账户
0xaf...f6c1
0xAf...F6c1

0xAf...F6c1

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.9+commit.e5eed63a
语言
Solidity
合同源代码
文件 1 的 19:AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
合同源代码
文件 2 的 19:AccessControlEnumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)

pragma solidity ^0.8.0;

import "./IAccessControlEnumerable.sol";
import "./AccessControl.sol";
import "../utils/structs/EnumerableSet.sol";

/**
 * @dev Extension of {AccessControl} that allows enumerating the members of each role.
 */
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
    using EnumerableSet for EnumerableSet.AddressSet;

    mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
        return _roleMembers[role].at(index);
    }

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
        return _roleMembers[role].length();
    }

    /**
     * @dev Overload {_grantRole} to track enumerable memberships
     */
    function _grantRole(bytes32 role, address account) internal virtual override {
        super._grantRole(role, account);
        _roleMembers[role].add(account);
    }

    /**
     * @dev Overload {_revokeRole} to track enumerable memberships
     */
    function _revokeRole(bytes32 role, address account) internal virtual override {
        super._revokeRole(role, account);
        _roleMembers[role].remove(account);
    }
}
合同源代码
文件 3 的 19:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
合同源代码
文件 4 的 19:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 5 的 19:ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}
合同源代码
文件 6 的 19:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 7 的 19:EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}
合同源代码
文件 8 的 19:IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
合同源代码
文件 9 的 19:IAccessControlEnumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";

/**
 * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
 */
interface IAccessControlEnumerable is IAccessControl {
    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
合同源代码
文件 10 的 19:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 11 的 19:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
合同源代码
文件 12 的 19:IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
合同源代码
文件 13 的 19:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 14 的 19:OperatorRecoverable.sol
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity 0.8.9;
/*
 *@#+:-*==   .:. :     =#*=.  ..    :=**-    :+%@@@@@#*+-..........        .-.-@@
 *%%*.. +*:    =%.--     :+***+=++**=.    .+%@@@@@*-            . . .     .  -+= 
 *         -==+++. :#:        ..       .=#@@@@@*-   .:=*#%@@@@%#*=.  ...:::::    
 *     .:-======+=--%@*.             .*@@@@@@+   .=#@@@@@@##*#%@@@@@*-           
 *-:::-===-::------+#@@@*.         :*@@@@@@=   :*@@@%*==------=--+@@@@@#=:    .-=
 *=++==:::      .:=+=:.-=. .-**+++#**#@@@+   -#@@%=-::==       :*+--*@@@@@@@@@@@@
 *.....-=*+***+-.   .+#*-    +@@@@@@@@@+.  -%@@%-::. .-     .::-@@@%- -#@@@@@@@@@
 *   :*=@@@@@@@@@@#=.  -*@%#%@@@@@@@@*.  :#@@%-::    :=    =*%@@@@@@@%++*+*%@@@@@
 * .+*%@#+-:-=+*##*#@#=.  -*%@@@@@#=.  -#@@%-::       -:       :+@@@@@@@@*:  ..  
 *@@@%=         .-. :*@@#=.   ...   .=%@@#-:-      :-=++#####+=:  -#@@@@@@@@%*+++
 *@*:       :-=+::..   -#@@%+==--=+#@@%=.:+*=  :=*%@@@@%@@@@@@@@@*- .+%@@@@ SMG @
 *.     .+%@@=%%%##=....  :+*%%@@%#+-. =%@@@@@@%@@@@@@@@@@@%%%%@@@@@#=:-+%@@@@@@@
 */
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./OperatorRole.sol";

/**
 * @title OperatorRecoverable
 * @notice Copyright (c) 2023 Special Mechanisms Group
 *
 * @author SMG <dev@mechanism.org>
 *
 * @dev The OperatorRecoverable contract is designed to allow a contract's 
 *      operator to recover tokens which were accidentally transferred to
 *      it, but which the contract does not otherwise support. This prevents
 *      users having their tokens "bricked", and also allows the operator to
 *      clean out any spurious tokens that may have been transferred to it
 *      on purpose.
 */
abstract contract OperatorRecoverable is OperatorRole {
    using SafeERC20 for IERC20;

    /**
     * @notice Maps token addresses to whether they are unrecoverable.
     */ 
    mapping(address => bool) private isTokenUnrecoverable;

    event SetUnrecoverable(address indexed token);
    event Recovered(address indexed token, address indexed operator);

    /**
     * @notice Marks a token address as unrecoverable by the operator. 
     *
     * @dev Only the operator may call this function. 
     * @dev Once a token is marked as unrecoverable there is no way for
     *      anyone, operator included, to mark it as recoverable again. 
     *
     * @param _token Address of the token that will be unrecoverable.
     */
    function setTokenUnrecoverable(
        address _token
    ) 
        public 
        onlyOperator 
    {
        isTokenUnrecoverable[_token] = true;
        emit SetUnrecoverable(_token);
    }

    /**
     * @notice Recovers recoverable tokens.
     *
     * @dev Only the operator may call this function.
     * @dev The purpose of this function is to allow the operator to assist 
     *      users who accidentally transferred the wrong kind of tokens to 
     *      the smart contract.
     * @dev If the token being recovered is ETH (which is not an ERC20 and
     *      hence does not have a token address), the caller should provide 
     *      `0x0` as the value of `_token`.
     *
     * @param _token Address of the token that the operator will recover. 
     */
    function recoverToken(
        address _token
    ) 
        external 
        onlyOperator 
    {
        require(
            !isTokenUnrecoverable[_token],
            "OperatorRecoverable: cannot recover, token marked as unrecoverable."
        );

        if (_token == address(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE)) {
            /* ETH */   
            (bool success,) = msg.sender.call{ value: address(this).balance }("");
            require(success, "OperatorRecoverable: ETH transfer failed.");
        } else {
            /* ERC20 */   
            IERC20(_token).safeTransfer(
                msg.sender,
                IERC20(_token).balanceOf(address(this))
            );
        }

