// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {BaseStrategy, ERC20} from "@tokenized-strategy/BaseStrategy.sol";
/**
* @title Base Health Check
* @author Yearn.finance
* @notice This contract can be inherited by any Yearn
* V3 strategy wishing to implement a health check during
* the `report` function in order to prevent any unexpected
* behavior from being permanently recorded as well as the
* `checkHealth` modifier.
*
* A strategist simply needs to inherit this contract. Set
* the limit ratios to the desired amounts and then
* override `_harvestAndReport()` just as they otherwise
* would. If the profit or loss that would be recorded is
* outside the acceptable bounds the tx will revert.
*
* The healthcheck does not prevent a strategy from reporting
* losses, but rather can make sure manual intervention is
* needed before reporting an unexpected loss or profit.
*/
abstract contract BaseHealthCheck is BaseStrategy {
// Can be used to determine if a healthcheck should be called.
// Defaults to true;
bool public doHealthCheck = true;
uint256 internal constant MAX_BPS = 10_000;
// Default profit limit to 100%.
uint16 private _profitLimitRatio = uint16(MAX_BPS);
// Defaults loss limit to 0.
uint16 private _lossLimitRatio;
constructor(
address _asset,
string memory _name
) BaseStrategy(_asset, _name) {}
/**
* @notice Returns the current profit limit ratio.
* @dev Use a getter function to keep the variable private.
* @return . The current profit limit ratio.
*/
function profitLimitRatio() public view returns (uint256) {
return _profitLimitRatio;
}
/**
* @notice Returns the current loss limit ratio.
* @dev Use a getter function to keep the variable private.
* @return . The current loss limit ratio.
*/
function lossLimitRatio() public view returns (uint256) {
return _lossLimitRatio;
}
/**
* @notice Set the `profitLimitRatio`.
* @dev Denominated in basis points. I.E. 1_000 == 10%.
* @param _newProfitLimitRatio The mew profit limit ratio.
*/
function setProfitLimitRatio(
uint256 _newProfitLimitRatio
) external onlyManagement {
_setProfitLimitRatio(_newProfitLimitRatio);
}
/**
* @dev Internally set the profit limit ratio. Denominated
* in basis points. I.E. 1_000 == 10%.
* @param _newProfitLimitRatio The mew profit limit ratio.
*/
function _setProfitLimitRatio(uint256 _newProfitLimitRatio) internal {
require(_newProfitLimitRatio > 0, "!zero profit");
require(_newProfitLimitRatio <= type(uint16).max, "!too high");
_profitLimitRatio = uint16(_newProfitLimitRatio);
}
/**
* @notice Set the `lossLimitRatio`.
* @dev Denominated in basis points. I.E. 1_000 == 10%.
* @param _newLossLimitRatio The new loss limit ratio.
*/
function setLossLimitRatio(
uint256 _newLossLimitRatio
) external onlyManagement {
_setLossLimitRatio(_newLossLimitRatio);
}
/**
* @dev Internally set the loss limit ratio. Denominated
* in basis points. I.E. 1_000 == 10%.
* @param _newLossLimitRatio The new loss limit ratio.
*/
function _setLossLimitRatio(uint256 _newLossLimitRatio) internal {
require(_newLossLimitRatio < MAX_BPS, "!loss limit");
_lossLimitRatio = uint16(_newLossLimitRatio);
}
/**
* @notice Turns the healthcheck on and off.
* @dev If turned off the next report will auto turn it back on.
* @param _doHealthCheck Bool if healthCheck should be done.
*/
function setDoHealthCheck(bool _doHealthCheck) public onlyManagement {
doHealthCheck = _doHealthCheck;
}
/**
* @notice OVerrides the default {harvestAndReport} to include a healthcheck.
* @return _totalAssets New totalAssets post report.
*/
function harvestAndReport()
external
override
onlySelf
returns (uint256 _totalAssets)
{
// Let the strategy report.
_totalAssets = _harvestAndReport();
// Run the healthcheck on the amount returned.
_executeHealthCheck(_totalAssets);
}
/**
* @dev To be called during a report to make sure the profit
* or loss being recorded is within the acceptable bound.
*
* @param _newTotalAssets The amount that will be reported.
*/
function _executeHealthCheck(uint256 _newTotalAssets) internal virtual {
if (!doHealthCheck) {
doHealthCheck = true;
return;
}
// Get the current total assets from the implementation.
uint256 currentTotalAssets = TokenizedStrategy.totalAssets();
if (_newTotalAssets > currentTotalAssets) {
require(
((_newTotalAssets - currentTotalAssets) <=
(currentTotalAssets * uint256(_profitLimitRatio)) /
MAX_BPS),
"healthCheck"
);
} else if (currentTotalAssets > _newTotalAssets) {
require(
(currentTotalAssets - _newTotalAssets <=
((currentTotalAssets * uint256(_lossLimitRatio)) /
MAX_BPS)),
"healthCheck"
);
}
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.18;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {BaseHealthCheck, ERC20} from "@periphery/Bases/HealthCheck/BaseHealthCheck.sol";
/**
* @title Base Lender Borrower
*/
abstract contract BaseLenderBorrower is BaseHealthCheck {
using SafeERC20 for ERC20;
uint256 internal constant WAD = 1e18;
/// The token we will be borrowing/supplying.
address public immutable borrowToken;
/// If set to true, the strategy will not try to repay debt by selling rewards or asset.
bool public leaveDebtBehind;
/// @notice Target Loan-To-Value (LTV) multiplier in Basis Points
/// @dev Represents the ratio up to which we will borrow, relative to the liquidation threshold.
/// LTV is the debt-to-collateral ratio. Default is set to 70% of the liquidation LTV.
uint16 public targetLTVMultiplier;
/// @notice Warning Loan-To-Value (LTV) multiplier in Basis Points
/// @dev Represents the ratio at which we will start repaying the debt to avoid liquidation
/// Default is set to 80% of the liquidation LTV
uint16 public warningLTVMultiplier; // 80% of liquidation LTV
/// @notice Slippage tolerance (in basis points) for swaps
uint64 public slippage;
/// @notice Deposit limit for the strategy.
uint256 public depositLimit;
/// The max the base fee (in gwei) will be for a tend
uint256 public maxGasPriceToTend;
/// Thresholds: lower limit on how much base token can be borrowed at a time.
uint256 internal minAmountToBorrow;
/// The lender vault that will be used to lend and borrow.
IERC4626 public immutable lenderVault;
/**
* @param _asset The address of the asset we are lending/borrowing.
* @param _name The name of the strategy.
* @param _borrowToken The address of the borrow token.
