账户
0x13...897A
0x13...897A

0x13...897A

$500
此合同的源代码已经过验证!
合同元数据
编译器
0.8.19+commit.7dd6d404
语言
Solidity
合同源代码
文件 1 的 23:AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}
合同源代码
文件 2 的 23:Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}
合同源代码
文件 3 的 23:Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}
合同源代码
文件 4 的 23:Counters.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}
合同源代码
文件 5 的 23:ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
合同源代码
文件 6 的 23:ERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.0;

import "./IERC721.sol";
import "./IERC721Receiver.sol";
import "./extensions/IERC721Metadata.sol";
import "../../utils/Address.sol";
import "../../utils/Context.sol";
import "../../utils/Strings.sol";
import "../../utils/introspection/ERC165.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
    using Address for address;
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to owner address
    mapping(uint256 => address) private _owners;

    // Mapping owner address to token count
    mapping(address => uint256) private _balances;

    // Mapping from token ID to approved address
    mapping(uint256 => address) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ERC721: address zero is not a valid owner");
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        address owner = _ownerOf(tokenId);
        require(owner != address(0), "ERC721: invalid token ID");
        return owner;
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireMinted(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
            _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
            "ERC721: approve caller is not token owner or approved for all"
        );

        _approve(to, tokenId);
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        _requireMinted(tokenId);

        return _tokenApprovals[tokenId];
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual override {
        //solhint-disable-next-line max-line-length
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");

        _transfer(from, to, tokenId);
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
        _safeTransfer(from, to, tokenId, data);
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     * and stop existing when they are burned (`_burn`).
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _ownerOf(tokenId) != address(0);
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
    }

    /**
     * @dev Safely mints `tokenId` and transfers it to `to`.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        require(
            _checkOnERC721Received(address(0), to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId, 1);

        // Check that tokenId was not minted by `_beforeTokenTransfer` hook
        require(!_exists(tokenId), "ERC721: token already minted");

        unchecked {
            // Will not overflow unless all 2**256 token ids are minted to the same owner.
            // Given that tokens are minted one by one, it is impossible in practice that
            // this ever happens. Might change if we allow batch minting.
            // The ERC fails to describe this case.
            _balances[to] += 1;
        }

        _owners[tokenId] = to;

        emit Transfer(address(0), to, tokenId);

        _afterTokenTransfer(address(0), to, tokenId, 1);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId);

        _beforeTokenTransfer(owner, address(0), tokenId, 1);

        // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
        owner = ERC721.ownerOf(tokenId);

        // Clear approvals
        delete _tokenApprovals[tokenId];

        unchecked {
            // Cannot overflow, as that would require more tokens to be burned/transferred
            // out than the owner initially received through minting and transferring in.
            _balances[owner] -= 1;
        }
        delete _owners[tokenId];

        emit Transfer(owner, address(0), tokenId);

        _afterTokenTransfer(owner, address(0), tokenId, 1);
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal virtual {
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId, 1);

        // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");

        // Clear approvals from the previous owner
        delete _tokenApprovals[tokenId];

        unchecked {
            // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
            // `from`'s balance is the number of token held, which is at least one before the current
            // transfer.
            // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
            // all 2**256 token ids to be minted, which in practice is impossible.
            _balances[from] -= 1;
            _balances[to] += 1;
        }
        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        _afterTokenTransfer(from, to, tokenId, 1);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits an {Approval} event.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        require(owner != operator, "ERC721: approve to caller");
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` has not been minted yet.
     */
    function _requireMinted(uint256 tokenId) internal view virtual {
        require(_exists(tokenId), "ERC721: invalid token ID");
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) private returns (bool) {
        if (to.isContract()) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    /**
     * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
     * - When `from` is zero, the tokens will be minted for `to`.
     * - When `to` is zero, ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}

    /**
     * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
     * - When `from` is zero, the tokens were minted for `to`.
     * - When `to` is zero, ``from``'s tokens were burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
     * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
     * that `ownerOf(tokenId)` is `a`.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __unsafe_increaseBalance(address account, uint256 amount) internal {
        _balances[account] += amount;
    }
}
合同源代码
文件 7 的 23:ERC721Enumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/extensions/ERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../ERC721.sol";
import "./IERC721Enumerable.sol";

/**
 * @dev This implements an optional extension of {ERC721} defined in the EIP that adds
 * enumerability of all the token ids in the contract as well as all token ids owned by each
 * account.
 */
abstract contract ERC721Enumerable is ERC721, IERC721Enumerable {
    // Mapping from owner to list of owned token IDs
    mapping(address => mapping(uint256 => uint256)) private _ownedTokens;

    // Mapping from token ID to index of the owner tokens list
    mapping(uint256 => uint256) private _ownedTokensIndex;

    // Array with all token ids, used for enumeration
    uint256[] private _allTokens;

    // Mapping from token id to position in the allTokens array
    mapping(uint256 => uint256) private _allTokensIndex;

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) {
        return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) {
        require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds");
        return _ownedTokens[owner][index];
    }

    /**
     * @dev See {IERC721Enumerable-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _allTokens.length;
    }

    /**
     * @dev See {IERC721Enumerable-tokenByIndex}.
     */
    function tokenByIndex(uint256 index) public view virtual override returns (uint256) {
        require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds");
        return _allTokens[index];
    }

    /**
     * @dev See {ERC721-_beforeTokenTransfer}.
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 firstTokenId,
        uint256 batchSize
    ) internal virtual override {
        super._beforeTokenTransfer(from, to, firstTokenId, batchSize);

        if (batchSize > 1) {
            // Will only trigger during construction. Batch transferring (minting) is not available afterwards.
            revert("ERC721Enumerable: consecutive transfers not supported");
        }

        uint256 tokenId = firstTokenId;

        if (from == address(0)) {
            _addTokenToAllTokensEnumeration(tokenId);
        } else if (from != to) {
            _removeTokenFromOwnerEnumeration(from, tokenId);
        }
        if (to == address(0)) {
            _removeTokenFromAllTokensEnumeration(tokenId);
        } else if (to != from) {
            _addTokenToOwnerEnumeration(to, tokenId);
        }
    }

    /**
     * @dev Private function to add a token to this extension's ownership-tracking data structures.
     * @param to address representing the new owner of the given token ID
     * @param tokenId uint256 ID of the token to be added to the tokens list of the given address
     */
    function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
        uint256 length = ERC721.balanceOf(to);
        _ownedTokens[to][length] = tokenId;
        _ownedTokensIndex[tokenId] = length;
    }

