of WETH the staker has spent.
* @return _stakeChannelNonce The stake channel nonce.
* @return _timelockedUnstakeTimestamp The timestamp when startTimelockedUnstake was called.
*/
function getStakeChannelState(
address _stakerAddress
)
external
view
returns (
uint256 _stakedAmount,
uint256 _stakeCommitmentNonce,
uint256 _stakeSpentAmount,
uint256 _stakeChannelNonce,
uint256 _timelockedUnstakeTimestamp
)
{
return (
stakedAmount[_stakerAddress],
stakeCommitmentNonce[_stakerAddress],
stakeSpentAmount[_stakerAddress],
stakeChannelNonce[_stakerAddress],
getTimelockedUnstakeTimestamp(_stakerAddress));
}
/**
* @notice Compute the commitment hash used for stake signatures.
*
* @dev Convenience function that can be used by a staker or stakeNotary
* to generate the message they will sign to create a valid
* stakerSignature or stakeNotarySignature.
*
* @param _stakerAddress A staker address.
* @param _stakeSpentAmount The amount of WETH the staker has spent.
* @param _stakeCommitmentNonce The stake commitment nonce.
* @param _stakeChannelNonce The stake channel nonce.
* @return bytes32 Keccak256 hash of the given StakeCommitment properties.
*/
function getStakeCommitmentHash(
address _stakerAddress,
uint256 _stakeSpentAmount,
uint256 _stakeCommitmentNonce,
uint256 _stakeChannelNonce,
bytes memory _data
)
public
view
returns (bytes32)
{
return keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR,
keccak256(
abi.encode(
TYPEHASH_STAKE_COMMITMENT,
_stakerAddress,
_stakeSpentAmount,
_stakeCommitmentNonce,
_stakeChannelNonce,
keccak256(abi.encodePacked(_data))
)
)
)
);
}
/**
* @notice Compute the commitment hash used for stake signatures.
*
* @dev Convenience function that can be used by a staker or stakeNotary
* to generate the message they will sign to create a valid
* stakerSignature or stakeNotarySignature.
*
* @param _commitment A StakeCommitment.
* @return bytes32 Keccak256 hash of the given StakeCommitment properties.
*/
function getStakeCommitmentHash(
StakeCommitment memory _commitment
)
internal
view
returns (bytes32)
{
return getStakeCommitmentHash(
_commitment.stakerAddress,
_commitment.stakeSpentAmount,
_commitment.stakeCommitmentNonce,
_commitment.stakeChannelNonce,
_commitment.data);
}
/**
* @notice Compute the commitment hash used for claim signatures.
*
* @dev Convenience function that can be used by a claimer or claimNotary
* to generate the message they will sign to create a valid
* claimerSignature or claimNotarySignature.
*
* @param _claimerAddress Address of the claimer.
* @param _claimsEarnedAmount Amount of WETH earned to date by the claimer.
* @return bytes32 Keccak256 hash of the given claim properties.
*/
function getClaimCommitmentHash(
address _claimerAddress,
uint256 _claimsEarnedAmount
)
public
view
returns (bytes32)
{
return keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR,
keccak256(
abi.encode(
TYPEHASH_CLAIM_COMMITMENT,
_claimerAddress,
_claimsEarnedAmount
)
)
)
);
}
/**
* @notice Get the key to look up the timelocked unstake timestamp.
*
* @dev Timestamps are stored by hashing the data from the StakeCommitment
* a caller provides to startTimelockedUnstake. Because this hash will
* be unique for unique StakeCommitments, we never need to zero out
* timestamp, saving gas.
*
* @param _stakerAddress Address of the staker.
* @param _stakeSpentAmount The amount of WETH the staker has spent.
* @param _stakeCommitmentNonce The stake commitment nonce.
* @param _stakeChannelNonce The stake channel nonce.
* @return bytes32 Index into `timelockedUnstakeTimestamp` mapping.
*/
function getTimelockedUnstakeTimestampKey(
address _stakerAddress,
uint256 _stakeSpentAmount,
uint256 _stakeCommitmentNonce,
uint256 _stakeChannelNonce
)
public
pure
returns (bytes32)
{
return keccak256(abi.encode(_stakerAddress, _stakeSpentAmount, _stakeCommitmentNonce, _stakeChannelNonce));
}
/**
* @notice Get the timelocked unstake timestamp for a payment channel.