        emit Recovered(_token, msg.sender);
    }
}
合同源代码
文件 15 的 19:OperatorRole.sol
// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity 0.8.9;
/*
 *@#+:-*==   .:. :     =#*=.  ..    :=**-    :+%@@@@@#*+-..........        .-.-@@
 *%%*.. +*:    =%.--     :+***+=++**=.    .+%@@@@@*-            . . .     .  -+= 
 *         -==+++. :#:        ..       .=#@@@@@*-   .:=*#%@@@@%#*=.  ...:::::    
 *     .:-======+=--%@*.             .*@@@@@@+   .=#@@@@@@##*#%@@@@@*-           
 *-:::-===-::------+#@@@*.         :*@@@@@@=   :*@@@%*==------=--+@@@@@#=:    .-=
 *=++==:::      .:=+=:.-=. .-**+++#**#@@@+   -#@@%=-::==       :*+--*@@@@@@@@@@@@
 *.....-=*+***+-.   .+#*-    +@@@@@@@@@+.  -%@@%-::. .-     .::-@@@%- -#@@@@@@@@@
 *   :*=@@@@@@@@@@#=.  -*@%#%@@@@@@@@*.  :#@@%-::    :=    =*%@@@@@@@%++*+*%@@@@@
 * .+*%@#+-:-=+*##*#@#=.  -*%@@@@@#=.  -#@@%-::       -:       :+@@@@@@@@*:  ..  
 *@@@%=         .-. :*@@#=.   ...   .=%@@#-:-      :-=++#####+=:  -#@@@@@@@@%*+++
 *@*:       :-=+::..   -#@@%+==--=+#@@%=.:+*=  :=*%@@@@%@@@@@@@@@*- .+%@@@@ SMG @
 *.     .+%@@=%%%##=....  :+*%%@@%#+-. =%@@@@@@%@@@@@@@@@@@%%%%@@@@@#=:-+%@@@@@@@
 */
import "@openzeppelin/contracts/access/AccessControlEnumerable.sol";

/**
 * @title OperatorRole 
 * @notice Copyright (c) 2023 Special Mechanisms Group
 *
 * @author SMG <dev@mechanism.org>
 *
 * @dev The OperatorRole contract defines a role called OPERATOR_ROLE which can 
 *      be assigned to certain addresses, and which can be used to control 
 *      access to certain functions on the smart contract. In addition, this
 *      contract sets up the DEFAULT_ADMIN_ROLE.
 */
abstract contract OperatorRole is AccessControlEnumerable {
    bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");

    event AddedOperator(address indexed _address);
    event RemovedOperator(address indexed _address);

    /**
     * @notice Constructor
     *
     * @dev The deployer will be set as the first address with the roles
     *      DEFAULT_ADMIN_ROLE and OPERATOR_ROLE. DEFAULT_ADMIN_ROLE is set 
     *      as the administrator of OPERATOR_ROLE, which means that only a 
     *      caller with the DEFAULT_ADMIN_ROLE can call the `grantRole` or 
     *      `renounceRole` functions for OPERATOR_ROLE. 
     */
    constructor() 
    {
        _grantRole(DEFAULT_ADMIN_ROLE, _msgSender());
        _grantRole(OPERATOR_ROLE, _msgSender());
    }

    /**
     * @notice Allows only the Operator role to call certain functions.
     */
    modifier onlyOperator() 
    {
        require(isOperator(_msgSender()), "OperatorRole: caller does not have the Operator role.");
        _;
    }

    /**
     * @notice Checks whether an address has been granted OPERATOR_ROLE.
     * 
     * @param _address Address to check.
     * @return bool 'true' if the address has the role, otherwise 'false'. 
     */
    function isOperator(
        address _address
    ) 
        public 
        view 
        returns (bool) 
    {
        return hasRole(OPERATOR_ROLE, _address);
    }

    /**
     * @notice Give an address OPERATOR_ROLE.
     *
     * @dev Caller must have DEFAULT_ADMIN_ROLE.
     * 
     * @param _address Address to be granted OPERATOR_ROLE.
     */
    function addOperator(
        address _address
    ) 
        public 
    {
        _addOperator(_address);
    }

    /**
     * @notice Remove OPERATOR_ROLE from msg.sender.
     *
     * @dev Caller must have OPERATOR_ROLE.
     */
    function renounceOperator() 
        public 
        virtual 
    {
        _removeOperator(msg.sender);
    }

    /**
     * @notice Add OPERATOR_ROLE to an address.
     *
     * @dev Caller must have DEFAULT_ADMIN_ROLE.
     * 
     * @param _address Address to have OPERATOR_ROLE granted.
     */
    function _addOperator(
        address _address
    ) 
        internal 
    {
        grantRole(OPERATOR_ROLE, _address);
        emit AddedOperator(_address);
    }

    /**
     * @notice Remove OPERATOR_ROLE from an address.
     *
     * @dev Caller must have DEFAULT_ADMIN_ROLE.
     * 
     * @param _address Address to have OPERATOR_ROLE renounced.
     */
    function _removeOperator(
        address _address
    ) 
        internal 
    {
        renounceRole(OPERATOR_ROLE, _address);
        emit RemovedOperator(_address);
    }

    /**
     * @dev Overload {AccessControlEnumerable-_revokeRole} to ensure at least one operator/admin remains
     */
    function _revokeRole(bytes32 role, address account) internal virtual override {
        super._revokeRole(role, account);
        uint256 roleMemberCount = getRoleMemberCount(role);
        require (roleMemberCount > 0, "OperatorRole: contract must have at least one operator");
    }

    /**
     * @dev Overload {AccessControl-_renounceRole} to ensure at least one operator/admin remains
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }
}
合同源代码
文件 16 的 19:PaymentChannels.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.9;
/*
 *@#+:-*==   .:. :     =#*=.  ..    :=**-    :+%@@@@@#*+-..........        .-.-@@
 *%%*.. +*:    =%.--     :+***+=++**=.    .+%@@@@@*-            . . .     .  -+= 
 *         -==+++. :#:        ..       .=#@@@@@*-   .:=*#%@@@@%#*=.  ...:::::    
 *     .:-======+=--%@*.             .*@@@@@@+   .=#@@@@@@##*#%@@@@@*-           
 *-:::-===-::------+#@@@*.         :*@@@@@@=   :*@@@%*==------=--+@@@@@#=:    .-=
 *=++==:::      .:=+=:.-=. .-**+++#**#@@@+   -#@@%=-::==       :*+--*@@@@@@@@@@@@
 *.....-=*+***+-.   .+#*-    +@@@@@@@@@+.  -%@@%-::. .-     .::-@@@%- -#@@@@@@@@@
 *   :*=@@@@@@@@@@#=.  -*@%#%@@@@@@@@*.  :#@@%-::    :=    =*%@@@@@@@%++*+*%@@@@@
 * .+*%@#+-:-=+*##*#@#=.  -*%@@@@@#=.  -#@@%-::       -:       :+@@@@@@@@*:  ..  
 *@@@%=         .-. :*@@#=.   ...   .=%@@#-:-      :-=++#####+=:  -#@@@@@@@@%*+++
 *@*:       :-=+::..   -#@@%+==--=+#@@%=.:+*=  :=*%@@@@%@@@@@@@@@*- .+%@@@@ SMG @
 *.     .+%@@=%%%##=....  :+*%%@@%#+-. =%@@@@@@%@@@@@@@@@@@%%%%@@@@@#=:-+%@@@@@@@
 */
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "./OperatorRecoverable.sol";