*/
constructor(
address _asset,
string memory _name,
address _borrowToken,
address _lenderVault
) BaseHealthCheck(_asset, _name) {
borrowToken = _borrowToken;
// Set default variables
depositLimit = type(uint256).max;
targetLTVMultiplier = 7_000;
warningLTVMultiplier = 8_000;
leaveDebtBehind = false;
maxGasPriceToTend = 200 * 1e9;
slippage = 500;
// Allow for address(0) for versions that don't use 4626 vault.
if (_lenderVault != address(0)) {
lenderVault = IERC4626(_lenderVault);
require(lenderVault.asset() == _borrowToken, "!lenderVault");
ERC20(_borrowToken).safeApprove(_lenderVault, type(uint256).max);
}
}
/// ----------------- SETTERS -----------------
/**
* @notice Set the deposit limit for the strategy
* @param _depositLimit New deposit limit
*/
function setDepositLimit(uint256 _depositLimit) external onlyManagement {
depositLimit = _depositLimit;
}
/**
* @notice Set the target and warning LTV multipliers
* @param _targetLTVMultiplier New target LTV multiplier
* @param _warningLTVMultiplier New warning LTV multiplier
* @dev Target must be less than warning, warning must be <= 9000, target cannot be 0
*/
function setLtvMultipliers(
uint16 _targetLTVMultiplier,
uint16 _warningLTVMultiplier
) external onlyManagement {
require(
_warningLTVMultiplier <= 9_000 &&
_targetLTVMultiplier < _warningLTVMultiplier &&
_targetLTVMultiplier != 0,
"invalid LTV"
);
targetLTVMultiplier = _targetLTVMultiplier;
warningLTVMultiplier = _warningLTVMultiplier;
}
/**
* @notice Set whether to leave debt behind
* @param _leaveDebtBehind New leave debt behind setting
*/
function setLeaveDebtBehind(bool _leaveDebtBehind) external onlyManagement {
leaveDebtBehind = _leaveDebtBehind;
}
/**
* @notice Set the maximum gas price for tending
* @param _maxGasPriceToTend New maximum gas price
*/
function setMaxGasPriceToTend(
uint256 _maxGasPriceToTend
) external onlyManagement {
maxGasPriceToTend = _maxGasPriceToTend;
}
/**
* @notice Set the slippage tolerance
* @param _slippage New slippage tolerance in basis points
*/
function setSlippage(uint256 _slippage) external onlyManagement {
require(_slippage < MAX_BPS, "slippage");
slippage = uint64(_slippage);
}
/*//////////////////////////////////////////////////////////////
NEEDED TO BE OVERRIDDEN BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Should deploy up to '_amount' of 'asset' in the yield source.
*
* This function is called at the end of a {deposit} or {mint}
* call. Meaning that unless a whitelist is implemented it will
* be entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* @param _amount The amount of 'asset' that the strategy should attempt
* to deposit in the yield source.
*/
function _deployFunds(uint256 _amount) internal virtual override {
_leveragePosition(_amount);
}
/**
* @dev Will attempt to free the '_amount' of 'asset'.
*
* The amount of 'asset' that is already loose has already
* been accounted for.
*
* This function is called during {withdraw} and {redeem} calls.
* Meaning that unless a whitelist is implemented it will be
* entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* Should not rely on asset.balanceOf(address(this)) calls other than
* for diff accounting purposes.
*
* Any difference between `_amount` and what is actually freed will be
* counted as a loss and passed on to the withdrawer. This means
* care should be taken in times of illiquidity. It may be better to revert
* if withdraws are simply illiquid so not to realize incorrect losses.
*
* @param _amount, The amount of 'asset' to be freed.
*/
function _freeFunds(uint256 _amount) internal virtual override {
_liquidatePosition(_amount);
}
/**
* @dev Internal function to harvest all rewards, redeploy any idle
* funds and return an accurate accounting of all funds currently
* held by the Strategy.
*
* This should do any needed harvesting, rewards selling, accrual,
* redepositing etc. to get the most accurate view of current assets.
*
* NOTE: All applicable assets including loose assets should be
* accounted for in this function.
*
* Care should be taken when relying on oracles or swap values rather
* than actual amounts as all Strategy profit/loss accounting will
* be done based on this returned value.
*
* This can still be called post a shutdown, a strategist can check
* `TokenizedStrategy.isShutdown()` to decide if funds should be
* redeployed or simply realize any profits/losses.
*
* @return _totalAssets A trusted and accurate account for the total
* amount of 'asset' the strategy currently holds including idle funds.
*/
function _harvestAndReport()
internal
virtual
override
returns (uint256 _totalAssets)
{
/// 1. claim rewards, 2. even borrowToken deposits and borrows 3. sell remainder of rewards to asset.
_claimAndSellRewards();
/// Leverage all the asset we have or up to the supply cap.
/// We want check our leverage even if balance of asset is 0.
_leveragePosition(
Math.min(balanceOfAsset(), availableDepositLimit(address(this)))
);
/// Base token owed should be 0 here but we count it just in case
_totalAssets =
balanceOfAsset() +
balanceOfCollateral() -
_borrowTokenOwedInAsset();
}
/*//////////////////////////////////////////////////////////////
OPTIONAL TO OVERRIDE BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Optional function for strategist to override that can
* be called in between reports.
*
* If '_tend' is used tendTrigger() will also need to be overridden.
*
* This call can only be called by a permissioned role so may be
* through protected relays.
*
* This can be used to harvest and compound rewards, deposit idle funds,
* perform needed position maintenance or anything else that doesn't need
* a full report for.
*
* EX: A strategy that can not deposit funds without getting
* sandwiched can use the tend when a certain threshold
* of idle to totalAssets has been reached.
*
* The TokenizedStrategy contract will do all needed debt and idle updates
* after this has finished and will have no effect on PPS of the strategy
* till report() is called.
*
* @param _totalIdle The current amount of idle funds that are available to deploy.
*/
function _tend(uint256 _totalIdle) internal virtual override {
/// If the cost to borrow > rewards rate we will pull out all funds to not report a loss
if (getNetBorrowApr(0) > getNetRewardApr(0)) {
/// Liquidate everything so not to report a loss
_liquidatePosition(balanceOfCollateral());
/// Return since we don't asset to do anything else
return;
}
/// Else we need to either adjust LTV up or down.
_leveragePosition(
Math.min(_totalIdle, availableDepositLimit(address(this)))
);
}
/**
* @dev Optional trigger to override if tend() will be used by the strategy.
* This must be implemented if the strategy hopes to invoke _tend().
*
* @return . Should return true if tend() should be called by keeper or false if not.