*
* @dev When the return value is non-zero, it means the associated payment
* channel is in its timelocked unstake mode, limiting certain
* functionality.
*
* @param _stakerAddress The staker address that owns the payment channel.
* @return uint256 The timestamp when startTimelockedUnstake was called.
*/
function getTimelockedUnstakeTimestamp(
address _stakerAddress
)
public
view
returns (uint256)
{
return timelockedUnstakeTimestamp[
getTimelockedUnstakeTimestampKey(
_stakerAddress,
stakeSpentAmount[_stakerAddress],
stakeCommitmentNonce[_stakerAddress],
stakeChannelNonce[_stakerAddress])];
}
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
/**
* @notice constructor
*
* @param _stakeNotaryAddress Initial stakeNotaryAddress
* @param _claimNotaryAddress Initial claimNotaryAddress
*/
constructor(address _stakeNotaryAddress, address _claimNotaryAddress) {
/* Set initial stakeNotary and claimNotary addresses. */
stakeNotaryAddress = _stakeNotaryAddress;
claimNotaryAddress = _claimNotaryAddress;
/*
* We want the smart contract operator to have the ability to recover
* non-WETH ERC20 tokens transferred to it accidentally. The inherited
* OperatorRecoverable contract allows this for any ERC20, and we use
* `setTokenUnrecoverable` to permanently exclude WETH.
* For more, see `OperatorRecoverable.sol`.
*/
setTokenUnrecoverable(address(WETH));
/* Initialize EIP-712 Domain Separator */
DOMAIN_SEPARATOR = keccak256(
abi.encode(
TYPEHASH_DOMAIN,
keccak256(bytes(CONTRACT_NAME)),
keccak256(bytes(CONTRACT_VERSION)),
block.chainid,
address(this)
)
);
/* Emit events */
emit SetStakeNotaryAddress(address(0), _stakeNotaryAddress);
emit SetClaimNotaryAddress(address(0), _claimNotaryAddress);
}
fallback() external payable {}
receive() external payable {}
/*//////////////////////////////////////////////////////////////
ADDRESS MANAGEMENT
//////////////////////////////////////////////////////////////*/
/**
* @notice Update the stakeNotaryAddress.
*
* @dev Only the contract operator can call this function.
* @dev Any unsettled commitments co-signed by the old stakeNotaryAddress
* will not be able to be settled once this change is made. Therefore
* the caller must either ensure that these are re-signed by the new
* stakeNotaryAddress, or abandoned.
*
* @param _newStakeNotaryAddress Address of the new stakeNotary.
*/
function setStakeNotaryAddress(
address _newStakeNotaryAddress
)
external
onlyOperator
{
emit SetStakeNotaryAddress(stakeNotaryAddress, _newStakeNotaryAddress);
stakeNotaryAddress = _newStakeNotaryAddress;
}
/**
* @notice Update the claimNotaryAddress.
*
* @dev Only the contract operator can call this function.
* @dev Any unsettled commitments co-signed by the old claimNotaryAddress
* will not be able to be settled once this change is made. Therefore
* the caller must either ensure that these are re-signed by the new
* claimNotaryAddress, or abandoned.
*
* @param _newClaimNotaryAddress Address of the new claimNotary.
*/
function setClaimNotaryAddress(
address _newClaimNotaryAddress
)
external
onlyOperator
{
emit SetClaimNotaryAddress(claimNotaryAddress, _newClaimNotaryAddress);
claimNotaryAddress = _newClaimNotaryAddress;
}
/*//////////////////////////////////////////////////////////////
STAKE LOGIC
//////////////////////////////////////////////////////////////*/
/**
* @notice Stake WETH for use in a payment channel.
*
* @dev This opens a payment channel, if one is not yet open already,
* with msg.sender as the stakerAddress. Whether or not there is
* already an open payment channel, this function adds stake to it.
* @dev Cannot be called when the payment channel is in its timelocked
* unstake mode.
*
* @param _amount Amount of WETH to stake (in wei).