interface IWETH {
    function withdraw(uint wad) external;
}

/**
 * @title PaymentChannels 
 * @notice Copyright (c) 2023 Special Mechanisms Group
 *
 * @author SMG <dev@mechanism.org>
 *
 * @notice The PaymentChannels contract implements the on-chain portion of a
 *         payment channel system. 
 *
 *         A payment channel allows for two parties to conduct a series of
 *         transactions of the main blockchain, then record the final result
 *         onto the main blockchain in one transaction.
 *
 *         Their efficiency makes them ideally suited for high-performance
 *         micropayments.
 *
 *         A payment channel is created by locking funds in a smart contract,
 *         then exchanging of-chain commitments with the channel's counterparty.
 *         The channel can be "settled" at any time by providing a more recent
 *         commitment, and "closed" when both parties agree on the final state.
 *
 *         Closing a channel is done either by providing a special commitment 
 *         that both parties agree is the last, or by providing a commitment 
 *         and waiting for a challenge period where the counterparty is free to 
 *         provide a more recent commitment if one exists.
 */
contract PaymentChannels is OperatorRecoverable {
    using SafeERC20 for IERC20;

    /*//////////////////////////////////////////////////////////////
                               CONSTANTS 
    //////////////////////////////////////////////////////////////*/

    IERC20 constant WETH = IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
    bytes constant public INSTANT_UNSTAKE_COMMITMENT_DATA = bytes("INSTANT");

    // EIP-712 constants
    string private constant CONTRACT_NAME = "PaymentChannels";
    string private constant CONTRACT_VERSION = "1.0";
    bytes32 private constant TYPEHASH_DOMAIN = keccak256(
        "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
    );
    bytes32 private constant TYPEHASH_STAKE_COMMITMENT = keccak256(
        "StakeCommitment(address stakerAddress,uint256 stakeSpentAmount,uint256 stakeCommitmentNonce,uint256 stakeChannelNonce,bytes data)"
    );
    bytes32 private constant TYPEHASH_CLAIM_COMMITMENT = keccak256(
        "ClaimCommitment(address claimerAddress,uint256 claimsEarnedAmount)"
    );
    bytes32 private immutable DOMAIN_SEPARATOR;

    /*//////////////////////////////////////////////////////////////
                               ADDRESSES
    //////////////////////////////////////////////////////////////*/

    /** 
     * @notice Address of the stakeNotary 
     * @dev The stakeNotary is an Ethereum account which co-signs commitments 
     *      made by the stakerAddress on the stake payment channels. 
     */
    address public stakeNotaryAddress;

    /**
     * @notice Address of the claimNotary
     * @dev The claimNotary is an Ethereum account which co-signs commitments
     *      made by the claimerAddress on the claim payment channels. 
     */
    address public claimNotaryAddress;

    /*//////////////////////////////////////////////////////////////
                     PAYMENT CHANNEL STATE (STAKE)
    //////////////////////////////////////////////////////////////*/
    
    /** 
     * @notice Amount of WETH staked by a stakerAddress. 
     *
     * @dev This value is only changed after calling the functions `stake`, 
     *      `unstake`, or `safeUnstake`, the latter who of which reset its
     *      value to 0.
     */
    mapping (address => uint256) public stakedAmount;

    /**
     * @notice Nonce used to order StakeCommitments.
     *
     * @dev This nonce increments each time a StakeCommitment is made on the
     *      payment channel, but will only increment on this contract when
     *      those StakeCommitments are brought on-chain using the functions
     *      `settleStakeCommitments`, `unstake`, or `startTimelockedUnstake`. 
     *      Its value is reset to 0 when the payment channel is closed.
     */
    mapping (address => uint256) public stakeCommitmentNonce;

    /** 
     * @notice Amount of WETH spent since the payment channel was opened.
     *
     * @dev Cannot exceed `stakedAmount`. Resets to 0 when the payment channel
     *      is closed.
     */
    mapping (address => uint256) public stakeSpentAmount;

    /** 
     * @notice Nonce used to order each time the payment channel is opened. 
     * 
     * @dev This nonce increments each time the payment channel is closed,
     *      so that if the same address opens a new payment channel after
     *      having closed one, it will be unique. This prevents certain
     *      channel re-use attacks.
     */
    mapping (address => uint256) public stakeChannelNonce;

    /** 
     * @notice Timestamp used to measure the timelock for unstaking.
     *
     * @dev When this value is non-zero, it means the payment channel is in
     *      its timelocked unstaking period, limiting certain operations.
     * @dev Unlike the other mappings, this one is indexed by a hash of a 
     *      StakeCommitment rather than an address. This is to prevent the need
     *      for another write to zero out the timestamp each time a channel is
     *      closed. By using a StakeCommitment hash instead (which is unique 
     *      due to the `stakeCommitmentNonce` and `stakeChannelNonce`), we 
     *      avoid the need for that additional write, saving gas.
     */
    mapping (bytes32 => uint256) public timelockedUnstakeTimestamp;

    /*//////////////////////////////////////////////////////////////
                    PAYMENT CHANNEL STATE (CLAIMS)
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Amount of WETH each claimerAddress has claimed.
     * 
     * @dev Note that this value never decreases and persists for the lifetime 
     *      of the claimerAddress.
     */
    mapping (address => uint256) public claimedAmount;

    /**
     * @notice Total amount of claimable WETH.
     *
     * @dev Updated when the functions `adjustTotalClaimableAmount`, 
     *      `addToTotalClaimableAmount` or `settleClaim` are called.
     */
    uint256 public totalClaimableAmount;

    /*//////////////////////////////////////////////////////////////
                                EVENTS 
    //////////////////////////////////////////////////////////////*/

    event Staked(address indexed _stakerAddress, uint256 _stakeChannelNonce, uint256 _amount);
    event Claimed(address indexed _claimerAddress, uint256 _amount);
    event SetStakeNotaryAddress(address indexed _oldStakeNotaryAddress, address indexed _newStakeNotaryAddress);
    event SetClaimNotaryAddress(address indexed _oldClaimNotaryAddress, address indexed _newClaimNotaryAddress);
    event Unstaked(address indexed _stakerAddress, uint256 _stakeChannelNonce, uint256 _amount);
    event StartedTimelockedUnstake(
        address indexed _stakerAddress, 
        uint256 _stakeSpentAmount, 
        uint256 _stakeCommitmentNonce, 
        uint256 _stakeChannelNonce, 
        uint256 _timelockedUnstakeTimestamp);
    event AddedToTotalClaimableAmount(uint256 _amount);
    event SettledStakeCommitments(uint256 _totalNewStakeRefundedAmount, uint256 _totalNewStakeSpentAmount);