*/
function _tendTrigger() internal view virtual override returns (bool) {
/// If we are in danger of being liquidated tend no matter what
if (_isLiquidatable()) return true;
if (TokenizedStrategy.totalAssets() == 0) return false;
/// We adjust position if:
/// 1. LTV ratios are not in the HEALTHY range (either we take on more debt or repay debt)
/// 2. costs are acceptable
uint256 collateralInUsd = _toUsd(balanceOfCollateral(), address(asset));
uint256 debtInUsd = _toUsd(balanceOfDebt(), borrowToken);
uint256 currentLTV = collateralInUsd > 0
? (debtInUsd * WAD) / collateralInUsd
: 0;
/// Check if we are over our warning LTV
if (currentLTV > _getWarningLTV()) {
return true;
}
if (_isSupplyPaused() || _isBorrowPaused()) return false;
uint256 targetLTV = _getTargetLTV();
/// If we are still levered and Borrowing costs are too high.
if (currentLTV != 0 && getNetBorrowApr(0) > getNetRewardApr(0)) {
/// Tend if base fee is acceptable.
return _isBaseFeeAcceptable();
/// IF we are lower than our target. (we need a 10% (1000bps) difference)
} else if ((currentLTV < targetLTV && targetLTV - currentLTV > 1e17)) {
/// Make sure the increase in debt would keep borrowing costs healthy.
uint256 targetDebtUsd = (collateralInUsd * targetLTV) / WAD;
uint256 amountToBorrowUsd;
unchecked {
amountToBorrowUsd = targetDebtUsd - debtInUsd; // safe bc we checked ratios
}
/// Convert to borrowToken
uint256 amountToBorrowBT = Math.min(
_fromUsd(amountToBorrowUsd, borrowToken),
Math.min(_lenderMaxDeposit(), _maxBorrowAmount())
);
if (amountToBorrowBT == 0) return false;
/// We want to make sure that the reward apr > borrow apr so we don't report a loss
/// Borrowing will cause the borrow apr to go up and the rewards apr to go down
if (
getNetBorrowApr(amountToBorrowBT) <
getNetRewardApr(amountToBorrowBT)
) {
/// Borrowing costs are healthy and WE NEED TO TAKE ON MORE DEBT
return _isBaseFeeAcceptable();
}
}
return false;
}
/**
* @notice Gets the max amount of `asset` that an address can deposit.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any deposit or mints to enforce
* any limits desired by the strategist. This can be used for either a
* traditional deposit limit or for implementing a whitelist etc.
*
* EX:
* if(isAllowed[_owner]) return super.availableDepositLimit(_owner);
*
* This does not need to take into account any conversion rates
* from shares to assets. But should know that any non max uint256
* amounts may be converted to shares. So it is recommended to keep
* custom amounts low enough as not to cause overflow when multiplied
* by `totalSupply`.
*
* @param . The address that is depositing into the strategy.
* @return . The available amount the `_owner` can deposit in terms of `asset`
*/
function availableDepositLimit(
address /*_owner*/
) public view virtual override returns (uint256) {
/// We need to be able to both supply and withdraw on deposits.
if (_isSupplyPaused() || _isBorrowPaused()) return 0;
uint256 currentAssets = TokenizedStrategy.totalAssets();
uint256 limit = depositLimit > currentAssets
? depositLimit - currentAssets
: 0;
uint256 maxDeposit = Math.min(_maxCollateralDeposit(), limit);
uint256 maxBorrow = Math.min(_lenderMaxDeposit(), _maxBorrowAmount());
// Either the max supply or the max we could borrow / targetLTV.
return
Math.min(
maxDeposit,
_fromUsd(
(_toUsd(maxBorrow, borrowToken) * WAD) / _getTargetLTV(),
address(asset)
)
);
}
/**
* @notice Gets the max amount of `asset` that can be withdrawn.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any withdraw or redeem to enforce
* any limits desired by the strategist. This can be used for illiquid
* or sandwichable strategies. It should never be lower than `totalIdle`.
*
* EX:
* return TokenIzedStrategy.totalIdle();
*
* This does not need to take into account the `_owner`'s share balance
* or conversion rates from shares to assets.
*
* @param . The address that is withdrawing from the strategy.
* @return . The available amount that can be withdrawn in terms of `asset`
*/
function availableWithdrawLimit(
address /*_owner*/
) public view virtual override returns (uint256) {
/// Default liquidity is the balance of collateral + 1 for rounding.
uint256 liquidity = balanceOfCollateral() + 1;
uint256 lenderLiquidity = _lenderMaxWithdraw();
/// If we can't withdraw or supply, set liquidity = 0.
if (lenderLiquidity < balanceOfLentAssets()) {
/// Adjust liquidity based on withdrawing the full amount of debt.
unchecked {
liquidity = ((_fromUsd(
_toUsd(lenderLiquidity, borrowToken),
address(asset)
) * WAD) / _getTargetLTV());
}
}
return balanceOfAsset() + liquidity;
}
/// ----------------- INTERNAL FUNCTIONS SUPPORT ----------------- \\
/**
* @notice Adjusts the leverage position of the strategy based on current and target Loan-to-Value (LTV) ratios.
* @dev All debt and collateral calculations are done in USD terms. LTV values are represented in 1e18 format.
* @param _amount The amount to be supplied to adjust the leverage position,
*/
function _leveragePosition(uint256 _amount) internal virtual {
/// Supply the given amount to the strategy.
// This function internally checks for zero amounts.
_supplyCollateral(_amount);
uint256 collateralInUsd = _toUsd(balanceOfCollateral(), address(asset));
/// Convert debt to USD
uint256 debtInUsd = _toUsd(balanceOfDebt(), borrowToken);
/// LTV numbers are always in WAD
uint256 currentLTV = collateralInUsd > 0
? (debtInUsd * WAD) / collateralInUsd
: 0;
uint256 targetLTV = _getTargetLTV(); // 70% under default liquidation Threshold
/// decide in which range we are and act accordingly:
/// SUBOPTIMAL(borrow) (e.g. from 0 to 70% liqLTV)
/// HEALTHY(do nothing) (e.g. from 70% to 80% liqLTV)
/// UNHEALTHY(repay) (e.g. from 80% to 100% liqLTV)
if (targetLTV > currentLTV) {
/// SUBOPTIMAL RATIO: our current Loan-to-Value is lower than what we want
/// we need to take on more debt
uint256 targetDebtUsd = (collateralInUsd * targetLTV) / WAD;
uint256 amountToBorrowUsd;
unchecked {
amountToBorrowUsd = targetDebtUsd - debtInUsd; // safe bc we checked ratios
}
/// convert to borrowToken
uint256 amountToBorrowBT = Math.min(
_fromUsd(amountToBorrowUsd, borrowToken),
Math.min(_lenderMaxDeposit(), _maxBorrowAmount())
);
/// We want to make sure that the reward apr > borrow apr so we don't report a loss
/// Borrowing will cause the borrow apr to go up and the rewards apr to go down
if (
getNetBorrowApr(amountToBorrowBT) >
getNetRewardApr(amountToBorrowBT)
) {
/// If we would push it over the limit don't borrow anything
amountToBorrowBT = 0;
}
/// Need to have at least the min threshold
if (amountToBorrowBT > minAmountToBorrow) {
_borrow(amountToBorrowBT);
}
} else if (currentLTV > _getWarningLTV()) {
/// UNHEALTHY RATIO
/// we repay debt to set it to targetLTV
uint256 targetDebtUsd = (targetLTV * collateralInUsd) / WAD;
/// Withdraw the difference from the Depositor
_withdrawFromLender(
_fromUsd(debtInUsd - targetDebtUsd, borrowToken)
);
/// Repay the borrowToken debt.