*/
function stake(
uint256 _amount
)
external
{
require(getTimelockedUnstakeTimestamp(msg.sender) == 0, "Invalid channel state: cannot stake after startTimelockedUnstake has been called.");
stakedAmount[msg.sender] += _amount;
WETH.safeTransferFrom(msg.sender, address(this), _amount);
emit Staked(msg.sender, stakeChannelNonce[msg.sender], stakedAmount[msg.sender]);
}
/**
* @notice Donate claimable WETH to the contract.
*
* @dev In normal operation, claimable WETH accrues on settlement or
* unstaking. This function can be used to create a buffer of
* immediaetly claimable WETH so that claimers do not need to wait
* for these periodic activities. It can also be used to amend any
* shortfalls.
*
* @param _amount Amount of WETH to donate (in wei).
*/
function addToTotalClaimableAmount(
uint256 _amount
)
external
{
totalClaimableAmount += _amount;
WETH.safeTransferFrom(msg.sender, address(this), _amount);
emit AddedToTotalClaimableAmount(_amount);
}
/**
* @notice Adjusts staked WETH to claimable WETH and vice versa.
*
* @param _stakeRefundedAmount Amount of WETH no longer claimable (in wei).
* @param _stakeSpentAmount Amount of WETH newly claimable (in wei).
*/
function adjustTotalClaimableAmount(
uint256 _stakeRefundedAmount,
uint256 _stakeSpentAmount
)
internal
{
if (_stakeSpentAmount < _stakeRefundedAmount) {
/* Overall, stake was refunded. */
uint256 refundAmount = _stakeRefundedAmount - _stakeSpentAmount;
require(totalClaimableAmount >= refundAmount, "Invalid refund: refundAmount cannot exceed totalClaimableAmount.");
totalClaimableAmount -= refundAmount;
} else {
/* Overall, stake was spent. */
totalClaimableAmount += _stakeSpentAmount - _stakeRefundedAmount;
}
}
/**
* @notice Settles off-chain commitments on-chain.
*
* @dev Any address may call this function since the StakeCommitments
* are secured by signatures of both the staker and the stakeNotary.
* In practice, the stakeNotary will likely be the caller.
* @dev It is sufficient to provide only the most recent unsettled
* StakeCommitment for each payment channel. But this is not a
* requirement, and the function will behave the same if there are
* past commitments for the same channel also being provided.
*
* @param _commitments Array of StakeCommitments to be settled.
*/
function settleStakeCommitments(
StakeCommitment[] memory _commitments
)
external
{
/* Tracks cumulative spending and refunding. */
uint256 totalNewStakeSpentAmount = 0;
uint256 totalNewStakeRefundedAmount = 0;
for (uint i=0; i< _commitments.length; i++) {
StakeCommitment memory commitment = _commitments[i];
/* Validate commitment data*/
require(getTimelockedUnstakeTimestamp(commitment.stakerAddress) == 0, "Invalid channel state: cannot settle new StakeCommitments after startTimelockedUnstake has been called.");
require(commitment.stakeSpentAmount <= stakedAmount[commitment.stakerAddress], "Invalid StakeCommitment: provided stakeSpentAmount cannot exceed stakedAmount.");
require(commitment.stakeCommitmentNonce >= stakeCommitmentNonce[commitment.stakerAddress], "Invalid StakeCommitment: provided stakeCommitmentNonce must be no older than stakeCommitmentNonce.");
require(commitment.stakeChannelNonce == stakeChannelNonce[commitment.stakerAddress], "Invalid StakeCommitment: provided stakeChannelNonce must match stakeChannelNonce.");
/*
* If a commitment in the batch has already been settled in a previous call to settleStakeCommitments,
* skip it instead of reverting the entire batch. This is to prevent a malicious actor from DOS-ing
* a batched call by frontrunning it with a single commitment from the batch.