    /*//////////////////////////////////////////////////////////////
                            DATA STRUCTURES 
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice A commitment on the stake payment channel.
     *
     * @dev The data in the StakeCommitment is how we represent a distinct
     *      state transition on the payment channel, such as a "spend," a
     *      "refund," or an "unstake". This data is periodically written
     *      on-chain using `settleStakeCommitments`, or when calling `unstake`
     *      or `startTimelockedUnstake` to begin the process of closing a 
     *      payment channel.
     */
    struct StakeCommitment {
        /** 
         * @dev Address of the owner of the stake and the payment channel 
         */
        address stakerAddress;
        /** 
         * @dev Amount of WETH that the owner has spent since opening the 
         *      payment channel. 
         */
        uint256 stakeSpentAmount;
        /**
         * @dev The nonce of the commitment. 
         */
        uint256 stakeCommitmentNonce;
        /**
         * @dev The nonce of the channel.
         */
        uint256 stakeChannelNonce;
        /**
         * @dev Reserved for off-chain use. Typically holds the hash of the
         *      previous commitment in a chain to ensure that the state remains
         *      consistent. However it is also used in `unstake` to signal a
         *      special StakeCommitment.
         */
        bytes data;
        /**
         * @dev The signature of the staker on the output of the function
         *      `getStakeCommitmentHash` or a locally-computed equivalent.
         */
        bytes stakerSignature;
        /**
         * @dev The signature of the stakeNotary on the output of the function
         *      `getStakeCommitmentHash` or a locally-computed equivalent.
         */
        bytes stakeNotarySignature;
    }

    /*//////////////////////////////////////////////////////////////
                          UTILITY METHODS 
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Fetch the most recent settled state of a payment channel.
     *
     * @dev Remember that the actual most recent state of the payment channel
     *      may be running ahead of the one on-chain, if there are new 
     *      off-chain StakeCommitments that have yet to be settled. 
     *
     * @param _stakerAddress The staker address.
     * @return _stakedAmount The amount of WETH staked.
     * @return _stakeCommitmentNonce The stake commitment nonce.
     * @return _stakeSpentAmount The amount of WETH the staker has spent. 
     * @return _stakeChannelNonce The stake channel nonce.
     * @return _timelockedUnstakeTimestamp The timestamp when startTimelockedUnstake was called. 
     */
    function getStakeChannelState(
        address _stakerAddress
    ) 
        external 
        view 
        returns (
            uint256 _stakedAmount, 
            uint256 _stakeCommitmentNonce, 
            uint256 _stakeSpentAmount, 
            uint256 _stakeChannelNonce, 
            uint256 _timelockedUnstakeTimestamp
        ) 
    {
        return (
            stakedAmount[_stakerAddress], 
            stakeCommitmentNonce[_stakerAddress], 
            stakeSpentAmount[_stakerAddress], 
            stakeChannelNonce[_stakerAddress], 
            getTimelockedUnstakeTimestamp(_stakerAddress));
    }

    /** 
     * @notice Compute the commitment hash used for stake signatures.
     *
     * @dev Convenience function that can be used by a staker or stakeNotary 
     *      to generate the message they will sign to create a valid 
     *      stakerSignature or stakeNotarySignature.
     *
     * @param _stakerAddress A staker address.
     * @param _stakeSpentAmount The amount of WETH the staker has spent. 
     * @param _stakeCommitmentNonce The stake commitment nonce.
     * @param _stakeChannelNonce The stake channel nonce.
     * @return bytes32 Keccak256 hash of the given StakeCommitment properties.
     */
    function getStakeCommitmentHash(
        address _stakerAddress, 
        uint256 _stakeSpentAmount, 
        uint256 _stakeCommitmentNonce, 
        uint256 _stakeChannelNonce, 
        bytes memory _data
    ) 
        public 
        view 
        returns (bytes32) 
    {
        return keccak256(
            abi.encodePacked(
                "\x19\x01",
                DOMAIN_SEPARATOR,
                keccak256(
                    abi.encode(
                        TYPEHASH_STAKE_COMMITMENT,
                        _stakerAddress, 
                        _stakeSpentAmount, 
                        _stakeCommitmentNonce, 
                        _stakeChannelNonce, 
                        keccak256(abi.encodePacked(_data))
                    )
                )
            )
        );
    }

    /** 
     * @notice Compute the commitment hash used for stake signatures.
     *
     * @dev Convenience function that can be used by a staker or stakeNotary 
     *      to generate the message they will sign to create a valid 
     *      stakerSignature or stakeNotarySignature.
     *
     * @param _commitment A StakeCommitment.
     * @return bytes32 Keccak256 hash of the given StakeCommitment properties.
     */
    function getStakeCommitmentHash(
        StakeCommitment memory _commitment
    ) 
        internal 
        view 
        returns (bytes32) 
    {
        return getStakeCommitmentHash(
            _commitment.stakerAddress, 
            _commitment.stakeSpentAmount, 
            _commitment.stakeCommitmentNonce, 
            _commitment.stakeChannelNonce, 
            _commitment.data);
    }

    /**
     * @notice Compute the commitment hash used for claim signatures.
     *
     * @dev Convenience function that can be used by a claimer or claimNotary
     *      to generate the message they will sign to create a valid 
     *      claimerSignature or claimNotarySignature.
     *
     * @param _claimerAddress Address of the claimer.
     * @param _claimsEarnedAmount Amount of WETH earned to date by the claimer.
     * @return bytes32 Keccak256 hash of the given claim properties.
     */
    function getClaimCommitmentHash(
        address _claimerAddress, 
        uint256 _claimsEarnedAmount
    ) 
        public 
        view 
        returns (bytes32) 
    {
        return keccak256(
            abi.encodePacked(
                "\x19\x01",
                DOMAIN_SEPARATOR,
                keccak256(
                    abi.encode(
                        TYPEHASH_CLAIM_COMMITMENT,
                        _claimerAddress, 
                        _claimsEarnedAmount
                    )
                )
            )
        );
    }

    /** 
     * @notice Get the key to look up the timelocked unstake timestamp. 
     *
     * @dev Timestamps are stored by hashing the data from the StakeCommitment
     *      a caller provides to startTimelockedUnstake. Because this hash will 
     *      be unique for unique StakeCommitments, we never need to zero out 
     *      timestamp, saving gas.
     * 
     * @param _stakerAddress Address of the staker.
     * @param _stakeSpentAmount The amount of WETH the staker has spent.
     * @param _stakeCommitmentNonce The stake commitment nonce.
     * @param _stakeChannelNonce The stake channel nonce.
     * @return bytes32 Index into `timelockedUnstakeTimestamp` mapping.
     */
    function getTimelockedUnstakeTimestampKey(
        address _stakerAddress, 
        uint256 _stakeSpentAmount, 
        uint256 _stakeCommitmentNonce, 
        uint256 _stakeChannelNonce
    ) 
        public 
        pure 
        returns (bytes32) 
    {
        return keccak256(abi.encode(_stakerAddress, _stakeSpentAmount, _stakeCommitmentNonce, _stakeChannelNonce));
    }