    /**
     * @dev Private function to add a token to this extension's token tracking data structures.
     * @param tokenId uint256 ID of the token to be added to the tokens list
     */
    function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
        _allTokensIndex[tokenId] = _allTokens.length;
        _allTokens.push(tokenId);
    }

    /**
     * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
     * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
     * gas optimizations e.g. when performing a transfer operation (avoiding double writes).
     * This has O(1) time complexity, but alters the order of the _ownedTokens array.
     * @param from address representing the previous owner of the given token ID
     * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
     */
    function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
        // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).

        uint256 lastTokenIndex = ERC721.balanceOf(from) - 1;
        uint256 tokenIndex = _ownedTokensIndex[tokenId];

        // When the token to delete is the last token, the swap operation is unnecessary
        if (tokenIndex != lastTokenIndex) {
            uint256 lastTokenId = _ownedTokens[from][lastTokenIndex];

            _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
            _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
        }

        // This also deletes the contents at the last position of the array
        delete _ownedTokensIndex[tokenId];
        delete _ownedTokens[from][lastTokenIndex];
    }

    /**
     * @dev Private function to remove a token from this extension's token tracking data structures.
     * This has O(1) time complexity, but alters the order of the _allTokens array.
     * @param tokenId uint256 ID of the token to be removed from the tokens list
     */
    function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
        // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
        // then delete the last slot (swap and pop).

        uint256 lastTokenIndex = _allTokens.length - 1;
        uint256 tokenIndex = _allTokensIndex[tokenId];

        // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
        // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
        // an 'if' statement (like in _removeTokenFromOwnerEnumeration)
        uint256 lastTokenId = _allTokens[lastTokenIndex];

        _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
        _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index

        // This also deletes the contents at the last position of the array
        delete _allTokensIndex[tokenId];
        _allTokens.pop();
    }
}
合同源代码
文件 8 的 23:EllipticCurve.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.11;

/**
 * @title Elliptic Curve Library
 * @dev Library providing arithmetic operations over elliptic curves.
 * This library does not check whether the inserted points belong to the curve
 * `isOnCurve` function should be used by the library user to check the aforementioned statement.
 * @author Witnet Foundation
 */
library EllipticCurve {
    // Pre-computed constant for 2 ** 255
    uint256 private constant U255_MAX_PLUS_1 =
        57896044618658097711785492504343953926634992332820282019728792003956564819968;

    /// @dev Modular euclidean inverse of a number (mod p).
    /// @param _x The number
    /// @param _pp The modulus
    /// @return q such that x*q = 1 (mod _pp)
    function invMod(uint256 _x, uint256 _pp) internal pure returns (uint256) {
        require(_x != 0 && _x != _pp && _pp != 0, "Invalid number");
        uint256 q = 0;
        uint256 newT = 1;
        uint256 r = _pp;
        uint256 t;
        while (_x != 0) {
            t = r / _x;
            (q, newT) = (newT, addmod(q, (_pp - mulmod(t, newT, _pp)), _pp));
            (r, _x) = (_x, r - t * _x);
        }

        return q;
    }

    /// @dev Modular exponentiation, b^e % _pp.
    /// Source: https://github.com/androlo/standard-contracts/blob/master/contracts/src/crypto/ECCMath.sol
    /// @param _base base
    /// @param _exp exponent
    /// @param _pp modulus
    /// @return r such that r = b**e (mod _pp)
    function expMod(
        uint256 _base,
        uint256 _exp,
        uint256 _pp
    ) internal pure returns (uint256) {
        require(_pp != 0, "Modulus is zero");

        if (_base == 0) return 0;
        if (_exp == 0) return 1;

        uint256 r = 1;
        uint256 bit = U255_MAX_PLUS_1;
        assembly {
            for {

            } gt(bit, 0) {

            } {
                r := mulmod(
                    mulmod(r, r, _pp),
                    exp(_base, iszero(iszero(and(_exp, bit)))),
                    _pp
                )
                r := mulmod(
                    mulmod(r, r, _pp),
                    exp(_base, iszero(iszero(and(_exp, div(bit, 2))))),
                    _pp
                )
                r := mulmod(
                    mulmod(r, r, _pp),
                    exp(_base, iszero(iszero(and(_exp, div(bit, 4))))),
                    _pp
                )
                r := mulmod(
                    mulmod(r, r, _pp),
                    exp(_base, iszero(iszero(and(_exp, div(bit, 8))))),
                    _pp
                )
                bit := div(bit, 16)
            }
        }

        return r;
    }

    /// @dev Converts a point (x, y, z) expressed in Jacobian coordinates to affine coordinates (x', y', 1).
    /// @param _x coordinate x
    /// @param _y coordinate y
    /// @param _z coordinate z
    /// @param _pp the modulus
    /// @return (x', y') affine coordinates
    function toAffine(
        uint256 _x,
        uint256 _y,
        uint256 _z,
        uint256 _pp
    ) internal pure returns (uint256, uint256) {
        uint256 zInv = invMod(_z, _pp);
        uint256 zInv2 = mulmod(zInv, zInv, _pp);
        uint256 x2 = mulmod(_x, zInv2, _pp);
        uint256 y2 = mulmod(_y, mulmod(zInv, zInv2, _pp), _pp);

        return (x2, y2);
    }

    /// @dev Derives the y coordinate from a compressed-format point x [[SEC-1]](https://www.secg.org/SEC1-Ver-1.0.pdf).
    /// @param _prefix parity byte (0x02 even, 0x03 odd)
    /// @param _x coordinate x
    /// @param _aa constant of curve
    /// @param _bb constant of curve
    /// @param _pp the modulus
    /// @return y coordinate y
    function deriveY(
        uint8 _prefix,
        uint256 _x,
        uint256 _aa,
        uint256 _bb,
        uint256 _pp
    ) internal pure returns (uint256) {
        require(
            _prefix == 0x02 || _prefix == 0x03,
            "Invalid compressed EC point prefix"
        );

