// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";
/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}
/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
}
result = UD2x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
}
result = uint256(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
}
result = uint128(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
}
if (xInt > int64(uint64(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
}
result = uint40(uint64(xInt));
}
/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
result = SD1x18.unwrap(x);
}
/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);
/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int64 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x) / uUNIT;
}
/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
if (x > uMAX_UD60x18 / uUNIT) {
revert PRBMath_UD60x18_Convert_Overflow(x);
}
unchecked {
result = UD60x18.wrap(x * uUNIT);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
// Simplified from:
// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol
interface IERC20 {
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
interface IPresaleCurvedVesting {
//CUSTOM ERRORS
error EtherNotSent();
error PresaleEndedAfter2Weeks();
error MsgValueZero();
error TokenClaimAmountZero();
error TotalPresaleMaxDepositMet();
// error UserClaimedInitialUnlock();
// error WaitForInitialUnlockTime();
error BurnAlreadyHappened();
error WaitForCurvedVestingEnd();
error TransferFromCalledAlready();
//EVENTS EMITTED IF STORAGE IS UPDATED.
event PreSaleUserBuy(address indexed buyer, uint256 newDepositEther);
event ClaimedTokens(address indexed claimer, uint256 claimedAmount);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_UD60x18,
uMAX_WHOLE_UD60x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
unchecked {
result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint > uMAX_WHOLE_UD60x18) {
revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
}
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `UNIT - remainder`.
let delta := sub(uUNIT, remainder)
// Equivalent to `x + remainder > 0 ? delta : 0`.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xUint > uEXP_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
uint256 doubleUnitProduct = xUint * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xUint > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
}
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = (xUint << 64) / uUNIT;
// Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
result = wrap(Common.exp2(x_192x64));
}
/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `x - remainder > 0 ? remainder : 0)`.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
result := mod(x, uUNIT)
}
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
if (xUint == 0 || yUint == 0) {
return ZERO;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xyUint = xUint * yUint;
if (xyUint / xUint != yUint) {
revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
result = wrap(Common.sqrt(xyUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~196_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
default { result := uMAX_UD60x18 }
}
if (result.unwrap() == uMAX_UD60x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(xUint / uUNIT);
// This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
// n is at most 255 and UNIT is 1e18.
uint256 resultUint = n * uUNIT;
// Calculate $y = x * 2^{-n}$.
uint256 y = xUint >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultUint);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
uint256 DOUBLE_UNIT = 2e18;
for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultUint += delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
result = wrap(resultUint);
}
}
/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}
/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xUint == 0) {
return yUint == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xUint == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yUint == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yUint == uUNIT) {
return x;
}
// If x is greater than `UNIT`, use the standard formula.
if (xUint > uUNIT) {
result = exp2(mul(log2(x), y));
}
// Conversely, if x is less than `UNIT`, use the equivalent formula.
else {
UD60x18 i = wrap(uUNIT_SQUARED / xUint);
UD60x18 w = exp2(mul(log2(i), y));
result = wrap(uUNIT_SQUARED / w.unwrap());
}
}
/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
// Calculate the first iteration of the loop in advance.
uint256 xUint = x.unwrap();
uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
for (y >>= 1; y > 0; y >>= 1) {
xUint = Common.mulDiv18(xUint, xUint);
// Equivalent to `y % 2 == 1`.
if (y & 1 > 0) {
resultUint = Common.mulDiv18(resultUint, xUint);
}
}
result = wrap(resultUint);
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
unchecked {
if (xUint > uMAX_UD60x18 / uUNIT) {
revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
}
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
// In this case, the two numbers are both the square root.
result = wrap(Common.sqrt(xUint * uUNIT));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;
import { UD60x18 , convert } from "@prb/math/src/UD60x18.sol";
import { IERC20 } from "./interfaces/IERC20.sol";
import { IPresaleCurvedVesting } from "./interfaces/IPresaleCurvedVesting.sol";
contract PresaleCurvedVesting is IPresaleCurvedVesting {
// @notice TRACKING WALLETS THAT BOUGHT THE PRESALE AND BALANCES RELEASED WITH CURVED VESTING.
mapping(address => uint256) public userDepositedEthereum;
mapping(address => uint256) public userTokensClaimed;
// @notice bool variables.
bool public didTransferFromGetCalledYet;
bool public didBurnHappenYet;
// @notice uint256 variables.
// @notice Storage
uint256 public totalEthereumDeposited;
// @notice USING CONSTANT AND IMMUTABLE TYPES TO AVOID STORAGE TO SAVE GAS.