_repayTokenDebt();
}
// Deposit any loose base token that was borrowed.
uint256 borrowTokenBalance = balanceOfBorrowToken();
if (borrowTokenBalance > 0) {
_lendBorrowToken(borrowTokenBalance);
}
}
/**
* @notice Liquidates the position to ensure the needed amount while maintaining healthy ratios.
* @dev All debt, collateral, and needed amounts are calculated in USD. The needed amount is represented in the asset.
* @param _needed The amount required in the asset.
*/
function _liquidatePosition(uint256 _needed) internal virtual {
/// Cache balance for withdraw checks
uint256 balance = balanceOfAsset();
/// We first repay whatever we need to repay to keep healthy ratios
_withdrawFromLender(_calculateAmountToRepay(_needed));
/// we repay the borrowToken debt with the amount withdrawn from the vault
_repayTokenDebt();
// Withdraw as much as we can up to the amount needed while maintaining a health ltv
_withdrawCollateral(Math.min(_needed, _maxWithdrawal()));
/// We check if we withdrew less than expected, and we do have not more borrowToken
/// left AND should harvest or buy borrowToken with asset (potentially realising losses)
if (
/// if we didn't get enough
_needed > balanceOfAsset() - balance &&
/// still some debt remaining
balanceOfDebt() > 0 &&
/// but no capital to repay
balanceOfLentAssets() == 0 &&
/// And the leave debt flag is false.
!leaveDebtBehind
) {
/// using this part of code may result in losses but it is necessary to unlock full collateral
/// in case of wind down. This should only occur when depleting the strategy so we buy the full
/// amount of our remaining debt. We buy borrowToken first with available rewards then with asset.
_buyBorrowToken();
/// we repay debt to actually unlock collateral
/// after this, balanceOfDebt should be 0
_repayTokenDebt();
/// then we try withdraw once more
/// still withdraw with target LTV since management can potentially save any left over manually
_withdrawCollateral(_maxWithdrawal());
}
}
/**
* @notice Calculates max amount that can be withdrawn while maintaining healthy LTV ratio
* @dev Considers current collateral and debt amounts
* @return The max amount of collateral available for withdrawal
*/
function _maxWithdrawal() internal view virtual returns (uint256) {
uint256 collateral = balanceOfCollateral();
uint256 debt = balanceOfDebt();
/// If there is no debt we can withdraw everything
if (debt == 0) return collateral;
uint256 debtInUsd = _toUsd(debt, borrowToken);
/// What we need to maintain a health LTV
uint256 neededCollateral = _fromUsd(
(debtInUsd * WAD) / _getTargetLTV(),
address(asset)
);
/// We need more collateral so we cant withdraw anything
if (neededCollateral > collateral) {
return 0;
}
/// Return the difference in terms of asset
unchecked {
return collateral - neededCollateral;
}
}
/**
* @notice Calculates amount of debt to repay to maintain healthy LTV ratio
* @dev Considers target LTV, amount being withdrawn, and current collateral/debt
* @param amount The withdrawal amount
* @return The amount of debt to repay
*/
function _calculateAmountToRepay(
uint256 amount
) internal view virtual returns (uint256) {
if (amount == 0) return 0;
uint256 collateral = balanceOfCollateral();
/// To unlock all collateral we must repay all the debt
if (amount >= collateral) return balanceOfDebt();
/// We check if the collateral that we are withdrawing leaves us in a risky range, we then take action
uint256 newCollateralUsd = _toUsd(collateral - amount, address(asset));
uint256 targetDebtUsd = (newCollateralUsd * _getTargetLTV()) / WAD;
uint256 targetDebt = _fromUsd(targetDebtUsd, borrowToken);
uint256 currentDebt = balanceOfDebt();
/// Repay only if our target debt is lower than our current debt
return targetDebt < currentDebt ? currentDebt - targetDebt : 0;
}
/**
* @notice Repays outstanding debt with available base tokens
* @dev Repays debt by supplying base tokens up to the min of available balance and debt amount
*/
function _repayTokenDebt() internal virtual {
/// We cannot pay more than loose balance or more than we owe
_repay(Math.min(balanceOfBorrowToken(), balanceOfDebt()));
}
/**
* @notice Withdraws a specified amount of `borrowToken` from the lender.
* @param amount The amount of the borrowToken to withdraw.
*/
function _withdrawFromLender(uint256 amount) internal virtual {
uint256 balancePrior = balanceOfBorrowToken();
/// Only withdraw what we don't already have free
amount = balancePrior >= amount ? 0 : amount - balancePrior;
/// Make sure we have enough balance.
amount = Math.min(amount, _lenderMaxWithdraw());
if (amount == 0) return;
_withdrawBorrowToken(amount);
}
// ----------------- INTERNAL WRITE FUNCTIONS ----------------- \\
/**
* @notice Supplies a specified amount of `asset` as collateral.
* @param amount The amount of the asset to supply.
*/
function _supplyCollateral(uint256 amount) internal virtual;
/**
* @notice Withdraws a specified amount of collateral.
* @param amount The amount of the collateral to withdraw.
*/
function _withdrawCollateral(uint256 amount) internal virtual;
/**
* @notice Borrows a specified amount of `borrowToken`.
* @param amount The amount of the borrowToken to borrow.
*/
function _borrow(uint256 amount) internal virtual;
/**
* @notice Repays a specified amount of `borrowToken`.
* @param amount The amount of the borrowToken to repay.
*/
function _repay(uint256 amount) internal virtual;
/**
* @notice Lends a specified amount of `borrowToken`.
* @param amount The amount of the borrowToken to lend.
*/
function _lendBorrowToken(uint256 amount) internal virtual {
lenderVault.deposit(amount, address(this));
}
/**
* @notice Withdraws a specified amount of `borrowToken`.
* @param amount The amount of the borrowToken to withdraw.