        // x^3 + ax + b
        uint256 y2 = addmod(
            mulmod(_x, mulmod(_x, _x, _pp), _pp),
            addmod(mulmod(_x, _aa, _pp), _bb, _pp),
            _pp
        );
        y2 = expMod(y2, (_pp + 1) / 4, _pp);
        // uint256 cmp = yBit ^ y_ & 1;
        uint256 y = (y2 + _prefix) % 2 == 0 ? y2 : _pp - y2;

        return y;
    }

    /// @dev Check whether point (x,y) is on curve defined by a, b, and _pp.
    /// @param _x coordinate x of P1
    /// @param _y coordinate y of P1
    /// @param _aa constant of curve
    /// @param _bb constant of curve
    /// @param _pp the modulus
    /// @return true if x,y in the curve, false else
    function isOnCurve(
        uint256 _x,
        uint256 _y,
        uint256 _aa,
        uint256 _bb,
        uint256 _pp
    ) internal pure returns (bool) {
        if (0 == _x || _x >= _pp || 0 == _y || _y >= _pp) {
            return false;
        }
        // y^2
        uint256 lhs = mulmod(_y, _y, _pp);
        // x^3
        uint256 rhs = mulmod(mulmod(_x, _x, _pp), _x, _pp);
        if (_aa != 0) {
            // x^3 + a*x
            rhs = addmod(rhs, mulmod(_x, _aa, _pp), _pp);
        }
        if (_bb != 0) {
            // x^3 + a*x + b
            rhs = addmod(rhs, _bb, _pp);
        }

        return lhs == rhs;
    }

    /// @dev Calculate inverse (x, -y) of point (x, y).
    /// @param _x coordinate x of P1
    /// @param _y coordinate y of P1
    /// @param _pp the modulus
    /// @return (x, -y)
    function ecInv(
        uint256 _x,
        uint256 _y,
        uint256 _pp
    ) internal pure returns (uint256, uint256) {
        return (_x, (_pp - _y) % _pp);
    }

    /// @dev Add two points (x1, y1) and (x2, y2) in affine coordinates.
    /// @param _x1 coordinate x of P1
    /// @param _y1 coordinate y of P1
    /// @param _x2 coordinate x of P2
    /// @param _y2 coordinate y of P2
    /// @param _aa constant of the curve
    /// @param _pp the modulus
    /// @return (qx, qy) = P1+P2 in affine coordinates
    function ecAdd(
        uint256 _x1,
        uint256 _y1,
        uint256 _x2,
        uint256 _y2,
        uint256 _aa,
        uint256 _pp
    ) internal pure returns (uint256, uint256) {
        uint256 x = 0;
        uint256 y = 0;
        uint256 z = 0;

        // Double if x1==x2 else add
        if (_x1 == _x2) {
            // y1 = -y2 mod p
            if (addmod(_y1, _y2, _pp) == 0) {
                return (0, 0);
            } else {
                // P1 = P2
                (x, y, z) = jacDouble(_x1, _y1, 1, _aa, _pp);
            }
        } else {
            (x, y, z) = jacAdd(_x1, _y1, 1, _x2, _y2, 1, _pp);
        }
        // Get back to affine
        return toAffine(x, y, z, _pp);
    }

    /// @dev Substract two points (x1, y1) and (x2, y2) in affine coordinates.
    /// @param _x1 coordinate x of P1
    /// @param _y1 coordinate y of P1
    /// @param _x2 coordinate x of P2
    /// @param _y2 coordinate y of P2
    /// @param _aa constant of the curve
    /// @param _pp the modulus
    /// @return (qx, qy) = P1-P2 in affine coordinates
    function ecSub(
        uint256 _x1,
        uint256 _y1,
        uint256 _x2,
        uint256 _y2,
        uint256 _aa,
        uint256 _pp
    ) internal pure returns (uint256, uint256) {
        // invert square
        (uint256 x, uint256 y) = ecInv(_x2, _y2, _pp);
        // P1-square
        return ecAdd(_x1, _y1, x, y, _aa, _pp);
    }

    /// @dev Multiply point (x1, y1, z1) times d in affine coordinates.
    /// @param _k scalar to multiply
    /// @param _x coordinate x of P1
    /// @param _y coordinate y of P1
    /// @param _aa constant of the curve
    /// @param _pp the modulus
    /// @return (qx, qy) = d*P in affine coordinates
    function ecMul(
        uint256 _k,
        uint256 _x,
        uint256 _y,
        uint256 _aa,
        uint256 _pp
    ) internal pure returns (uint256, uint256) {
        // Jacobian multiplication
        (uint256 x1, uint256 y1, uint256 z1) = jacMul(_k, _x, _y, 1, _aa, _pp);
        // Get back to affine
        return toAffine(x1, y1, z1, _pp);
    }

    /// @dev Adds two points (x1, y1, z1) and (x2 y2, z2).
    /// @param _x1 coordinate x of P1
    /// @param _y1 coordinate y of P1
    /// @param _z1 coordinate z of P1
    /// @param _x2 coordinate x of square
    /// @param _y2 coordinate y of square
    /// @param _z2 coordinate z of square
    /// @param _pp the modulus
    /// @return (qx, qy, qz) P1+square in Jacobian
    function jacAdd(
        uint256 _x1,
        uint256 _y1,
        uint256 _z1,
        uint256 _x2,
        uint256 _y2,
        uint256 _z2,
        uint256 _pp
    )
        internal
        pure
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        if (_x1 == 0 && _y1 == 0) return (_x2, _y2, _z2);
        if (_x2 == 0 && _y2 == 0) return (_x1, _y1, _z1);

        // We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
        uint256[4] memory zs; // z1^2, z1^3, z2^2, z2^3
        zs[0] = mulmod(_z1, _z1, _pp);
        zs[1] = mulmod(_z1, zs[0], _pp);
        zs[2] = mulmod(_z2, _z2, _pp);
        zs[3] = mulmod(_z2, zs[2], _pp);

        // u1, s1, u2, s2
        zs = [
            mulmod(_x1, zs[2], _pp),
            mulmod(_y1, zs[3], _pp),
            mulmod(_x2, zs[0], _pp),
            mulmod(_y2, zs[1], _pp)
        ];