// @notice immutable
// @dev We can't call block.timestamp as a constant type at runtime. Make immutable instead.
uint256 public immutable curvedVestingStart;
// @dev Variable needs to be immutable instead of constant since it depends on block.timestamp.
uint256 public immutable curvedVestingEnd;
// @notice constant
// @dev Curved vesting duration is 7884000 seconds, which is about 3 months.
uint256 public constant CURVED_VESTING_DURATION = 7884000;
uint256 public constant TOTAL_TOKENS_FOR_PRESALE = 472500000 ether;
uint256 public constant MAX_PRESALE_ETHEREUM = 2840 ether;
// @dev Private since this can be looked up and saves gas with removing bytecode.
uint256 private constant SECONDS_IN_2_WEEKS = 1209600;
// @notice address variables.
address public constant BASE_MAINNET_TOKEN_ADDRESS = 0xA51f512a2C4D6354691a2174CF5Fe886b38C8160;
address public constant BASE_MAINNET_SAFE_GLOBAL_MULTISIGNATURE_WALLET = 0x8d33C85600eFfE5a3aFC336589E64460920Bdbe6;
// @dev calculates time states based on deployment time executed.
constructor() {
// @dev Start the curved vesting unlock 2 weeks after contract deployment
// (right after the presale ends).
curvedVestingStart = block.timestamp + SECONDS_IN_2_WEEKS;
// @dev When the curved vesting period ends and users can claim 100% of their tokens.
// Burn event can occur for tokens not bought during the presale.
curvedVestingEnd = curvedVestingStart + CURVED_VESTING_DURATION;
}
// @dev Safety function for approve and transferFrom logic for large token transfers.
// @dev This transferFrom call will only be called once. If called after, the transaction will revert as expected.
function transferTokensToContractSafely() external {
if(didTransferFromGetCalledYet) revert TransferFromCalledAlready();
didTransferFromGetCalledYet = true;
IERC20(BASE_MAINNET_TOKEN_ADDRESS).transferFrom(msg.sender, address(this) ,TOTAL_TOKENS_FOR_PRESALE);
}
// @notice buyPresale allocates tokens based on a user's total Ethereum deposit amount.
// @dev user CEI pattern for security: Check Effects Interactions
// https://docs.soliditylang.org/en/v0.6.11/security-considerations.html#use-the-checks-effects-interactions-pattern
function buyPresale() external payable {
// @dev CHECKS (REVERT LOGIC)
if(msg.value == 0) revert MsgValueZero();
if(block.timestamp >= curvedVestingStart) revert PresaleEndedAfter2Weeks();
if(totalEthereumDeposited + msg.value > MAX_PRESALE_ETHEREUM) revert TotalPresaleMaxDepositMet();
// @dev EFFECTS (INTERNAL LOGIC BEFORE EXTERNAL CALLS)
totalEthereumDeposited += msg.value;
userDepositedEthereum[msg.sender] += msg.value;
emit PreSaleUserBuy(msg.sender,msg.value);
// @dev EXTERNAL CALLS
// @dev SENDING ETHER (POSSIBLE RECURSIVE FUNCTIONS, USE CAUTION AND DO AT THE END. OTHERWISE USE WETH ERC-20).
// @dev SEND ETHER AT THE END TO AVOID FALLBACK OR RECEIVE RECURSIVE CALLS.
// @dev NOTE, SENDING ETHER WITH CALL LOGIC MOVED TO FUNCTION withdrawEthereumToSafeWallet() TO SAVE GAS.
}
// @dev Directly sends deposited Ethereum to the hardcoded Safe Wallet address.
// This logic was moved out of buyPresale to save significant user gas fees (30% gas in buyPresale) over the course of multiple buys.
function withdrawEthereumToSafeWallet() external {
uint256 totalEthereumBalance = address(this).balance;
(bool sent, ) = BASE_MAINNET_SAFE_GLOBAL_MULTISIGNATURE_WALLET.call{value: totalEthereumBalance}("");
if(sent == false) revert EtherNotSent();
}
// @dev Calculates the total user token amount based on their total deposited Ethereum
// and a ratio between the total tokens for the presale and the total Ethereum deposit target.
// @dev Numerator multiplier is used to scale values before division to avoid losing resolution.