*/
if(commitment.stakeCommitmentNonce == stakeCommitmentNonce[commitment.stakerAddress]) {
continue;
}
/* Validate signatures */
address recoveredStakerAddress = ECDSA.recover(
getStakeCommitmentHash(commitment),
commitment.stakerSignature
);
require(recoveredStakerAddress == commitment.stakerAddress, "Invalid StakeCommitment: stakerAddress does not match the signer of stakerSignature.");
address recoveredStakeNotaryAddress = ECDSA.recover(
getStakeCommitmentHash(commitment),
commitment.stakeNotarySignature
);
require(recoveredStakeNotaryAddress == stakeNotaryAddress, "Invalid StakeCommitment: stakeNotaryAddress does not match the signer of stakeNotarySignature.");
if (commitment.stakeSpentAmount < stakeSpentAmount[commitment.stakerAddress]) {
/* Stake was refunded to the staker. */
totalNewStakeRefundedAmount += stakeSpentAmount[commitment.stakerAddress] - commitment.stakeSpentAmount;
} else {
/* Stake was spent by the staker. */
totalNewStakeSpentAmount += commitment.stakeSpentAmount - stakeSpentAmount[commitment.stakerAddress];
}
/* Update the channel state */
stakeCommitmentNonce[commitment.stakerAddress] = commitment.stakeCommitmentNonce;
stakeSpentAmount[commitment.stakerAddress] = commitment.stakeSpentAmount;
}
/* Adjust the total claimable amount all at once */
adjustTotalClaimableAmount(totalNewStakeRefundedAmount, totalNewStakeSpentAmount);
/* Emit event */
emit SettledStakeCommitments(totalNewStakeRefundedAmount, totalNewStakeSpentAmount);
}
/**
* @notice Start or challenge a timelocked unstake procedure.
*
* @dev The timelocked unstake procedure is a fail-safe mode that allows
* a staker to unstake even in the presence of a faulty stakeNotary.
* Once the function is called, the associated payment channel is
* settled up to the provided StakeCommitment, and no further
* commitments can be settled, except through this function.
* @dev The unstaking can be completed after expiry of a 7 day timelock,
* by calling the `executeTimelockedUnstake` function.
* @dev If the stakeNotary believes that the staker is being malicious
* and providing an old but unsettled StakeCommitment, they can
* challenge the unstake by calling this function with a more
* recent StakeCommitment, which also extends the timelock. The
* stakeNotary can challenge repeatedly, until the matter is resolved.
* @dev A compromised stakeNotary could withhold more recent commitments
* from the staker and use these to indefinitely reset the timelock.
* In this event, the operator can call `setStakeNotaryAddress` to
* change the `stakeNotaryAddress` to an uncompromised one.
* @dev This function does not close the payment channel, but it does
* put it into a timelocked state where its functionality is reduced.
* To close the payment channel and actually unstake, the caller needs
* to call `executeTimelockedUnstake`.
*
* @param _commitment A StakeCommitment at least as recent as the last
* one settled on-chain.
*/
function startTimelockedUnstake(
StakeCommitment memory _commitment
)
external
{
/* Validate */
if (getTimelockedUnstakeTimestamp(_commitment.stakerAddress) == 0) {
require(msg.sender == _commitment.stakerAddress, "Invalid caller: only stakerAddress can call startTimelockedUnstake for the first time.");
}
require(_commitment.stakeSpentAmount <= stakedAmount[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeSpentAmount cannot exceed stakedAmount.");
require(_commitment.stakeCommitmentNonce >= stakeCommitmentNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeCommitmentNonce must be no older than stakeCommitmentNonce.");
require(_commitment.stakeChannelNonce == stakeChannelNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeChannelNonce must match stakeChannelNonce.");
require(msg.sender == _commitment.stakerAddress || msg.sender == stakeNotaryAddress, "Invalid caller: only stakerAddress or stakeNotaryAddress can call startTimelockedUnstake.");
/* Validate signatures */
address recoveredStakerAddress = ECDSA.recover(
getStakeCommitmentHash(_commitment),
_commitment.stakerSignature
);
require(recoveredStakerAddress == _commitment.stakerAddress, "Invalid StakeCommitment: stakerAddress does not match the signer of stakerSignature.");
address recoveredStakeNotaryAddress = ECDSA.recover(
getStakeCommitmentHash(_commitment),
_commitment.stakeNotarySignature
);
require(recoveredStakeNotaryAddress == stakeNotaryAddress, "Invalid StakeCommitment: stakeNotaryAddress does not match the signer of stakeNotarySignature.");
/* Settle the payment channel up to the provided StakeCommitment. */
adjustTotalClaimableAmount(stakeSpentAmount[_commitment.stakerAddress], _commitment.stakeSpentAmount);
stakeCommitmentNonce[_commitment.stakerAddress] = _commitment.stakeCommitmentNonce;
stakeSpentAmount[_commitment.stakerAddress] = _commitment.stakeSpentAmount;
/* Set the timelock */
timelockedUnstakeTimestamp[
getTimelockedUnstakeTimestampKey(
_commitment.stakerAddress,
_commitment.stakeSpentAmount,
_commitment.stakeCommitmentNonce,
_commitment.stakeChannelNonce
)] = block.timestamp + 7 days;
/* Emit event */
emit StartedTimelockedUnstake(
_commitment.stakerAddress,
_commitment.stakeSpentAmount,
_commitment.stakeCommitmentNonce,
_commitment.stakeChannelNonce,
block.timestamp + 7 days);
}
/**
* @notice After timelock, unstake the stakerAddress's unspent WETH.