        // In case of zs[0] == zs[2] && zs[1] == zs[3], double function should be used
        require(
            zs[0] != zs[2] || zs[1] != zs[3],
            "Use jacDouble function instead"
        );

        uint256[4] memory hr;
        //h
        hr[0] = addmod(zs[2], _pp - zs[0], _pp);
        //r
        hr[1] = addmod(zs[3], _pp - zs[1], _pp);
        //h^2
        hr[2] = mulmod(hr[0], hr[0], _pp);
        // h^3
        hr[3] = mulmod(hr[2], hr[0], _pp);
        // qx = -h^3  -2u1h^2+r^2
        uint256 qx = addmod(mulmod(hr[1], hr[1], _pp), _pp - hr[3], _pp);
        qx = addmod(qx, _pp - mulmod(2, mulmod(zs[0], hr[2], _pp), _pp), _pp);
        // qy = -s1*z1*h^3+r(u1*h^2 -x^3)
        uint256 qy = mulmod(
            hr[1],
            addmod(mulmod(zs[0], hr[2], _pp), _pp - qx, _pp),
            _pp
        );
        qy = addmod(qy, _pp - mulmod(zs[1], hr[3], _pp), _pp);
        // qz = h*z1*z2
        uint256 qz = mulmod(hr[0], mulmod(_z1, _z2, _pp), _pp);
        return (qx, qy, qz);
    }

    /// @dev Doubles a points (x, y, z).
    /// @param _x coordinate x of P1
    /// @param _y coordinate y of P1
    /// @param _z coordinate z of P1
    /// @param _aa the a scalar in the curve equation
    /// @param _pp the modulus
    /// @return (qx, qy, qz) 2P in Jacobian
    function jacDouble(
        uint256 _x,
        uint256 _y,
        uint256 _z,
        uint256 _aa,
        uint256 _pp
    )
        internal
        pure
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        if (_z == 0) return (_x, _y, _z);

        // We follow the equations described in https://pdfs.semanticscholar.org/5c64/29952e08025a9649c2b0ba32518e9a7fb5c2.pdf Section 5
        // Note: there is a bug in the paper regarding the m parameter, M=3*(x1^2)+a*(z1^4)
        // x, y, z at this point represent the squares of _x, _y, _z
        uint256 x = mulmod(_x, _x, _pp); //x1^2
        uint256 y = mulmod(_y, _y, _pp); //y1^2
        uint256 z = mulmod(_z, _z, _pp); //z1^2

        // s
        uint256 s = mulmod(4, mulmod(_x, y, _pp), _pp);
        // m
        uint256 m = addmod(
            mulmod(3, x, _pp),
            mulmod(_aa, mulmod(z, z, _pp), _pp),
            _pp
        );

        // x, y, z at this point will be reassigned and rather represent qx, qy, qz from the paper
        // This allows to reduce the gas cost and stack footprint of the algorithm
        // qx
        x = addmod(mulmod(m, m, _pp), _pp - addmod(s, s, _pp), _pp);
        // qy = -8*y1^4 + M(S-T)
        y = addmod(
            mulmod(m, addmod(s, _pp - x, _pp), _pp),
            _pp - mulmod(8, mulmod(y, y, _pp), _pp),
            _pp
        );
        // qz = 2*y1*z1
        z = mulmod(2, mulmod(_y, _z, _pp), _pp);

        return (x, y, z);
    }

    /// @dev Multiply point (x, y, z) times d.
    /// @param _d scalar to multiply
    /// @param _x coordinate x of P1
    /// @param _y coordinate y of P1
    /// @param _z coordinate z of P1
    /// @param _aa constant of curve
    /// @param _pp the modulus
    /// @return (qx, qy, qz) d*P1 in Jacobian
    function jacMul(
        uint256 _d,
        uint256 _x,
        uint256 _y,
        uint256 _z,
        uint256 _aa,
        uint256 _pp
    )
        internal
        pure
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        // Early return in case that `_d == 0`
        if (_d == 0) {
            return (_x, _y, _z);
        }

        uint256 remaining = _d;
        uint256 qx = 0;
        uint256 qy = 0;
        uint256 qz = 1;

        // Double and add algorithm
        while (remaining != 0) {
            if ((remaining & 1) != 0) {
                (qx, qy, qz) = jacAdd(qx, qy, qz, _x, _y, _z, _pp);
            }
            remaining = remaining / 2;
            (_x, _y, _z) = jacDouble(_x, _y, _z, _aa, _pp);
        }
        return (qx, qy, qz);
    }
}
合同源代码
文件 9 的 23:IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}
合同源代码
文件 10 的 23:IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
合同源代码
文件 11 的 23:IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
合同源代码
文件 12 的 23:IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}
合同源代码
文件 13 的 23:IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}
合同源代码
文件 14 的 23:IERC721Enumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}
合同源代码
文件 15 的 23:IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}
合同源代码
文件 16 的 23:IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}
合同源代码
文件 17 的 23:Katana.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/Counters.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@kenshi.io/vrf-consumer/contracts/VRFUtils.sol";

contract Katana is ERC721, ERC721Enumerable, AccessControl {
    using SafeERC20 for IERC20;

    bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
    bytes32 public constant ORACLE_ROLE = keccak256("ORACLE_ROLE");

    mapping(uint256 => bool) private _alreadyFulfilled;
    mapping(uint256 => address) private _requestMap;
    VRFUtils private _utils;

    uint256 private _price = 0.15 ether;
    uint256 private _pending = 0;
    uint256 private _requestId = 0;
    address private _seller;

    uint256[] private _available;

    constructor(bytes memory publicKey) ERC721("Katana", "KAT") {
        _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
        _grantRole(MINTER_ROLE, msg.sender);

        _seller = msg.sender;
        _utils = new VRFUtils();
        _utils.setPublicKey(publicKey);
    }

    function _baseURI() internal pure override returns (string memory) {
        return "https://nft.kenshi.io/katana/";
    }

    function setPrice(uint256 price) external onlyRole(DEFAULT_ADMIN_ROLE) {
        _price = price;
    }

    function getPrice() external view returns (uint256) {
        return _price;
    }

    function getAvailable() external view returns (uint256[] memory) {
        return _available;
    }

    function setSeller(address seller) external onlyRole(DEFAULT_ADMIN_ROLE) {
        _seller = seller;
    }

    function safeMint(
        address to,
        uint256 tokenId
    ) public onlyRole(MINTER_ROLE) {
        _safeMint(to, tokenId);
    }

    function safeMintToSeller(uint256 tokenId) public onlyRole(MINTER_ROLE) {
        _safeMint(_seller, tokenId);
        _available.push(tokenId);
    }