// @param user - address for checking token allocation amounts
// @return totalUserTokens -Tokens a user will get.
function calculateUserTotalAllocation(address user) public view returns(uint256 totalUserTokens) {
return (TOTAL_TOKENS_FOR_PRESALE*userDepositedEthereum[user])/(MAX_PRESALE_ETHEREUM);
}
// @dev Functions below are modified from
// OpenZeppelin library contract VestingWallet.sol to handle multiple wallets instead of one using mapping logic:
// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/finance/VestingWallet.sol
// @notice claimTokenscurvedVesting claims tokens allocated for msg.sender based on curved vesting logic.
// @dev Original function was release(address token) from OpenZeppelin contract VestingWallet.sol.
function claimTokensCurvedVesting() external {
// @dev Save claimableAmount(msg.sender) before it decreases from effect accounting before external call interaction.
// @dev Save a function's return value in memory if called multiple
// times to save gas too to avoid redundant calculations (especially when storage is called).
uint256 tokenClaimAmount = claimableAmount(msg.sender);
if(tokenClaimAmount == 0) revert TokenClaimAmountZero();
// @dev Compound operator "+=" adds to userTokensClaimed[msg.sender],
// which subtracts from claimableAmount(msg.sender) to do effect before external call interaction.
userTokensClaimed[msg.sender] += tokenClaimAmount;
// @notice Use the saved tokenClaimAmount in memory since claimableAmount(msg.sender) has decreased.
emit ClaimedTokens(msg.sender,tokenClaimAmount);
IERC20(BASE_MAINNET_TOKEN_ADDRESS).transfer(msg.sender, tokenClaimAmount);
}
// @dev Getter for the amount of releasable `token` tokens. `token` should be the address of an {IERC20} contract.
// @param user - address for checking claimable amount with curved vesting while accounting for tokens already claimed from the same address.
// @return tokensUserCanClaim - Delta between the curved vesting and tokens already claimed by the user.
// @dev Original function name releasable(address token) from OpenZeppelin contract VestingWallet.sol.
function claimableAmount(address user) public view returns (uint256 tokensUserCanClaim) {
return _curvedVestingAmount(user) - userTokensClaimed[user];
}
// @dev Implementation of the vesting formula.
// @param user - address for checking curved vesting amount based on current time.
// @return usercurvedVestingAmount - curved vesting amount as a function of time,
// for an asset given its total historical allocation.
// @dev Original function name _vestingSchedule(uint256 totalAllocation, uint64 timestamp)
// from OpenZeppelin contract VestingWallet.sol.
function _curvedVestingAmount(address user) internal view returns (uint256 usercurvedVestingAmount) {
if (block.timestamp < curvedVestingStart) {
return 0;
} else if (block.timestamp >= curvedVestingEnd) {
return calculateUserTotalAllocation(user);
} else {
// @dev Curved equation using prb-math for sqrt(x) in:
// x^(1.5) = x*sqrt(x)
// Desmos equations graphed:
// https://www.desmos.com/calculator/olcw9hmo1k
uint256 deltaTime = (block.timestamp - curvedVestingStart);
uint256 userTotalAllocation = calculateUserTotalAllocation(user);
return curvedVestingFunction(deltaTime,userTotalAllocation);
}
}
// @dev Calculates curved vesting unlock amounts based on time and token allocations.
// @param x - Time passed in seconds between the current time and curvedVestingStart.
// @param yMax - A user's total token allocation based on their total Ethereum deposit during the presale.
// @return y - Token unlock amount based on the current x and yMax inputs.
function curvedVestingFunction(uint256 x, uint256 yMax) public pure returns (uint256 y) {
uint256 squareRootX = squareRootPrbMathUint256(x);
// // Remix IDE: 1649 gas
// uint256 SQUARE_ROOT_CONSTANT_CURVED_VESTING_DURATION_SCALED = squareRootPrbMathUint256(CURVED_VESTING_DURATION);
// // Remix IDE: 12 gas
// // @dev Result from:
// // squareRootPrbMathUint256(CURVED_VESTING_DURATION) = squareRootPrbMathUint256(7884000) = 2807846149631421668146;
uint256 SQUARE_ROOT_CONSTANT_CURVED_VESTING_DURATION_SCALED = 2807846149631421668146;
// @dev numeratorScaled = yMax * x^1.5 = yMax * x * √x = yMax * x * sqrt(x)
// We rewrite the exponential as a square root since
// Solidity does not support decimal values, so we need to scale and rewrite equations.
uint256 numeratorScaled = yMax * ( x * squareRootX);
uint256 denominatorScaled = CURVED_VESTING_DURATION * SQUARE_ROOT_CONSTANT_CURVED_VESTING_DURATION_SCALED;
// @dev exponential equation with scaled expressions simpler to read.