*
* @dev When successful, this function closes the payment channel.
* @dev Requires the `startTimelockedUnstake` function to have been last
* called at least 7 days prior.
*
* @param _stakerAddress Address of the staker.
*/
function executeTimelockedUnstake(
address _stakerAddress
)
external
{
/* Cache for event */
uint256 _stakeChannelNonce = stakeChannelNonce[_stakerAddress];
/* Validate */
require(getTimelockedUnstakeTimestamp(_stakerAddress) > 0, "Invalid timelock: must call startTimelockedUnstake first.");
require(block.timestamp > getTimelockedUnstakeTimestamp(_stakerAddress), "Invalid timelock: timelock has not yet expired.");
/* Cache for event */
uint256 unstakeAmount = stakedAmount[_stakerAddress] - stakeSpentAmount[_stakerAddress];
require(unstakeAmount > 0, "Nothing to unstake");
/* Close the payment channel */
stakeCommitmentNonce[_stakerAddress] = 0;
stakeSpentAmount[_stakerAddress] = 0;
stakedAmount[_stakerAddress] = 0;
stakeChannelNonce[_stakerAddress] += 1;
/* Send the WETH */
WETH.safeTransfer(_stakerAddress, unstakeAmount);
/* Emit event */
emit Unstaked(_stakerAddress, _stakeChannelNonce, unstakeAmount);
}
/**
* @notice Instantly unstake the stakerAddress's unspent WETH.
*
* @dev The caller must provide a special StakeCommitment co-signed by
* the stakeNotary proving that the payment channel has been settled
* and the stakeNotary has authorized the staker to unstake. This
* special StakeCommitment can be requested using the off-chain API
* associated with the stakeNotary. If the off-chain API is not
* available for any reason, use startTimelockedUnstake instead.
* @dev The special StakeCommitment is required in order to prevent either
* a compromised stakeNotary or a malicious staker from unstaking
* using an old or unsettled commitment.
* @dev Unstaking closes the payment channel, which means zeroing out all
* payment channel state associated with the `stakerAddress`, except
* for `stakeChannelNonce`, which is incremented. A `stakerAddress`
* which has unstaked can open a new payment channel by calling the
* `stake` function.
*
* @param _commitment A special StakeCommitment used to prove that the
* stakerAddress is authorized to unstake.