    /** 
     * @notice Get the timelocked unstake timestamp for a payment channel. 
     * 
     * @dev When the return value is non-zero, it means the associated payment
     *      channel is in its timelocked unstake mode, limiting certain
     *      functionality.
     *
     * @param _stakerAddress The staker address that owns the payment channel.
     * @return uint256 The timestamp when startTimelockedUnstake was called. 
     */
    function getTimelockedUnstakeTimestamp(
        address _stakerAddress
    ) 
        public 
        view 
        returns (uint256) 
    {
        return timelockedUnstakeTimestamp[
            getTimelockedUnstakeTimestampKey(
                _stakerAddress, 
                stakeSpentAmount[_stakerAddress], 
                stakeCommitmentNonce[_stakerAddress], 
                stakeChannelNonce[_stakerAddress])];
    }

    /*//////////////////////////////////////////////////////////////
                            CONSTRUCTOR  
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice constructor
     *
     * @param _stakeNotaryAddress Initial stakeNotaryAddress
     * @param _claimNotaryAddress Initial claimNotaryAddress
     */
    constructor(address _stakeNotaryAddress, address _claimNotaryAddress) {
        /* Set initial stakeNotary and claimNotary addresses. */
        stakeNotaryAddress = _stakeNotaryAddress;
        claimNotaryAddress = _claimNotaryAddress;

        /* 
         * We want the smart contract operator to have the ability to recover
         * non-WETH ERC20 tokens transferred to it accidentally. The inherited 
         * OperatorRecoverable contract allows this for any ERC20, and we use 
         * `setTokenUnrecoverable` to permanently exclude WETH. 
         * For more, see `OperatorRecoverable.sol`.
         */
        setTokenUnrecoverable(address(WETH));

        /* Initialize EIP-712 Domain Separator */
        DOMAIN_SEPARATOR = keccak256(
            abi.encode(
                TYPEHASH_DOMAIN,
                keccak256(bytes(CONTRACT_NAME)),
                keccak256(bytes(CONTRACT_VERSION)),
                block.chainid,
                address(this)
            )
        );

        /* Emit events */
        emit SetStakeNotaryAddress(address(0), _stakeNotaryAddress);
        emit SetClaimNotaryAddress(address(0), _claimNotaryAddress);
    }

    fallback() external payable {}
    receive() external payable {}

    /*//////////////////////////////////////////////////////////////
                          ADDRESS MANAGEMENT 
    //////////////////////////////////////////////////////////////*/

    /** 
     * @notice Update the stakeNotaryAddress. 
     *
     * @dev Only the contract operator can call this function.
     * @dev Any unsettled commitments co-signed by the old stakeNotaryAddress 
     *      will not be able to be settled once this change is made. Therefore
     *      the caller must either ensure that these are re-signed by the new
     *      stakeNotaryAddress, or abandoned. 
     *
     * @param _newStakeNotaryAddress Address of the new stakeNotary.
     */ 
    function setStakeNotaryAddress(
        address _newStakeNotaryAddress
    ) 
        external 
        onlyOperator 
    {
        emit SetStakeNotaryAddress(stakeNotaryAddress, _newStakeNotaryAddress);
        stakeNotaryAddress = _newStakeNotaryAddress;
    }

    /** 
     * @notice Update the claimNotaryAddress. 
     *
     * @dev Only the contract operator can call this function.
     * @dev Any unsettled commitments co-signed by the old claimNotaryAddress
     *      will not be able to be settled once this change is made. Therefore
     *      the caller must either ensure that these are re-signed by the new
     *      claimNotaryAddress, or abandoned.
     *
     * @param _newClaimNotaryAddress Address of the new claimNotary.
     */
    function setClaimNotaryAddress(
        address _newClaimNotaryAddress
    )  
        external 
        onlyOperator 
    {
        emit SetClaimNotaryAddress(claimNotaryAddress, _newClaimNotaryAddress);
        claimNotaryAddress = _newClaimNotaryAddress;
    }

    /*//////////////////////////////////////////////////////////////
                              STAKE LOGIC 
    //////////////////////////////////////////////////////////////*/

    /** 
     * @notice Stake WETH for use in a payment channel. 
     *
     * @dev This opens a payment channel, if one is not yet open already,
     *      with msg.sender as the stakerAddress. Whether or not there is 
     *      already an open payment channel, this function adds stake to it.
     * @dev Cannot be called when the payment channel is in its timelocked
     *      unstake mode. 
     *
     * @param _amount Amount of WETH to stake (in wei).
     */
    function stake(
        uint256 _amount
    ) 
        external 
    {
        require(getTimelockedUnstakeTimestamp(msg.sender) == 0, "Invalid channel state: cannot stake after startTimelockedUnstake has been called.");
        stakedAmount[msg.sender] += _amount;
        WETH.safeTransferFrom(msg.sender, address(this), _amount);
        emit Staked(msg.sender, stakeChannelNonce[msg.sender], stakedAmount[msg.sender]);
    }

    /** 
     * @notice Donate claimable WETH to the contract.
     *
     * @dev In normal operation, claimable WETH accrues on settlement or 
     *      unstaking. This function can be used to create a buffer of
     *      immediaetly claimable WETH so that claimers do not need to wait
     *      for these periodic activities. It can also be used to amend any
     *      shortfalls.
     *
     * @param _amount Amount of WETH to donate (in wei).
     */
    function addToTotalClaimableAmount(
        uint256 _amount
    ) 
        external 
    {
        totalClaimableAmount += _amount;
        WETH.safeTransferFrom(msg.sender, address(this), _amount);
        emit AddedToTotalClaimableAmount(_amount);
    }

    /** 
     * @notice Adjusts staked WETH to claimable WETH and vice versa.
     *
     * @param _stakeRefundedAmount Amount of WETH no longer claimable (in wei). 
     * @param _stakeSpentAmount Amount of WETH newly claimable (in wei).
     */
    function adjustTotalClaimableAmount(
        uint256 _stakeRefundedAmount, 
        uint256 _stakeSpentAmount
    ) 
        internal 
    {
        if (_stakeSpentAmount < _stakeRefundedAmount) {
            /* Overall, stake was refunded. */
            uint256 refundAmount = _stakeRefundedAmount - _stakeSpentAmount;
            require(totalClaimableAmount >= refundAmount, "Invalid refund: refundAmount cannot exceed totalClaimableAmount.");
            totalClaimableAmount -= refundAmount;
        } else {
            /* Overall, stake was spent. */
            totalClaimableAmount += _stakeSpentAmount - _stakeRefundedAmount;
        }
    }