*/
function _withdrawBorrowToken(uint256 amount) internal virtual {
// Use previewWithdraw to round up.
uint256 shares = Math.min(
lenderVault.previewWithdraw(amount),
lenderVault.balanceOf(address(this))
);
lenderVault.redeem(shares, address(this), address(this));
}
// ----------------- INTERNAL VIEW FUNCTIONS ----------------- \\
/**
* @notice Gets asset price returned 1e8
* @param _asset The asset address
* @return price asset price
*/
function _getPrice(
address _asset
) internal view virtual returns (uint256 price);
/**
* @notice Checks if lending or borrowing is paused
* @return True if paused, false otherwise
*/
function _isSupplyPaused() internal view virtual returns (bool);
/**
* @notice Checks if borrowing is paused
* @return True if paused, false otherwise
*/
function _isBorrowPaused() internal view virtual returns (bool);
/**
* @notice Checks if the strategy is liquidatable
* @return True if liquidatable, false otherwise
*/
function _isLiquidatable() internal view virtual returns (bool);
/**
* @notice Gets the supply cap for the collateral asset if any
* @return The supply cap
*/
function _maxCollateralDeposit() internal view virtual returns (uint256);
/**
* @notice Gets the max amount of `borrowToken` that could be borrowed
* @return The max borrow amount
*/
function _maxBorrowAmount() internal view virtual returns (uint256);
/**
* @notice Gets the max amount of `borrowToken` that could be deposited to the lender
* @return The max deposit amount
*/
function _lenderMaxDeposit() internal view virtual returns (uint256) {
return lenderVault.maxDeposit(address(this));
}
/**
* @notice Gets the amount of borrowToken that could be withdrawn from the lender
* @return The lender liquidity
*/
function _lenderMaxWithdraw() internal view virtual returns (uint256) {
return
lenderVault.convertToAssets(lenderVault.maxRedeem(address(this)));
}
/**
* @notice Gets net borrow APR from depositor
* @param newAmount Simulated supply amount
* @return Net borrow APR
*/
function getNetBorrowApr(
uint256 newAmount
) public view virtual returns (uint256);
/**
* @notice Gets net reward APR from depositor
* @param newAmount Simulated supply amount
* @return Net reward APR
*/
function getNetRewardApr(
uint256 newAmount
) public view virtual returns (uint256);
/**
* @notice Gets liquidation collateral factor for asset
* @return Liquidation collateral factor
*/
function getLiquidateCollateralFactor()
public
view
virtual
returns (uint256);
/**
* @notice Gets supplied collateral balance
* @return Collateral balance
*/
function balanceOfCollateral() public view virtual returns (uint256);
/**
* @notice Gets current borrow balance
* @return Borrow balance
*/
function balanceOfDebt() public view virtual returns (uint256);
/**
* @notice Gets full depositor balance
* @return Depositor balance
*/
function balanceOfLentAssets() public view virtual returns (uint256) {
return
lenderVault.convertToAssets(lenderVault.balanceOf(address(this)));
}
/**
* @notice Gets available balance of asset token
* @return The asset token balance
*/
function balanceOfAsset() public view virtual returns (uint256) {
return asset.balanceOf(address(this));
}
/**
* @notice Gets available base token balance
* @return Base token balance
*/
function balanceOfBorrowToken() public view virtual returns (uint256) {
return ERC20(borrowToken).balanceOf(address(this));
}
/**
* @notice Gets net owed base tokens (borrowed - supplied)
* @return Net base tokens owed
*/
function borrowTokenOwedBalance() public view virtual returns (uint256) {
uint256 have = balanceOfLentAssets() + balanceOfBorrowToken();
uint256 owe = balanceOfDebt();
/// If they are the same or supply > debt return 0
if (have >= owe) return 0;
unchecked {
return owe - have;
}
}
/**
* @notice Gets base tokens owed in asset terms
* @return owed tokens owed in asset value
*/
function _borrowTokenOwedInAsset()
internal
view
virtual
returns (uint256 owed)
{
/// Don't do conversions unless it's a non-zero false.
uint256 owedInBase = borrowTokenOwedBalance();
if (owedInBase != 0) {
owed = _fromUsd(_toUsd(owedInBase, borrowToken), address(asset));
}
}
/**
* @notice Calculates current loan-to-value ratio
* @dev Converts collateral and debt values to USD
* @return Current LTV in 1e18 format
*/
function getCurrentLTV() external view virtual returns (uint256) {
uint256 collateral = balanceOfCollateral();
if (collateral == 0) return 0;
unchecked {
return
(_toUsd(balanceOfDebt(), borrowToken) * WAD) /
_toUsd(collateral, address(asset));
}
}
/**
* @notice Gets target loan-to-value ratio
* @dev Calculates based on liquidation threshold and multiplier
* @return Target LTV in 1e18 format
*/
function _getTargetLTV() internal view virtual returns (uint256) {
unchecked {
return
(getLiquidateCollateralFactor() * targetLTVMultiplier) /
MAX_BPS;
}
}
/**
* @notice Gets warning loan-to-value ratio
* @dev Calculates based on liquidation threshold and multiplier
* @return Warning LTV in 1e18 format
*/
function _getWarningLTV() internal view virtual returns (uint256) {
unchecked {
return
(getLiquidateCollateralFactor() * warningLTVMultiplier) /
MAX_BPS;
}
}
/**
* @notice Converts a token amount to USD value
* @dev This assumes _getPrice returns constants 1e8 price
* @param _amount The token amount
* @param _token The token address
* @return The USD value scaled by 1e8
*/
function _toUsd(
uint256 _amount,
address _token
) internal view virtual returns (uint256) {
if (_amount == 0) return 0;
unchecked {
return
(_amount * _getPrice(_token)) /
(10 ** ERC20(_token).decimals());
}
}
/**
* @notice Converts a USD amount to token value
* @dev This assumes _getPrice returns constants 1e8 price
* @param _amount The USD amount (scaled by 1e8)
* @param _token The token address
* @return The token amount
*/
function _fromUsd(
uint256 _amount,
address _token
) internal view virtual returns (uint256) {
if (_amount == 0) return 0;
unchecked {
return
(_amount * (10 ** ERC20(_token).decimals())) /
_getPrice(_token);
}
}
/// ----------------- HARVEST / TOKEN CONVERSIONS -----------------
/**
* @notice Claims reward tokens.
*/
function _claimRewards() internal virtual;
/**
* @notice Claims and sells available reward tokens
* @dev Handles claiming, selling rewards for borrow tokens if needed, and selling remaining rewards for asset
*/
function _claimAndSellRewards() internal virtual;
/**
* @dev Buys the borrow token using the strategy's assets.
* This function should only ever be called when withdrawing all funds from the strategy if there is debt left over.
* Initially, it tries to sell rewards for the needed amount of base token, then it will swap assets.
* Using this function in a standard withdrawal can cause it to be sandwiched, which is why rewards are used first.
*/
function _buyBorrowToken() internal virtual;
/**
* @dev Will swap from the base token => underlying asset.
*/
function _sellBorrowToken(uint256 _amount) internal virtual;
/**
* @notice Estimates swap output accounting for slippage
* @param _amount Input amount
* @param _from Input token
* @param _to Output token
* @return Estimated output amount
*/
function _getAmountOut(
uint256 _amount,
address _from,
address _to
) internal view virtual returns (uint256) {
if (_amount == 0) return 0;
return
(_fromUsd(_toUsd(_amount, _from), _to) * (MAX_BPS - slippage)) /
MAX_BPS;
}
/**
* @notice Checks if base fee is acceptable
* @return True if base fee is below threshold
*/
function _isBaseFeeAcceptable() internal view virtual returns (bool) {
return block.basefee <= maxGasPriceToTend;
}
/**
* @dev Optional function for a strategist to override that will
* allow management to manually withdraw deployed funds from the
* yield source if a strategy is shutdown.