*/
function unstake(
StakeCommitment memory _commitment
)
external
{
/* Validate */
require(msg.sender == _commitment.stakerAddress, "Invalid caller: only stakerAddress can call unstake.");
require(_commitment.stakeSpentAmount <= stakedAmount[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeSpentAmount cannot exceed stakedAmount.");
require(_commitment.stakeCommitmentNonce >= stakeCommitmentNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeCommitmentNonce must be no older than stakeCommitmentNonce.");
require(_commitment.stakeChannelNonce == stakeChannelNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeChannelNonce must match stakeChannelNonce.");
require(keccak256(_commitment.data) == keccak256(INSTANT_UNSTAKE_COMMITMENT_DATA), "Invalid StakeCommitment: provided data must match INSTANT_UNSTAKE_COMMITMENT_DATA.");
/* Validate signatures */
address recoveredStakerAddress = ECDSA.recover(
getStakeCommitmentHash(_commitment),
_commitment.stakerSignature
);
require(recoveredStakerAddress == _commitment.stakerAddress, "Invalid StakeCommitment: stakerAddress does not match the signer of stakerSignature.");
address recoveredStakeNotaryAddress = ECDSA.recover(
getStakeCommitmentHash(_commitment),
_commitment.stakeNotarySignature
);
require(recoveredStakeNotaryAddress == stakeNotaryAddress, "Invalid StakeCommitment: stakeNotaryAddress does not match the signer of stakeNotarySignature.");
/* Settle the payment channel up to the provided StakeCommitment. */
adjustTotalClaimableAmount(stakeSpentAmount[_commitment.stakerAddress], _commitment.stakeSpentAmount);
/* Cache for event */
uint256 unstakeAmount = stakedAmount[_commitment.stakerAddress] - _commitment.stakeSpentAmount;
require(unstakeAmount > 0, "Nothing to unstake");
/* Close the payment channel */
stakeCommitmentNonce[_commitment.stakerAddress] = 0;
stakeSpentAmount[_commitment.stakerAddress] = 0;
stakedAmount[_commitment.stakerAddress] = 0;
stakeChannelNonce[_commitment.stakerAddress] += 1;
/* Send the WETH */
WETH.safeTransfer(_commitment.stakerAddress, unstakeAmount);
/* Emit event */
emit Unstaked(_commitment.stakerAddress, _commitment.stakeChannelNonce, unstakeAmount);
}
/*//////////////////////////////////////////////////////////////
CLAIM LOGIC
//////////////////////////////////////////////////////////////*/
/**
* @notice Claim any WETH owed to the provided address.
*
* @dev Can be called by anyone, not only the claimer. This allows claims
* to be securely processed by a third party, saving claimers gas.
* @dev The caller must request that the claimNotary provide both an amount
* of WETH that the claimerAddress has earned over its lifetime (the
* _claimsEarnedAmount), and a signature (_claimNotarySignature),
* witnessing the fact that the claimNotary agrees with that amount.
* @dev The message that results in _claimNotarySignature is the output of
* the `getClaimCommitmentHash` function, or a locally-computed
* equivalent.
*
* @param _claimerAddress Address of the claimer.
* @param _claimsEarnedAmount Amount of WETH claimer has earned to date.
* @param _claimNotarySignature Signature of claimNotary endorsing above.
*/
function claim(
address _claimerAddress,
uint256 _claimsEarnedAmount,
bytes memory _claimNotarySignature
)
external
{
settleClaim(
_claimerAddress,
_claimsEarnedAmount,
_claimNotarySignature,
false
);
}
/**
* @notice Claim any WETH owed to the provided address, as ETH.
*
* @param _claimerAddress Address of the claimer.
* @param _claimsEarnedAmount Amount of WETH claimer has earned to date.
* @param _claimNotarySignature Signature of claimNotary endorsing above.
*/
function claimAndUnwrap(
address _claimerAddress,
uint256 _claimsEarnedAmount,
bytes memory _claimNotarySignature
)
external
{
settleClaim(
_claimerAddress,
_claimsEarnedAmount,
_claimNotarySignature,
true
);
}
/**
* @notice Settle a claim of WETH or ETH.
*
* @param _claimerAddress Address of the claimer.
* @param _claimsEarnedAmount Amount of WETH claimer has earned to date.
* @param _claimNotarySignature Signature of claimNotary endorsing above.