    function batchSafeMintToSeller(
        uint256 start,
        uint256 count
    ) public onlyRole(MINTER_ROLE) {
        for (uint i = 0; i < count; i++) {
            safeMintToSeller(i + start);
        }
    }

    event RandomMintRequested(uint256 requestId);

    function mintRandom(address to) public payable {
        require(
            msg.value >= _price,
            "Value is lower than the NFT minting price"
        );
        require(_available.length > _pending, "No more NFTs to sell");
        uint256 requestId = _requestId++;
        _pending++;
        _requestMap[requestId] = to;
        emit RandomMintRequested(requestId);
    }

    function batchMintRandom(address to, uint256 count) public payable {
        require(count > 0, "Can't mint zero NFTs");
        require(
            msg.value >= _price * count,
            "Value is lower than the NFT minting price"
        );
        require(_available.length > _pending + count, "Not enough supply left");
        for (uint i = 0; i < count; i++) {
            uint256 requestId = _requestId++;
            _pending++;
            _requestMap[requestId] = to;
            emit RandomMintRequested(requestId);
        }
    }

    function onRandomness(
        uint256[4] memory proof,
        bytes memory message,
        uint256[2] memory uPoint,
        uint256[4] memory vComponents,
        uint256 requestId
    ) external onlyRole(ORACLE_ROLE) {
        require(!_alreadyFulfilled[requestId], "Already fulfilled");
        bool isValid = _utils.fastVerify(proof, message, uPoint, vComponents);
        require(isValid, "Delivered randomness is not valid!");
        bytes32 beta = _utils.gammaToHash(proof[0], proof[1]);
        uint256 randomness = uint256(beta);
        _alreadyFulfilled[requestId] = true;
        address to = _requestMap[requestId];
        _pending--;
        uint256 index = randomness % _available.length;
        uint256 tokenId = _available[index];
        _available[index] = _available[_available.length - 1];
        _available.pop();
        safeTransferFrom(_seller, to, tokenId);
    }

    function tokensOfOwner(
        address owner
    ) external view returns (uint256[] memory) {
        uint256 balance = balanceOf(owner);
        uint256[] memory tokens = new uint256[](balance);
        for (uint i = 0; i < balance; i++) {
            tokens[i] = tokenOfOwnerByIndex(owner, i);
        }
        return tokens;
    }

    // The following functions are overrides required by Solidity.

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 tokenId,
        uint256 batchSize
    ) internal override(ERC721, ERC721Enumerable) {
        super._beforeTokenTransfer(from, to, tokenId, batchSize);
    }

    function supportsInterface(
        bytes4 interfaceId
    )
        public
        view
        override(ERC721, ERC721Enumerable, AccessControl)
        returns (bool)
    {
        return super.supportsInterface(interfaceId);
    }

    // Recover ETH and ERC20 tokens

    function recoverEth(
        address payable to
    ) public onlyRole(DEFAULT_ADMIN_ROLE) {
        (bool sent, ) = to.call{value: address(this).balance}("");
        require(sent, "Failed to send Ether");
    }

    function recoverERC20(
        address token,
        address recipient,
        uint256 amount
    ) external onlyRole(DEFAULT_ADMIN_ROLE) {
        IERC20(token).safeTransfer(recipient, amount);
    }
}
合同源代码
文件 18 的 23:Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}
合同源代码
文件 19 的 23:SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
     * 0 before setting it to a non-zero value.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}
合同源代码
文件 20 的 23:SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}
合同源代码
文件 21 的 23:Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}
合同源代码
文件 22 的 23:VRF.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.11;

import "./ecc/EllipticCurve.sol";

/**
 * @title Verifiable Random Functions (VRF)
 * @notice Library verifying VRF proofs using the `Secp256k1` curve and the `SHA256` hash function.
 * @dev This library follows the algorithms described in [VRF-draft-10](https://tools.ietf.org/pdf/draft-irtf-cfrg-vrf-10) and [RFC6979](https://tools.ietf.org/html/rfc6979).
 * It supports the _SECP256K1_SHA256_TAI_ cipher suite, i.e. the aforementioned algorithms using `SHA256` and the `Secp256k1` curve.
 * @author Witnet Foundation / Kenshi
 */
library VRF {
    /**
     * Secp256k1 parameters
     */

    // Generator coordinate `x` of the EC curve
    uint256 public constant GX =
        0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798;
    // Generator coordinate `y` of the EC curve
    uint256 public constant GY =
        0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8;
    // Constant `a` of EC equation
    uint256 public constant AA = 0;
    // Constant `b` of EC equation
    uint256 public constant BB = 7;
    // Prime number of the curve
    uint256 public constant PP =
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F;
    // Order of the curve
    uint256 public constant NN =
        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141;

    /// @dev Public key derivation from private key.
    /// Warning: this function should not be used to derive your public key as it would expose the private key.
    /// @param _d The scalar
    /// @param _x The coordinate x
    /// @param _y The coordinate y
    /// @return (qx, qy) The derived point
    function derivePoint(
        uint256 _d,
        uint256 _x,
        uint256 _y
    ) internal pure returns (uint256, uint256) {
        return EllipticCurve.ecMul(_d, _x, _y, AA, PP);
    }

    /// @dev Function to derive the `y` coordinate given the `x` coordinate and the parity byte (`0x03` for odd `y` and `0x04` for even `y`).
    /// @param _yByte The parity byte following the ec point compressed format
    /// @param _x The coordinate `x` of the point
    /// @return The coordinate `y` of the point
    function deriveY(uint8 _yByte, uint256 _x) internal pure returns (uint256) {
        return EllipticCurve.deriveY(_yByte, _x, AA, BB, PP);
    }