*
* This should attempt to free `_amount`, noting that `_amount` may
* be more than is currently deployed.
*
* NOTE: This will not realize any profits or losses. A separate
* {report} will be needed in order to record any profit/loss. If
* a report may need to be called after a shutdown it is important
* to check if the strategy is shutdown during {_harvestAndReport}
* so that it does not simply re-deploy all funds that had been freed.
*
* EX:
* if(freeAsset > 0 && !TokenizedStrategy.isShutdown()) {
* depositFunds...
* }
*
* @param _amount The amount of asset to attempt to free.
*/
function _emergencyWithdraw(uint256 _amount) internal virtual override {
if (_amount > 0) {
_withdrawBorrowToken(Math.min(_amount, _lenderMaxWithdraw()));
}
// Repay everything we can.
_repayTokenDebt();
// Withdraw all that makes sense.
_withdrawCollateral(_maxWithdrawal());
}
// Manually Sell rewards
function claimAndSellRewards() external virtual onlyEmergencyAuthorized {
_claimAndSellRewards();
}
/// @notice Sell a specific amount of `borrowToken` -> asset.
/// The amount of borrowToken should be loose in the strategy before this is called
/// max uint input will sell any excess borrowToken we have.
function sellBorrowToken(
uint256 _amount
) external virtual onlyEmergencyAuthorized {
if (_amount == type(uint256).max) {
uint256 _balanceOfBorrowToken = balanceOfBorrowToken();
_amount = Math.min(
balanceOfLentAssets() + _balanceOfBorrowToken - balanceOfDebt(),
_balanceOfBorrowToken
);
}
_sellBorrowToken(_amount);
}
/// @notice Withdraw a specific amount of `_token`
function manualWithdraw(
address _token,
uint256 _amount
) external virtual onlyEmergencyAuthorized {
if (_token == borrowToken) {
_withdrawBorrowToken(_amount);
} else {
_withdrawCollateral(_amount);
}
}
// Manually repay debt with loose borrowToken already in the strategy.
function manualRepayDebt() external virtual onlyEmergencyAuthorized {
_repayTokenDebt();
}
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
// TokenizedStrategy interface used for internal view delegateCalls.
import {ITokenizedStrategy} from "./interfaces/ITokenizedStrategy.sol";
/**
* @title YearnV3 Base Strategy
* @author yearn.finance
* @notice
* BaseStrategy implements all of the required functionality to
* seamlessly integrate with the `TokenizedStrategy` implementation contract
* allowing anyone to easily build a fully permissionless ERC-4626 compliant
* Vault by inheriting this contract and overriding three simple functions.
* It utilizes an immutable proxy pattern that allows the BaseStrategy
* to remain simple and small. All standard logic is held within the
* `TokenizedStrategy` and is reused over any n strategies all using the
* `fallback` function to delegatecall the implementation so that strategists
* can only be concerned with writing their strategy specific code.
*
* This contract should be inherited and the three main abstract methods
* `_deployFunds`, `_freeFunds` and `_harvestAndReport` implemented to adapt
* the Strategy to the particular needs it has to generate yield. There are
* other optional methods that can be implemented to further customize
* the strategy if desired.
*
* All default storage for the strategy is controlled and updated by the
* `TokenizedStrategy`. The implementation holds a storage struct that
* contains all needed global variables in a manual storage slot. This
* means strategists can feel free to implement their own custom storage
* variables as they need with no concern of collisions. All global variables
* can be viewed within the Strategy by a simple call using the
* `TokenizedStrategy` variable. IE: TokenizedStrategy.globalVariable();.
*/
abstract contract BaseStrategy {
/*//////////////////////////////////////////////////////////////
MODIFIERS
//////////////////////////////////////////////////////////////*/
/**
* @dev Used on TokenizedStrategy callback functions to make sure it is post
* a delegateCall from this address to the TokenizedStrategy.
*/
modifier onlySelf() {
_onlySelf();
_;
}
/**
* @dev Use to assure that the call is coming from the strategies management.
*/
modifier onlyManagement() {
TokenizedStrategy.requireManagement(msg.sender);
_;
}
/**
* @dev Use to assure that the call is coming from either the strategies
* management or the keeper.
*/
modifier onlyKeepers() {
TokenizedStrategy.requireKeeperOrManagement(msg.sender);
_;
}
/**
* @dev Use to assure that the call is coming from either the strategies
* management or the emergency admin.
*/
modifier onlyEmergencyAuthorized() {
TokenizedStrategy.requireEmergencyAuthorized(msg.sender);
_;
}
/**
* @dev Require that the msg.sender is this address.
*/
function _onlySelf() internal view {
require(msg.sender == address(this), "!self");
}
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
/**
* @dev This is the address of the TokenizedStrategy implementation
* contract that will be used by all strategies to handle the
* accounting, logic, storage etc.
*
* Any external calls to the that don't hit one of the functions
* defined in this base or the strategy will end up being forwarded
* through the fallback function, which will delegateCall this address.
*
* This address should be the same for every strategy, never be adjusted
* and always be checked before any integration with the Strategy.
*/
address public constant tokenizedStrategyAddress =
0xD377919FA87120584B21279a491F82D5265A139c;
/*//////////////////////////////////////////////////////////////
IMMUTABLES
//////////////////////////////////////////////////////////////*/
/**
* @dev Underlying asset the Strategy is earning yield on.
* Stored here for cheap retrievals within the strategy.
*/
ERC20 internal immutable asset;
/**
* @dev This variable is set to address(this) during initialization of each strategy.
*
* This can be used to retrieve storage data within the strategy
* contract as if it were a linked library.
*
* i.e. uint256 totalAssets = TokenizedStrategy.totalAssets()
*
* Using address(this) will mean any calls using this variable will lead
* to a call to itself. Which will hit the fallback function and
* delegateCall that to the actual TokenizedStrategy.
*/
ITokenizedStrategy internal immutable TokenizedStrategy;
/**
* @notice Used to initialize the strategy on deployment.
*
* This will set the `TokenizedStrategy` variable for easy
* internal view calls to the implementation. As well as
* initializing the default storage variables based on the
* parameters and using the deployer for the permissioned roles.
*
* @param _asset Address of the underlying asset.
* @param _name Name the strategy will use.
*/
constructor(address _asset, string memory _name) {
asset = ERC20(_asset);
// Set instance of the implementation for internal use.
TokenizedStrategy = ITokenizedStrategy(address(this));
// Initialize the strategy's storage variables.
_delegateCall(
abi.encodeCall(
ITokenizedStrategy.initialize,
(_asset, _name, msg.sender, msg.sender, msg.sender)
)
);
// Store the tokenizedStrategyAddress at the standard implementation
// address storage slot so etherscan picks up the interface. This gets
// stored on initialization and never updated.
assembly {
sstore(
// keccak256('eip1967.proxy.implementation' - 1)
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc,
tokenizedStrategyAddress
)
}
}
/*//////////////////////////////////////////////////////////////
NEEDED TO BE OVERRIDDEN BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Can deploy up to '_amount' of 'asset' in the yield source.