    /** 
     * @notice Settles off-chain commitments on-chain. 
     *
     * @dev Any address may call this function since the StakeCommitments
     *      are secured by signatures of both the staker and the stakeNotary. 
     *      In practice, the stakeNotary will likely be the caller. 
     * @dev It is sufficient to provide only the most recent unsettled 
     *      StakeCommitment for each payment channel. But this is not a
     *      requirement, and the function will behave the same if there are
     *      past commitments for the same channel also being provided.
     *
     * @param _commitments Array of StakeCommitments to be settled.
     */
    function settleStakeCommitments(
        StakeCommitment[] memory _commitments
    ) 
        external 
    {
        /* Tracks cumulative spending and refunding. */
        uint256 totalNewStakeSpentAmount = 0;
        uint256 totalNewStakeRefundedAmount = 0;

        for (uint i=0; i< _commitments.length; i++) {
            StakeCommitment memory commitment = _commitments[i];

            /* Validate commitment data*/
            require(getTimelockedUnstakeTimestamp(commitment.stakerAddress) == 0, "Invalid channel state: cannot settle new StakeCommitments after startTimelockedUnstake has been called.");
            require(commitment.stakeSpentAmount <= stakedAmount[commitment.stakerAddress], "Invalid StakeCommitment: provided stakeSpentAmount cannot exceed stakedAmount.");
            require(commitment.stakeCommitmentNonce >= stakeCommitmentNonce[commitment.stakerAddress], "Invalid StakeCommitment: provided stakeCommitmentNonce must be no older than stakeCommitmentNonce.");
            require(commitment.stakeChannelNonce == stakeChannelNonce[commitment.stakerAddress], "Invalid StakeCommitment: provided stakeChannelNonce must match stakeChannelNonce.");

            /* 
             * If a commitment in the batch has already been settled in a previous call to settleStakeCommitments,
             * skip it instead of reverting the entire batch. This is to prevent a malicious actor from DOS-ing
             * a batched call by frontrunning it with a single commitment from the batch.
             */
            if(commitment.stakeCommitmentNonce == stakeCommitmentNonce[commitment.stakerAddress]) {
                continue;
            }

            /* Validate signatures */
            address recoveredStakerAddress = ECDSA.recover(
                getStakeCommitmentHash(commitment), 
                commitment.stakerSignature
            );
            require(recoveredStakerAddress == commitment.stakerAddress, "Invalid StakeCommitment: stakerAddress does not match the signer of stakerSignature.");

            address recoveredStakeNotaryAddress =  ECDSA.recover(
                getStakeCommitmentHash(commitment), 
                commitment.stakeNotarySignature
            );
            require(recoveredStakeNotaryAddress == stakeNotaryAddress, "Invalid StakeCommitment: stakeNotaryAddress does not match the signer of stakeNotarySignature.");

            if (commitment.stakeSpentAmount < stakeSpentAmount[commitment.stakerAddress]) {
                /* Stake was refunded to the staker. */
                totalNewStakeRefundedAmount += stakeSpentAmount[commitment.stakerAddress] - commitment.stakeSpentAmount;
            } else {
                /* Stake was spent by the staker. */ 
                totalNewStakeSpentAmount += commitment.stakeSpentAmount - stakeSpentAmount[commitment.stakerAddress];
            }

            /* Update the channel state */
            stakeCommitmentNonce[commitment.stakerAddress] = commitment.stakeCommitmentNonce;
            stakeSpentAmount[commitment.stakerAddress] = commitment.stakeSpentAmount;
        }

        /* Adjust the total claimable amount all at once */
        adjustTotalClaimableAmount(totalNewStakeRefundedAmount, totalNewStakeSpentAmount);

        /* Emit event */
        emit SettledStakeCommitments(totalNewStakeRefundedAmount, totalNewStakeSpentAmount);
    }

    /** 
     * @notice Start or challenge a timelocked unstake procedure.
     * 
     * @dev The timelocked unstake procedure is a fail-safe mode that allows
     *      a staker to unstake even in the presence of a faulty stakeNotary. 
     *      Once the function is called, the associated payment channel is
     *      settled up to the provided StakeCommitment, and no further 
     *      commitments can be settled, except through this function.
     * @dev The unstaking can be completed after expiry of a 7 day timelock,
     *      by calling the `executeTimelockedUnstake` function.
     * @dev If the stakeNotary believes that the staker is being malicious 
     *      and providing an old but unsettled StakeCommitment, they can 
     *      challenge the unstake by calling this function with a more
     *      recent StakeCommitment, which also extends the timelock. The
     *      stakeNotary can challenge repeatedly, until the matter is resolved.
     * @dev A compromised stakeNotary could withhold more recent commitments
     *      from the staker and use these to indefinitely reset the timelock.
     *      In this event, the operator can call `setStakeNotaryAddress` to 
     *      change the `stakeNotaryAddress` to an uncompromised one.
     * @dev This function does not close the payment channel, but it does
     *      put it into a timelocked state where its functionality is reduced.
     *      To close the payment channel and actually unstake, the caller needs
     *      to call `executeTimelockedUnstake`.
     *
     * @param _commitment A StakeCommitment at least as recent as the last
     *                    one settled on-chain.
     */
    function startTimelockedUnstake(
        StakeCommitment memory _commitment
    ) 
        external 
    {
        /* Validate */
        if (getTimelockedUnstakeTimestamp(_commitment.stakerAddress) == 0) {
            require(msg.sender == _commitment.stakerAddress, "Invalid caller: only stakerAddress can call startTimelockedUnstake for the first time.");
        }
        require(_commitment.stakeSpentAmount <= stakedAmount[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeSpentAmount cannot exceed stakedAmount.");
        require(_commitment.stakeCommitmentNonce >= stakeCommitmentNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeCommitmentNonce must be no older than stakeCommitmentNonce.");
        require(_commitment.stakeChannelNonce == stakeChannelNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeChannelNonce must match stakeChannelNonce.");
        require(msg.sender == _commitment.stakerAddress || msg.sender == stakeNotaryAddress, "Invalid caller: only stakerAddress or stakeNotaryAddress can call startTimelockedUnstake.");
        
        /* Validate signatures */
        address recoveredStakerAddress = ECDSA.recover(
            getStakeCommitmentHash(_commitment), 
            _commitment.stakerSignature
        );
        require(recoveredStakerAddress == _commitment.stakerAddress, "Invalid StakeCommitment: stakerAddress does not match the signer of stakerSignature.");

        address recoveredStakeNotaryAddress =  ECDSA.recover(
            getStakeCommitmentHash(_commitment), 
            _commitment.stakeNotarySignature
        );
        require(recoveredStakeNotaryAddress == stakeNotaryAddress, "Invalid StakeCommitment: stakeNotaryAddress does not match the signer of stakeNotarySignature.");