    /// @dev Computes the VRF hash output as result of the digest of a ciphersuite-dependent prefix
    /// concatenated with the gamma point
    /// @param _gammaX The x-coordinate of the gamma EC point
    /// @param _gammaY The y-coordinate of the gamma EC point
    /// @return The VRF hash ouput as shas256 digest
    function gammaToHash(uint256 _gammaX, uint256 _gammaY)
        internal
        pure
        returns (bytes32)
    {
        bytes memory c = abi.encodePacked(
            // Cipher suite code (SECP256K1-SHA256-TAI is 0xFE)
            uint8(0xFE),
            // 0x03
            uint8(0x03),
            // Compressed Gamma Point
            encodePoint(_gammaX, _gammaY),
            uint8(0x0)
        );

        return sha256(c);
    }

    /// @dev VRF verification by providing the public key, the message and the VRF proof.
    /// This function computes several elliptic curve operations which may lead to extensive gas consumption.
    /// @param _publicKey The public key as an array composed of `[pubKey-x, pubKey-y]`
    /// @param _proof The VRF proof as an array composed of `[gamma-x, gamma-y, c, s]`
    /// @param _message The message (in bytes) used for computing the VRF
    /// @return true, if VRF proof is valid
    function verify(
        uint256[2] memory _publicKey,
        uint256[4] memory _proof,
        bytes memory _message
    ) internal pure returns (bool) {
        // Step 2: Hash to try and increment (outputs a hashed value, a finite EC point in G)
        (uint256 hPointX, uint256 hPointY) = hashToTryAndIncrement(
            _publicKey,
            _message
        );

        // Step 3: U = s*B - c*Y (where B is the generator)
        (uint256 uPointX, uint256 uPointY) = ecMulSubMul(
            _proof[3],
            GX,
            GY,
            _proof[2],
            _publicKey[0],
            _publicKey[1]
        );

        // Step 4: V = s*H - c*Gamma
        (uint256 vPointX, uint256 vPointY) = ecMulSubMul(
            _proof[3],
            hPointX,
            hPointY,
            _proof[2],
            _proof[0],
            _proof[1]
        );

        // Step 5: derived c from hash points(...)
        bytes16 derivedC = hashPoints(
            hPointX,
            hPointY,
            _proof[0],
            _proof[1],
            uPointX,
            uPointY,
            vPointX,
            vPointY
        );

        // Step 6: Check validity c == c'
        return uint128(derivedC) == _proof[2];
    }

    /// @dev VRF fast verification by providing the public key, the message, the VRF proof and several intermediate elliptic curve points that enable the verification shortcut.
    /// This function leverages the EVM's `ecrecover` precompile to verify elliptic curve multiplications by decreasing the security from 32 to 20 bytes.
    /// Based on the original idea of Vitalik Buterin: https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384/9
    /// @param _publicKey The public key as an array composed of `[pubKey-x, pubKey-y]`
    /// @param _proof The VRF proof as an array composed of `[gamma-x, gamma-y, c, s]`
    /// @param _message The message (in bytes) used for computing the VRF
    /// @param _uPoint The `u` EC point defined as `U = s*B - c*Y`
    /// @param _vComponents The components required to compute `v` as `V = s*H - c*Gamma`
    /// @return true, if VRF proof is valid
    function fastVerify(
        uint256[2] memory _publicKey,
        uint256[4] memory _proof,
        bytes memory _message,
        uint256[2] memory _uPoint,
        uint256[4] memory _vComponents
    ) internal pure returns (bool) {
        // Step 2: Hash to try and increment -> hashed value, a finite EC point in G
        (uint256 hPointX, uint256 hPointY) = hashToTryAndIncrement(
            _publicKey,
            _message
        );

        // Step 3 & Step 4:
        // U = s*B - c*Y (where B is the generator)
        // V = s*H - c*Gamma
        if (
            !ecMulSubMulVerify(
                _proof[3],
                _proof[2],
                _publicKey[0],
                _publicKey[1],
                _uPoint[0],
                _uPoint[1]
            ) ||
            !ecMulVerify(
                _proof[3],
                hPointX,
                hPointY,
                _vComponents[0],
                _vComponents[1]
            ) ||
            !ecMulVerify(
                _proof[2],
                _proof[0],
                _proof[1],
                _vComponents[2],
                _vComponents[3]
            )
        ) {
            return false;
        }
        (uint256 vPointX, uint256 vPointY) = EllipticCurve.ecSub(
            _vComponents[0],
            _vComponents[1],
            _vComponents[2],
            _vComponents[3],
            AA,
            PP
        );

        // Step 5: derived c from hash points(...)
        bytes16 derivedC = hashPoints(
            hPointX,
            hPointY,
            _proof[0],
            _proof[1],
            _uPoint[0],
            _uPoint[1],
            vPointX,
            vPointY
        );

        // Step 6: Check validity c == c'
        return uint128(derivedC) == _proof[2];
    }

    /// @dev Decode VRF proof from bytes
    /// @param _proof The VRF proof as bytes
    /// @return The VRF proof as an array composed of `[gamma-x, gamma-y, c, s]`
    function decodeProof(bytes memory _proof)
        internal
        pure
        returns (uint256[4] memory)
    {
        require(_proof.length == 81, "Malformed VRF proof");
        uint8 gammaSign;
        uint256 gammaX;
        uint128 c;
        uint256 s;
        assembly {
            gammaSign := mload(add(_proof, 1))
            gammaX := mload(add(_proof, 33))
            c := mload(add(_proof, 49))
            s := mload(add(_proof, 81))
        }
        uint256 gammaY = deriveY(gammaSign, gammaX);

        return [gammaX, gammaY, c, s];
    }

    /// @dev Decode EC point from bytes
    /// @param _point The EC point as bytes
    /// @return The point as `[point-x, point-y]`
    function decodePoint(bytes memory _point)
        internal
        pure
        returns (uint256[2] memory)
    {
        require(_point.length == 33, "Malformed compressed EC point");
        uint8 sign;
        uint256 x;
        assembly {
            sign := mload(add(_point, 1))
            x := mload(add(_point, 33))
        }
        uint256 y = deriveY(sign, x);

        return [x, y];
    }

    /// @dev Compute the parameters (EC points) required for the VRF fast verification function.
    /// @param _publicKey The public key as an array composed of `[pubKey-x, pubKey-y]`
    /// @param _proof The VRF proof as an array composed of `[gamma-x, gamma-y, c, s]`
    /// @param _message The message (in bytes) used for computing the VRF
    /// @return The fast verify required parameters as the tuple `([uPointX, uPointY], [sHX, sHY, cGammaX, cGammaY])`
    function computeFastVerifyParams(
        uint256[2] memory _publicKey,
        uint256[4] memory _proof,
        bytes memory _message
    ) internal pure returns (uint256[2] memory, uint256[4] memory) {
        // Requirements for Step 3: U = s*B - c*Y (where B is the generator)
        (uint256 hPointX, uint256 hPointY) = hashToTryAndIncrement(
            _publicKey,
            _message
        );
        (uint256 uPointX, uint256 uPointY) = ecMulSubMul(
            _proof[3],
            GX,
            GY,
            _proof[2],
            _publicKey[0],
            _publicKey[1]
        );
        // Requirements for Step 4: V = s*H - c*Gamma
        (uint256 sHX, uint256 sHY) = derivePoint(_proof[3], hPointX, hPointY);
        (uint256 cGammaX, uint256 cGammaY) = derivePoint(
            _proof[2],
            _proof[0],
            _proof[1]
        );