*
* This function is called at the end of a {deposit} or {mint}
* call. Meaning that unless a whitelist is implemented it will
* be entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* @param _amount The amount of 'asset' that the strategy can attempt
* to deposit in the yield source.
*/
function _deployFunds(uint256 _amount) internal virtual;
/**
* @dev Should attempt to free the '_amount' of 'asset'.
*
* NOTE: The amount of 'asset' that is already loose has already
* been accounted for.
*
* This function is called during {withdraw} and {redeem} calls.
* Meaning that unless a whitelist is implemented it will be
* entirely permissionless and thus can be sandwiched or otherwise
* manipulated.
*
* Should not rely on asset.balanceOf(address(this)) calls other than
* for diff accounting purposes.
*
* Any difference between `_amount` and what is actually freed will be
* counted as a loss and passed on to the withdrawer. This means
* care should be taken in times of illiquidity. It may be better to revert
* if withdraws are simply illiquid so not to realize incorrect losses.
*
* @param _amount, The amount of 'asset' to be freed.
*/
function _freeFunds(uint256 _amount) internal virtual;
/**
* @dev Internal function to harvest all rewards, redeploy any idle
* funds and return an accurate accounting of all funds currently
* held by the Strategy.
*
* This should do any needed harvesting, rewards selling, accrual,
* redepositing etc. to get the most accurate view of current assets.
*
* NOTE: All applicable assets including loose assets should be
* accounted for in this function.
*
* Care should be taken when relying on oracles or swap values rather
* than actual amounts as all Strategy profit/loss accounting will
* be done based on this returned value.
*
* This can still be called post a shutdown, a strategist can check
* `TokenizedStrategy.isShutdown()` to decide if funds should be
* redeployed or simply realize any profits/losses.
*
* @return _totalAssets A trusted and accurate account for the total
* amount of 'asset' the strategy currently holds including idle funds.
*/
function _harvestAndReport()
internal
virtual
returns (uint256 _totalAssets);
/*//////////////////////////////////////////////////////////////
OPTIONAL TO OVERRIDE BY STRATEGIST
//////////////////////////////////////////////////////////////*/
/**
* @dev Optional function for strategist to override that can
* be called in between reports.
*
* If '_tend' is used tendTrigger() will also need to be overridden.
*
* This call can only be called by a permissioned role so may be
* through protected relays.
*
* This can be used to harvest and compound rewards, deposit idle funds,
* perform needed position maintenance or anything else that doesn't need
* a full report for.
*
* EX: A strategy that can not deposit funds without getting
* sandwiched can use the tend when a certain threshold
* of idle to totalAssets has been reached.
*
* This will have no effect on PPS of the strategy till report() is called.
*
* @param _totalIdle The current amount of idle funds that are available to deploy.
*/
function _tend(uint256 _totalIdle) internal virtual {}
/**
* @dev Optional trigger to override if tend() will be used by the strategy.
* This must be implemented if the strategy hopes to invoke _tend().
*
* @return . Should return true if tend() should be called by keeper or false if not.
*/
function _tendTrigger() internal view virtual returns (bool) {
return false;
}
/**
* @notice Returns if tend() should be called by a keeper.
*
* @return . Should return true if tend() should be called by keeper or false if not.
* @return . Calldata for the tend call.
*/
function tendTrigger() external view virtual returns (bool, bytes memory) {
return (
// Return the status of the tend trigger.
_tendTrigger(),
// And the needed calldata either way.
abi.encodeWithSelector(ITokenizedStrategy.tend.selector)
);
}
/**
* @notice Gets the max amount of `asset` that an address can deposit.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any deposit or mints to enforce
* any limits desired by the strategist. This can be used for either a
* traditional deposit limit or for implementing a whitelist etc.
*
* EX:
* if(isAllowed[_owner]) return super.availableDepositLimit(_owner);
*
* This does not need to take into account any conversion rates
* from shares to assets. But should know that any non max uint256
* amounts may be converted to shares. So it is recommended to keep
* custom amounts low enough as not to cause overflow when multiplied
* by `totalSupply`.
*
* @param . The address that is depositing into the strategy.
* @return . The available amount the `_owner` can deposit in terms of `asset`
*/
function availableDepositLimit(
address /*_owner*/
) public view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @notice Gets the max amount of `asset` that can be withdrawn.
* @dev Defaults to an unlimited amount for any address. But can
* be overridden by strategists.
*
* This function will be called before any withdraw or redeem to enforce
* any limits desired by the strategist. This can be used for illiquid
* or sandwichable strategies. It should never be lower than `totalIdle`.
*
* EX:
* return TokenIzedStrategy.totalIdle();
*
* This does not need to take into account the `_owner`'s share balance
* or conversion rates from shares to assets.
*
* @param . The address that is withdrawing from the strategy.
* @return . The available amount that can be withdrawn in terms of `asset`
*/
function availableWithdrawLimit(
address /*_owner*/
) public view virtual returns (uint256) {
return type(uint256).max;
}
/**
* @dev Optional function for a strategist to override that will
* allow management to manually withdraw deployed funds from the
* yield source if a strategy is shutdown.
*
* This should attempt to free `_amount`, noting that `_amount` may
* be more than is currently deployed.
*
* NOTE: This will not realize any profits or losses. A separate
* {report} will be needed in order to record any profit/loss. If
* a report may need to be called after a shutdown it is important
* to check if the strategy is shutdown during {_harvestAndReport}
* so that it does not simply re-deploy all funds that had been freed.
*
* EX:
* if(freeAsset > 0 && !TokenizedStrategy.isShutdown()) {
* depositFunds...
* }
*
* @param _amount The amount of asset to attempt to free.
*/
function _emergencyWithdraw(uint256 _amount) internal virtual {}
/*//////////////////////////////////////////////////////////////
TokenizedStrategy HOOKS
//////////////////////////////////////////////////////////////*/
/**
* @notice Can deploy up to '_amount' of 'asset' in yield source.
* @dev Callback for the TokenizedStrategy to call during a {deposit}
* or {mint} to tell the strategy it can deploy funds.
*
* Since this can only be called after a {deposit} or {mint}
* delegateCall to the TokenizedStrategy msg.sender == address(this).
*
* Unless a whitelist is implemented this will be entirely permissionless
* and thus can be sandwiched or otherwise manipulated.
*
* @param _amount The amount of 'asset' that the strategy can
* attempt to deposit in the yield source.
*/
function deployFunds(uint256 _amount) external virtual onlySelf {
_deployFunds(_amount);
}
/**
* @notice Should attempt to free the '_amount' of 'asset'.
* @dev Callback for the TokenizedStrategy to call during a withdraw
* or redeem to free the needed funds to service the withdraw.
*
* This can only be called after a 'withdraw' or 'redeem' delegateCall
* to the TokenizedStrategy so msg.sender == address(this).