// Equation: ( yMax* ( x * squareRootX ) ) / ( CURVED_VESTING_DURATION*SQUARE_ROOT_CONSTANT_curved_VESTING_DURATION );
y = numeratorScaled / denominatorScaled;
return y;
}
// @dev Calculates the square root for an input uint256 value and returns the square root in uint256 form.
// @param x - Input uint256 value for the square root function.
// @return squareRootUint256 - Converted UD60x18 square root value back into uint256.
function squareRootPrbMathUint256(uint256 x) public pure returns (uint256 squareRootUint256) {
UD60x18 valueForSqrtFunc = convert(x);
UD60x18 squareRootValueWrappedScaled = valueForSqrtFunc.sqrt();
squareRootUint256 = squareRootValueWrappedScaled.unwrap();
return squareRootUint256;
}
// @notice burnTokensNotBought will burn tokens not bought in the presale after curved vesting ends
function burnTokensNotBought() external {
if(curvedVestingEnd >= block.timestamp) revert WaitForCurvedVestingEnd();
if(didBurnHappenYet) revert BurnAlreadyHappened();
didBurnHappenYet = true;
uint256 deltaEthereumTargetDeposit = MAX_PRESALE_ETHEREUM - totalEthereumDeposited;
// @dev Numerator multiplier for burn ratio with max total Ethereum deposit.
uint256 burnAmountTokensNotBought = (TOTAL_TOKENS_FOR_PRESALE*(deltaEthereumTargetDeposit))/MAX_PRESALE_ETHEREUM;
emit ClaimedTokens(address(0),burnAmountTokensNotBought);
IERC20(BASE_MAINNET_TOKEN_ADDRESS).transfer(address(0), burnAmountTokensNotBought);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
/*
██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║
██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║
╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝
██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗
██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗
╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝
*/
import "./ud60x18/Casting.sol";
import "./ud60x18/Constants.sol";
import "./ud60x18/Conversions.sol";
import "./ud60x18/Errors.sol";
import "./ud60x18/Helpers.sol";
import "./ud60x18/Math.sol";
import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD2x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD1x18 global;
{
"compilationTarget": {
"src/PresaleCurvedVesting.sol": "PresaleCurvedVesting"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@prb/math/=lib/prb-math/",
":@pythnetwork/entropy-sdk-solidity/=node_modules/@pythnetwork/entropy-sdk-solidity/",
":ds-test/=lib/solmate/lib/ds-test/src/",
":forge-std/=lib/forge-std/src/",
":prb-math/=lib/prb-math/src/",
":solmate/=lib/solmate/src/"
]
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"BurnAlreadyHappened","type":"error"},{"inputs":[],"name":"EtherNotSent","type":"error"},{"inputs":[],"name":"MsgValueZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Convert_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Sqrt_Overflow","type":"error"},{"inputs":[],"name":"PresaleEndedAfter2Weeks","type":"error"},{"inputs":[],"name":"TokenClaimAmountZero","type":"error"},{"inputs":[],"name":"TotalPresaleMaxDepositMet","type":"error"},{"inputs":[],"name":"TransferFromCalledAlready","type":"error"},{"inputs":[],"name":"WaitForCurvedVestingEnd","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"claimedAmount","type":"uint256"}],"name":"ClaimedTokens","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"newDepositEther","type":"uint256"}],"name":"PreSaleUserBuy","type":"event"},{"inputs":[],"name":"BASE_MAINNET_SAFE_GLOBAL_MULTISIGNATURE_WALLET","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BASE_MAINNET_TOKEN_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CURVED_VESTING_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_PRESALE_ETHEREUM","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TOTAL_TOKENS_FOR_PRESALE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"burnTokensNotBought","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyPresale","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"calculateUserTotalAllocation","outputs":[{"internalType":"uint256","name":"totalUserTokens","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimTokensCurvedVesting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimableAmount","outputs":[{"internalType":"uint256","name":"tokensUserCanClaim","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curvedVestingEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"yMax","type":"uint256"}],"name":"curvedVestingFunction","outputs":[{"internalType":"uint256","name":"y","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"curvedVestingStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"didBurnHappenYet","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"didTransferFromGetCalledYet","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"squareRootPrbMathUint256","outputs":[{"internalType":"uint256","name":"squareRootUint256","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"totalEthereumDeposited","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transferTokensToContractSafely","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userDepositedEthereum","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userTokensClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawEthereumToSafeWallet","outputs":[],"stateMutability":"nonpayable","type":"function"}]