        /* Settle the payment channel up to the provided StakeCommitment. */
        adjustTotalClaimableAmount(stakeSpentAmount[_commitment.stakerAddress], _commitment.stakeSpentAmount);
        stakeCommitmentNonce[_commitment.stakerAddress] = _commitment.stakeCommitmentNonce;
        stakeSpentAmount[_commitment.stakerAddress] = _commitment.stakeSpentAmount;

        /* Set the timelock */ 
        timelockedUnstakeTimestamp[
            getTimelockedUnstakeTimestampKey(
                _commitment.stakerAddress, 
                _commitment.stakeSpentAmount, 
                _commitment.stakeCommitmentNonce, 
                _commitment.stakeChannelNonce
            )] = block.timestamp + 7 days;

        /* Emit event */
        emit StartedTimelockedUnstake(
            _commitment.stakerAddress, 
            _commitment.stakeSpentAmount, 
            _commitment.stakeCommitmentNonce, 
            _commitment.stakeChannelNonce, 
            block.timestamp + 7 days);
    }

    /** 
     * @notice After timelock, unstake the stakerAddress's unspent WETH. 
     *
     * @dev When successful, this function closes the payment channel.
     * @dev Requires the `startTimelockedUnstake` function to have been last 
     *      called at least 7 days prior.
     *
     * @param _stakerAddress Address of the staker.
     */
    function executeTimelockedUnstake(
        address _stakerAddress
    ) 
        external 
    {
        /* Cache for event */
        uint256 _stakeChannelNonce = stakeChannelNonce[_stakerAddress];

        /* Validate */
        require(getTimelockedUnstakeTimestamp(_stakerAddress) > 0, "Invalid timelock: must call startTimelockedUnstake first.");
        require(block.timestamp > getTimelockedUnstakeTimestamp(_stakerAddress), "Invalid timelock: timelock has not yet expired.");
        
        /* Cache for event */
        uint256 unstakeAmount = stakedAmount[_stakerAddress] - stakeSpentAmount[_stakerAddress];
        require(unstakeAmount > 0, "Nothing to unstake");

        /* Close the payment channel */
        stakeCommitmentNonce[_stakerAddress] = 0;
        stakeSpentAmount[_stakerAddress] = 0;
        stakedAmount[_stakerAddress] = 0;
        stakeChannelNonce[_stakerAddress] += 1;

        /* Send the WETH */
        WETH.safeTransfer(_stakerAddress, unstakeAmount);

        /* Emit event */
        emit Unstaked(_stakerAddress, _stakeChannelNonce, unstakeAmount);
    }

    /** 
     * @notice Instantly unstake the stakerAddress's unspent WETH. 
     *
     * @dev The caller must provide a special StakeCommitment co-signed by
     *      the stakeNotary proving that the payment channel has been settled 
     *      and the stakeNotary has authorized the staker to unstake. This 
     *      special StakeCommitment can be requested using the off-chain API 
     *      associated with the stakeNotary. If the off-chain API is not 
     *      available for any reason, use startTimelockedUnstake instead.
     * @dev The special StakeCommitment is required in order to prevent either 
     *      a compromised stakeNotary or a malicious staker from unstaking 
     *      using an old or unsettled commitment. 
     * @dev Unstaking closes the payment channel, which means zeroing out all
     *      payment channel state associated with the `stakerAddress`, except 
     *      for `stakeChannelNonce`, which is incremented. A `stakerAddress` 
     *      which has unstaked can open a new payment channel by calling the
     *      `stake` function.
     *
     * @param _commitment A special StakeCommitment used to prove that the
     *                    stakerAddress is authorized to unstake.
     */
    function unstake(
        StakeCommitment memory _commitment
    ) 
        external 
    {
        /* Validate */
        require(msg.sender == _commitment.stakerAddress, "Invalid caller: only stakerAddress can call unstake.");
        require(_commitment.stakeSpentAmount <= stakedAmount[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeSpentAmount cannot exceed stakedAmount.");
        require(_commitment.stakeCommitmentNonce >= stakeCommitmentNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeCommitmentNonce must be no older than stakeCommitmentNonce.");
        require(_commitment.stakeChannelNonce == stakeChannelNonce[_commitment.stakerAddress], "Invalid StakeCommitment: provided stakeChannelNonce must match stakeChannelNonce.");
        require(keccak256(_commitment.data) == keccak256(INSTANT_UNSTAKE_COMMITMENT_DATA), "Invalid StakeCommitment: provided data must match INSTANT_UNSTAKE_COMMITMENT_DATA.");

        /* Validate signatures */
        address recoveredStakerAddress = ECDSA.recover(
            getStakeCommitmentHash(_commitment), 
            _commitment.stakerSignature
        );
        require(recoveredStakerAddress == _commitment.stakerAddress, "Invalid StakeCommitment: stakerAddress does not match the signer of stakerSignature.");

        address recoveredStakeNotaryAddress =  ECDSA.recover(
            getStakeCommitmentHash(_commitment), 
            _commitment.stakeNotarySignature
        );
        require(recoveredStakeNotaryAddress == stakeNotaryAddress, "Invalid StakeCommitment: stakeNotaryAddress does not match the signer of stakeNotarySignature.");
        
        /* Settle the payment channel up to the provided StakeCommitment. */
        adjustTotalClaimableAmount(stakeSpentAmount[_commitment.stakerAddress], _commitment.stakeSpentAmount);
        
        /* Cache for event */
        uint256 unstakeAmount = stakedAmount[_commitment.stakerAddress] - _commitment.stakeSpentAmount;
        require(unstakeAmount > 0, "Nothing to unstake");

        /* Close the payment channel */
        stakeCommitmentNonce[_commitment.stakerAddress] = 0;
        stakeSpentAmount[_commitment.stakerAddress] = 0;
        stakedAmount[_commitment.stakerAddress] = 0;
        stakeChannelNonce[_commitment.stakerAddress] += 1;

        /* Send the WETH */
        WETH.safeTransfer(_commitment.stakerAddress, unstakeAmount);

        /* Emit event */
        emit Unstaked(_commitment.stakerAddress, _commitment.stakeChannelNonce, unstakeAmount);
    }

    /*//////////////////////////////////////////////////////////////
                             CLAIM LOGIC 
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Claim any WETH owed to the provided address. 
     *
     * @dev Can be called by anyone, not only the claimer. This allows claims
     *      to be securely processed by a third party, saving claimers gas.
     * @dev The caller must request that the claimNotary provide both an amount
     *      of WETH that the claimerAddress has earned over its lifetime (the
     *      _claimsEarnedAmount), and a signature (_claimNotarySignature), 
     *      witnessing the fact that the claimNotary agrees with that amount. 
     * @dev The message that results in _claimNotarySignature is the output of 
     *      the `getClaimCommitmentHash` function, or a locally-computed 
     *      equivalent.
     *
     * @param _claimerAddress Address of the claimer.
     * @param _claimsEarnedAmount Amount of WETH claimer has earned to date. 
     * @param _claimNotarySignature Signature of claimNotary endorsing above.
     */
    function claim(
        address _claimerAddress,
        uint256 _claimsEarnedAmount,
        bytes memory _claimNotarySignature
    ) 
        external 
    {
        settleClaim(
            _claimerAddress,
            _claimsEarnedAmount,
            _claimNotarySignature,
            false
        );
    }