        return ([uPointX, uPointY], [sHX, sHY, cGammaX, cGammaY]);
    }

    /// @dev Function to convert a `Hash(PK|DATA)` to a point in the curve as defined in [VRF-draft-04](https://tools.ietf.org/pdf/draft-irtf-cfrg-vrf-04).
    /// Used in Step 2 of VRF verification function.
    /// @param _publicKey The public key as an array composed of `[pubKey-x, pubKey-y]`
    /// @param _message The message used for computing the VRF
    /// @return The hash point in affine cooridnates
    function hashToTryAndIncrement(
        uint256[2] memory _publicKey,
        bytes memory _message
    ) internal pure returns (uint256, uint256) {
        // Step 1: public key to bytes
        // Step 2: V = cipher_suite | 0x01 | public_key_bytes | message | ctr | 0x0
        bytes memory c = abi.encodePacked(
            // Cipher suite code (SECP256K1-SHA256-TAI is 0xFE)
            uint8(254),
            // 0x01
            uint8(1),
            // Public Key
            encodePoint(_publicKey[0], _publicKey[1]),
            // Message
            _message
        );

        // Step 3: find a valid EC point
        // Loop over counter ctr starting at 0x00 and do hash
        for (uint8 ctr = 0; ctr < 256; ctr++) {
            // Counter update
            // c[cLength-1] = byte(ctr);
            bytes32 sha = sha256(abi.encodePacked(c, ctr, uint8(0)));
            // Step 4: arbitraty string to point and check if it is on curve
            uint256 hPointX = uint256(sha);
            uint256 hPointY = deriveY(2, hPointX);
            if (EllipticCurve.isOnCurve(hPointX, hPointY, AA, BB, PP)) {
                // Step 5 (omitted): calculate H (cofactor is 1 on secp256k1)
                // If H is not "INVALID" and cofactor > 1, set H = cofactor * H
                return (hPointX, hPointY);
            }
        }
        revert("No valid point was found");
    }

    /// @dev Function to hash a certain set of points as specified in [VRF-draft-04](https://tools.ietf.org/pdf/draft-irtf-cfrg-vrf-04).
    /// Used in Step 5 of VRF verification function.
    /// @param _hPointX The coordinate `x` of point `H`
    /// @param _hPointY The coordinate `y` of point `H`
    /// @param _gammaX The coordinate `x` of the point `Gamma`
    /// @param _gammaX The coordinate `y` of the point `Gamma`
    /// @param _uPointX The coordinate `x` of point `U`
    /// @param _uPointY The coordinate `y` of point `U`
    /// @param _vPointX The coordinate `x` of point `V`
    /// @param _vPointY The coordinate `y` of point `V`
    /// @return The first half of the digest of the points using SHA256
    function hashPoints(
        uint256 _hPointX,
        uint256 _hPointY,
        uint256 _gammaX,
        uint256 _gammaY,
        uint256 _uPointX,
        uint256 _uPointY,
        uint256 _vPointX,
        uint256 _vPointY
    ) internal pure returns (bytes16) {
        bytes memory c = abi.encodePacked(
            // Ciphersuite 0xFE
            uint8(254),
            // Prefix 0x02
            uint8(2),
            // Points to Bytes
            encodePoint(_hPointX, _hPointY),
            encodePoint(_gammaX, _gammaY),
            encodePoint(_uPointX, _uPointY),
            encodePoint(_vPointX, _vPointY),
            uint8(0)
        );
        // Hash bytes and truncate
        bytes32 sha = sha256(c);
        bytes16 half1;
        assembly {
            let freemem_pointer := mload(0x40)
            mstore(add(freemem_pointer, 0x00), sha)
            half1 := mload(add(freemem_pointer, 0x00))
        }

        return half1;
    }

    /// @dev Encode an EC point to bytes
    /// @param _x The coordinate `x` of the point
    /// @param _y The coordinate `y` of the point
    /// @return The point coordinates as bytes
    function encodePoint(uint256 _x, uint256 _y)
        internal
        pure
        returns (bytes memory)
    {
        uint8 prefix = uint8(2 + (_y % 2));

        return abi.encodePacked(prefix, _x);
    }

    /// @dev Substracts two key derivation functionsas `s1*A - s2*B`.
    /// @param _scalar1 The scalar `s1`
    /// @param _a1 The `x` coordinate of point `A`
    /// @param _a2 The `y` coordinate of point `A`
    /// @param _scalar2 The scalar `s2`
    /// @param _b1 The `x` coordinate of point `B`
    /// @param _b2 The `y` coordinate of point `B`
    /// @return The derived point in affine cooridnates
    function ecMulSubMul(
        uint256 _scalar1,
        uint256 _a1,
        uint256 _a2,
        uint256 _scalar2,
        uint256 _b1,
        uint256 _b2
    ) internal pure returns (uint256, uint256) {
        (uint256 m1, uint256 m2) = derivePoint(_scalar1, _a1, _a2);
        (uint256 n1, uint256 n2) = derivePoint(_scalar2, _b1, _b2);
        (uint256 r1, uint256 r2) = EllipticCurve.ecSub(m1, m2, n1, n2, AA, PP);

        return (r1, r2);
    }

    /// @dev Verify an Elliptic Curve multiplication of the form `(qx,qy) = scalar*(x,y)` by using the precompiled `ecrecover` function.
    /// The usage of the precompiled `ecrecover` function decreases the security from 32 to 20 bytes.
    /// Based on the original idea of Vitalik Buterin: https://ethresear.ch/t/you-can-kinda-abuse-ecrecover-to-do-ecmul-in-secp256k1-today/2384/9
    /// @param _scalar The scalar of the point multiplication
    /// @param _x The coordinate `x` of the point
    /// @param _y The coordinate `y` of the point
    /// @param _qx The coordinate `x` of the multiplication result
    /// @param _qy The coordinate `y` of the multiplication result
    /// @return true, if first 20 bytes match
    function ecMulVerify(
        uint256 _scalar,
        uint256 _x,
        uint256 _y,
        uint256 _qx,
        uint256 _qy
    ) internal pure returns (bool) {
        address result = ecrecover(
            0,
            _y % 2 != 0 ? 28 : 27,
            bytes32(_x),
            bytes32(mulmod(_scalar, _x, NN))
        );