*/
function settleClaim(
address _claimerAddress,
uint256 _claimsEarnedAmount,
bytes memory _claimNotarySignature,
bool unwrap
)
internal
{
/* Validate that there is something to claim at all. */
require(_claimsEarnedAmount > claimedAmount[_claimerAddress], "Invalid claim: there is nothing for the claimer to claim.");
/* Recover signature signer and validate */
address recoveredClaimNotaryAddress = ECDSA.recover(
getClaimCommitmentHash(_claimerAddress, _claimsEarnedAmount),
_claimNotarySignature
);
require(recoveredClaimNotaryAddress == claimNotaryAddress, "Invalid claim: claimNotaryAddress is not the signer of claimNotarySignature.");
/* Compute and validate the amount to be claimed */
uint256 claimAmount = _claimsEarnedAmount - claimedAmount[_claimerAddress];
require(claimAmount <= totalClaimableAmount, "Invalid claim: provided claimAmount cannot exceed totalClaimableAmount.");
/* Settle the claim on-chain. */
claimedAmount[_claimerAddress] = _claimsEarnedAmount;
totalClaimableAmount -= claimAmount;
/* Transfer the ETH or WETH to the claimer. */
if (unwrap) {
IWETH(address(WETH)).withdraw(claimAmount);
(bool sent,) = _claimerAddress.call{value: claimAmount}("");
require(sent, "Claim error: Failed to send ETH.");
} else {
WETH.safeTransfer(_claimerAddress, claimAmount);
}
/* Emit event */
emit Claimed(_claimerAddress, claimAmount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
{
"compilationTarget": {
"contracts/PaymentChannels.sol": "PaymentChannels"
},
"evmVersion": "london",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_stakeNotaryAddress","type":"address"},{"internalType":"address","name":"_claimNotaryAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"}],"name":"AddedOperator","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"AddedToTotalClaimableAmount","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_claimerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"}],"name":"RemovedOperator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_oldClaimNotaryAddress","type":"address"},{"indexed":true,"internalType":"address","name":"_newClaimNotaryAddress","type":"address"}],"name":"SetClaimNotaryAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_oldStakeNotaryAddress","type":"address"},{"indexed":true,"internalType":"address","name":"_newStakeNotaryAddress","type":"address"}],"name":"SetStakeNotaryAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"SetUnrecoverable","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_totalNewStakeRefundedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_totalNewStakeSpentAmount","type":"uint256"}],"name":"SettledStakeCommitments","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_stakerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_stakerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_timelockedUnstakeTimestamp","type":"uint256"}],"name":"StartedTimelockedUnstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_stakerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Unstaked","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INSTANT_UNSTAKE_COMMITMENT_DATA","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"addOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"addToTotalClaimableAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_claimerAddress","type":"address"},{"internalType":"uint256","name":"_claimsEarnedAmount","type":"uint256"},{"internalType":"bytes","name":"_claimNotarySignature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_claimerAddress","type":"address"},{"internalType":"uint256","name":"_claimsEarnedAmount","type":"uint256"},{"internalType":"bytes","name":"_claimNotarySignature","type":"bytes"}],"name":"claimAndUnwrap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimNotaryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"executeTimelockedUnstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_claimerAddress","type":"address"},{"internalType":"uint256","name":"_claimsEarnedAmount","type":"uint256"}],"name":"getClaimCommitmentHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"getStakeChannelState","outputs":[{"internalType":"uint256","name":"_stakedAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"internalType":"uint256","name":"_timelockedUnstakeTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"},{"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"getStakeCommitmentHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"getTimelockedUnstakeTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"},{"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"}],"name":"getTimelockedUnstakeTimestampKey","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"isOperator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newClaimNotaryAddress","type":"address"}],"name":"setClaimNotaryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newStakeNotaryAddress","type":"address"}],"name":"setStakeNotaryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"setTokenUnrecoverable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"stakerSignature","type":"bytes"},{"internalType":"bytes","name":"stakeNotarySignature","type":"bytes"}],"internalType":"struct PaymentChannels.StakeCommitment[]","name":"_commitments","type":"tuple[]"}],"name":"settleStakeCommitments","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakeChannelNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakeCommitmentNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakeNotaryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakeSpentAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"stakerSignature","type":"bytes"},{"internalType":"bytes","name":"stakeNotarySignature","type":"bytes"}],"internalType":"struct PaymentChannels.StakeCommitment","name":"_commitment","type":"tuple"}],"name":"startTimelockedUnstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"timelockedUnstakeTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalClaimableAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"stakerSignature","type":"bytes"},{"internalType":"bytes","name":"stakeNotarySignature","type":"bytes"}],"internalType":"struct PaymentChannels.StakeCommitment","name":"_commitment","type":"tuple"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]