    /**
     * @notice Claim any WETH owed to the provided address, as ETH. 
     *
     * @param _claimerAddress Address of the claimer.
     * @param _claimsEarnedAmount Amount of WETH claimer has earned to date. 
     * @param _claimNotarySignature Signature of claimNotary endorsing above.
     */
    function claimAndUnwrap(
        address _claimerAddress,
        uint256 _claimsEarnedAmount,
        bytes memory _claimNotarySignature
    ) 
        external 
    {
        settleClaim(
            _claimerAddress,
            _claimsEarnedAmount,
            _claimNotarySignature,
            true
        );
    }

    /** 
     * @notice Settle a claim of WETH or ETH.
     *
     * @param _claimerAddress Address of the claimer.
     * @param _claimsEarnedAmount Amount of WETH claimer has earned to date.
     * @param _claimNotarySignature Signature of claimNotary endorsing above.
     */
    function settleClaim(
        address _claimerAddress, 
        uint256 _claimsEarnedAmount,
        bytes memory _claimNotarySignature,
        bool unwrap
    ) 
        internal 
    {
        /* Validate that there is something to claim at all. */
        require(_claimsEarnedAmount > claimedAmount[_claimerAddress], "Invalid claim: there is nothing for the claimer to claim.");

        /* Recover signature signer and validate */ 
        address recoveredClaimNotaryAddress = ECDSA.recover(
            getClaimCommitmentHash(_claimerAddress, _claimsEarnedAmount), 
            _claimNotarySignature
        );
        require(recoveredClaimNotaryAddress == claimNotaryAddress, "Invalid claim: claimNotaryAddress is not the signer of claimNotarySignature.");

        /* Compute and validate the amount to be claimed */
        uint256 claimAmount = _claimsEarnedAmount - claimedAmount[_claimerAddress];
        require(claimAmount <= totalClaimableAmount, "Invalid claim: provided claimAmount cannot exceed totalClaimableAmount.");

        /* Settle the claim on-chain. */ 
        claimedAmount[_claimerAddress] = _claimsEarnedAmount;
        totalClaimableAmount -= claimAmount;

        /* Transfer the ETH or WETH to the claimer. */
        if (unwrap) {
            IWETH(address(WETH)).withdraw(claimAmount);
            (bool sent,) = _claimerAddress.call{value: claimAmount}("");
            require(sent, "Claim error: Failed to send ETH.");

        } else {
            WETH.safeTransfer(_claimerAddress, claimAmount);
        }

        /* Emit event */
        emit Claimed(_claimerAddress, claimAmount);
    }
}
合同源代码
文件 17 的 19:SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
合同源代码
文件 18 的 19:SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
合同源代码
文件 19 的 19:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
设置
{
  "compilationTarget": {
    "contracts/PaymentChannels.sol": "PaymentChannels"
  },
  "evmVersion": "london",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"address","name":"_stakeNotaryAddress","type":"address"},{"internalType":"address","name":"_claimNotaryAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"}],"name":"AddedOperator","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"AddedToTotalClaimableAmount","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_claimerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"}],"name":"RemovedOperator","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_oldClaimNotaryAddress","type":"address"},{"indexed":true,"internalType":"address","name":"_newClaimNotaryAddress","type":"address"}],"name":"SetClaimNotaryAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_oldStakeNotaryAddress","type":"address"},{"indexed":true,"internalType":"address","name":"_newStakeNotaryAddress","type":"address"}],"name":"SetStakeNotaryAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"SetUnrecoverable","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_totalNewStakeRefundedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_totalNewStakeSpentAmount","type":"uint256"}],"name":"SettledStakeCommitments","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_stakerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_stakerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_timelockedUnstakeTimestamp","type":"uint256"}],"name":"StartedTimelockedUnstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_stakerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"Unstaked","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"INSTANT_UNSTAKE_COMMITMENT_DATA","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"addOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"addToTotalClaimableAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_claimerAddress","type":"address"},{"internalType":"uint256","name":"_claimsEarnedAmount","type":"uint256"},{"internalType":"bytes","name":"_claimNotarySignature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_claimerAddress","type":"address"},{"internalType":"uint256","name":"_claimsEarnedAmount","type":"uint256"},{"internalType":"bytes","name":"_claimNotarySignature","type":"bytes"}],"name":"claimAndUnwrap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimNotaryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"executeTimelockedUnstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_claimerAddress","type":"address"},{"internalType":"uint256","name":"_claimsEarnedAmount","type":"uint256"}],"name":"getClaimCommitmentHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"getStakeChannelState","outputs":[{"internalType":"uint256","name":"_stakedAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"internalType":"uint256","name":"_timelockedUnstakeTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"},{"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"getStakeCommitmentHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"}],"name":"getTimelockedUnstakeTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakerAddress","type":"address"},{"internalType":"uint256","name":"_stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"_stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"_stakeChannelNonce","type":"uint256"}],"name":"getTimelockedUnstakeTimestampKey","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"isOperator","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"recoverToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newClaimNotaryAddress","type":"address"}],"name":"setClaimNotaryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newStakeNotaryAddress","type":"address"}],"name":"setStakeNotaryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"setTokenUnrecoverable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"stakerSignature","type":"bytes"},{"internalType":"bytes","name":"stakeNotarySignature","type":"bytes"}],"internalType":"struct PaymentChannels.StakeCommitment[]","name":"_commitments","type":"tuple[]"}],"name":"settleStakeCommitments","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakeChannelNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakeCommitmentNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakeNotaryAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakeSpentAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"stakedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"stakerSignature","type":"bytes"},{"internalType":"bytes","name":"stakeNotarySignature","type":"bytes"}],"internalType":"struct PaymentChannels.StakeCommitment","name":"_commitment","type":"tuple"}],"name":"startTimelockedUnstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"timelockedUnstakeTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalClaimableAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeSpentAmount","type":"uint256"},{"internalType":"uint256","name":"stakeCommitmentNonce","type":"uint256"},{"internalType":"uint256","name":"stakeChannelNonce","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes","name":"stakerSignature","type":"bytes"},{"internalType":"bytes","name":"stakeNotarySignature","type":"bytes"}],"internalType":"struct PaymentChannels.StakeCommitment","name":"_commitment","type":"tuple"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]