        return pointToAddress(_qx, _qy) == result;
    }

    /// @dev Verify an Elliptic Curve operation of the form `Q = scalar1*(gx,gy) - scalar2*(x,y)` by using the precompiled `ecrecover` function, where `(gx,gy)` is the generator of the EC.
    /// The usage of the precompiled `ecrecover` function decreases the security from 32 to 20 bytes.
    /// Based on SolCrypto library: https://github.com/HarryR/solcrypto
    /// @param _scalar1 The scalar of the multiplication of `(gx,gy)`
    /// @param _scalar2 The scalar of the multiplication of `(x,y)`
    /// @param _x The coordinate `x` of the point to be mutiply by `scalar2`
    /// @param _y The coordinate `y` of the point to be mutiply by `scalar2`
    /// @param _qx The coordinate `x` of the equation result
    /// @param _qy The coordinate `y` of the equation result
    /// @return true, if first 20 bytes match
    function ecMulSubMulVerify(
        uint256 _scalar1,
        uint256 _scalar2,
        uint256 _x,
        uint256 _y,
        uint256 _qx,
        uint256 _qy
    ) internal pure returns (bool) {
        uint256 scalar1 = (NN - _scalar1) % NN;
        scalar1 = mulmod(scalar1, _x, NN);
        uint256 scalar2 = (NN - _scalar2) % NN;

        address result = ecrecover(
            bytes32(scalar1),
            _y % 2 != 0 ? 28 : 27,
            bytes32(_x),
            bytes32(mulmod(scalar2, _x, NN))
        );

        return pointToAddress(_qx, _qy) == result;
    }

    /// @dev Gets the address corresponding to the EC point digest (keccak256), i.e. the first 20 bytes of the digest.
    /// This function is used for performing a fast EC multiplication verification.
    /// @param _x The coordinate `x` of the point
    /// @param _y The coordinate `y` of the point
    /// @return The address of the EC point digest (keccak256)
    function pointToAddress(uint256 _x, uint256 _y)
        internal
        pure
        returns (address)
    {
        return
            address(
                uint160(
                    uint256(keccak256(abi.encodePacked(_x, _y))) &
                        0x00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
                )
            );
    }
}
合同源代码
文件 23 的 23:VRFUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.11;

import "./lib/VRF.sol";

/**
 * @title Test Helper for the VRF contract
 * @dev The aim of this contract is twofold:
 * 1. Raise the visibility modifier of VRF contract functions for testing purposes
 * 2. Removal of the `pure` modifier to allow gas consumption analysis
 * @author Witnet Foundation
 */
contract VRFUtils {
    address private _owner;
    uint256[2] private _publicKey;

    constructor() {
        _owner = msg.sender;
    }

    /**
     * @dev Sets the public key used for VRF verification.
     */
    function setPublicKey(bytes memory publicKey) public {
        require(msg.sender == _owner, "Only owner");
        _publicKey = VRF.decodePoint(publicKey);
    }

    /**
     * @dev Get the public key used for VRF verification.
     */
    function getPublicKey() public view returns (bytes memory) {
        return VRF.encodePoint(_publicKey[0], _publicKey[1]);
    }

    function decodeProof(bytes memory _proof)
        public
        pure
        returns (uint256[4] memory)
    {
        return VRF.decodeProof(_proof);
    }

    function decodePoint(bytes memory _point)
        public
        pure
        returns (uint256[2] memory)
    {
        return VRF.decodePoint(_point);
    }

    function computeFastVerifyParams(
        uint256[2] memory publicKey,
        uint256[4] memory proof,
        bytes memory message
    ) public pure returns (uint256[2] memory, uint256[4] memory) {
        return VRF.computeFastVerifyParams(publicKey, proof, message);
    }

    function computeFastVerifyParams(
        uint256[4] memory proof,
        bytes memory message
    ) public view returns (uint256[2] memory, uint256[4] memory) {
        return VRF.computeFastVerifyParams(_publicKey, proof, message);
    }

    function verify(
        uint256[2] memory publicKey,
        uint256[4] memory proof,
        bytes memory message
    ) public pure returns (bool) {
        return VRF.verify(publicKey, proof, message);
    }

    function verify(uint256[4] memory proof, bytes memory message)
        public
        view
        returns (bool)
    {
        return VRF.verify(_publicKey, proof, message);
    }

    function fastVerify(
        uint256[2] memory publicKey,
        uint256[4] memory proof,
        bytes memory message,
        uint256[2] memory uPoint,
        uint256[4] memory vComponents
    ) public pure returns (bool) {
        return VRF.fastVerify(publicKey, proof, message, uPoint, vComponents);
    }

    function fastVerify(
        uint256[4] memory proof,
        bytes memory message,
        uint256[2] memory uPoint,
        uint256[4] memory vComponents
    ) public view returns (bool) {
        return VRF.fastVerify(_publicKey, proof, message, uPoint, vComponents);
    }

    function gammaToHash(uint256 _gammaX, uint256 _gammaY)
        public
        pure
        returns (bytes32)
    {
        return VRF.gammaToHash(_gammaX, _gammaY);
    }
}
设置
{
  "compilationTarget": {
    "Katana.sol": "Katana"
  },
  "evmVersion": "paris",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "remappings": []
}
ABI
[{"inputs":[{"internalType":"bytes","name":"publicKey","type":"bytes"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"RandomMintRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ORACLE_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"batchMintRandom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"batchSafeMintToSeller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAvailable","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"mintRandom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[4]","name":"proof","type":"uint256[4]"},{"internalType":"bytes","name":"message","type":"bytes"},{"internalType":"uint256[2]","name":"uPoint","type":"uint256[2]"},{"internalType":"uint256[4]","name":"vComponents","type":"uint256[4]"},{"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"onRandomness","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"to","type":"address"}],"name":"recoverEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeMintToSeller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"price","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"seller","type":"address"}],"name":"setSeller","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"}]