*
* @param _amount The amount of 'asset' that the strategy should attempt to free up.
*/
function freeFunds(uint256 _amount) external virtual onlySelf {
_freeFunds(_amount);
}
/**
* @notice Returns the accurate amount of all funds currently
* held by the Strategy.
* @dev Callback for the TokenizedStrategy to call during a report to
* get an accurate accounting of assets the strategy controls.
*
* This can only be called after a report() delegateCall to the
* TokenizedStrategy so msg.sender == address(this).
*
* @return . A trusted and accurate account for the total amount
* of 'asset' the strategy currently holds including idle funds.
*/
function harvestAndReport() external virtual onlySelf returns (uint256) {
return _harvestAndReport();
}
/**
* @notice Will call the internal '_tend' when a keeper tends the strategy.
* @dev Callback for the TokenizedStrategy to initiate a _tend call in the strategy.
*
* This can only be called after a tend() delegateCall to the TokenizedStrategy
* so msg.sender == address(this).
*
* We name the function `tendThis` so that `tend` calls are forwarded to
* the TokenizedStrategy.
* @param _totalIdle The amount of current idle funds that can be
* deployed during the tend
*/
function tendThis(uint256 _totalIdle) external virtual onlySelf {
_tend(_totalIdle);
}
/**
* @notice Will call the internal '_emergencyWithdraw' function.
* @dev Callback for the TokenizedStrategy during an emergency withdraw.
*
* This can only be called after a emergencyWithdraw() delegateCall to
* the TokenizedStrategy so msg.sender == address(this).
*
* We name the function `shutdownWithdraw` so that `emergencyWithdraw`
* calls are forwarded to the TokenizedStrategy.
*
* @param _amount The amount of asset to attempt to free.
*/
function shutdownWithdraw(uint256 _amount) external virtual onlySelf {
_emergencyWithdraw(_amount);
}
/**
* @dev Function used to delegate call the TokenizedStrategy with
* certain `_calldata` and return any return values.
*
* This is used to setup the initial storage of the strategy, and
* can be used by strategist to forward any other call to the
* TokenizedStrategy implementation.
*
* @param _calldata The abi encoded calldata to use in delegatecall.
* @return . The return value if the call was successful in bytes.
*/
function _delegateCall(
bytes memory _calldata
) internal returns (bytes memory) {
// Delegate call the tokenized strategy with provided calldata.
(bool success, bytes memory result) = tokenizedStrategyAddress
.delegatecall(_calldata);
// If the call reverted. Return the error.
if (!success) {
assembly {
let ptr := mload(0x40)
let size := returndatasize()
returndatacopy(ptr, 0, size)
revert(ptr, size)
}
}
// Return the result.
return result;
}
/**
* @dev Execute a function on the TokenizedStrategy and return any value.
*
* This fallback function will be executed when any of the standard functions
* defined in the TokenizedStrategy are called since they wont be defined in
* this contract.
*
* It will delegatecall the TokenizedStrategy implementation with the exact
* calldata and return any relevant values.
*
*/
fallback() external {
// load our target address
address _tokenizedStrategyAddress = tokenizedStrategyAddress;
// Execute external function using delegatecall and return any value.
assembly {
// Copy function selector and any arguments.
calldatacopy(0, 0, calldatasize())
// Execute function delegatecall.
let result := delegatecall(
gas(),
_tokenizedStrategyAddress,
0,
calldatasize(),
0,
0
)
// Get any return value
returndatacopy(0, 0, returndatasize())
// Return any return value or error back to the caller
switch result
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
}
pragma solidity >=0.5.0;
import "./CTokenI.sol";
interface CErc20I is CTokenI {
function mint(uint256 mintAmount) external returns (uint256);
function redeem(uint256 redeemTokens) external returns (uint256);
function redeemUnderlying(uint256 redeemAmount) external returns (uint256);
function borrow(uint256 borrowAmount) external returns (uint256);
function repayBorrow(uint256 repayAmount) external returns (uint256);
function repayBorrowBehalf(
address borrower,
uint256 repayAmount
) external returns (uint256);
function liquidateBorrow(
address borrower,
uint256 repayAmount,
CTokenI cTokenCollateral
) external returns (uint256);
function underlying() external view returns (address);
function comptroller() external view returns (address);
}
pragma solidity >=0.5.0;
import "./InterestRateModel.sol";
interface CTokenI {
/*** Market Events ***/
/**
* @notice Event emitted when interest is accrued
*/
event AccrueInterest(
uint256 cashPrior,
uint256 interestAccumulated,
uint256 borrowIndex,
uint256 totalBorrows
);
/**
* @notice Event emitted when tokens are minted
*/
event Mint(address minter, uint256 mintAmount, uint256 mintTokens);
/**
* @notice Event emitted when tokens are redeemed
*/
event Redeem(address redeemer, uint256 redeemAmount, uint256 redeemTokens);
/**
* @notice Event emitted when underlying is borrowed
*/
event Borrow(
address borrower,
uint256 borrowAmount,
uint256 accountBorrows,
uint256 totalBorrows
);
/**
* @notice Event emitted when a borrow is repaid
*/
event RepayBorrow(
address payer,
address borrower,
uint256 repayAmount,
uint256 accountBorrows,
uint256 totalBorrows
);
/**
* @notice Event emitted when a borrow is liquidated
*/
event LiquidateBorrow(
address liquidator,
address borrower,
uint256 repayAmount,
address cTokenCollateral,
uint256 seizeTokens
);
/*** Admin Events ***/
/**
* @notice Event emitted when pendingAdmin is changed
*/
event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin);
/**
* @notice Event emitted when pendingAdmin is accepted, which means admin is updated
*/
event NewAdmin(address oldAdmin, address newAdmin);
/**
* @notice Event emitted when the reserve factor is changed
*/
event NewReserveFactor(
uint256 oldReserveFactorMantissa,
uint256 newReserveFactorMantissa
);
/**
* @notice Event emitted when the reserves are added
*/
event ReservesAdded(
address benefactor,
uint256 addAmount,
uint256 newTotalReserves
);
/**
* @notice Event emitted when the reserves are reduced
*/
event ReservesReduced(
address admin,
uint256 reduceAmount,
uint256 newTotalReserves
);
/**
* @notice EIP20 Transfer event
*/
event Transfer(address indexed from, address indexed to, uint256 amount);
/**
* @notice EIP20 Approval event
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 amount
);
/**
* @notice Failure event
*/
event Failure(uint256 error, uint256 info, uint256 detail);
function transfer(address dst, uint256 amount) external returns (bool);
function transferFrom(
address src,
address dst,
uint256 amount
) external returns (bool);
function approve(address spender, uint256 amount) external returns (bool);
function allowance(
address owner,
address spender
) external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function balanceOfUnderlying(address owner) external returns (uint256);
function getAccountSnapshot(
address account
) external view returns (uint256, uint256, uint256, uint256);
function borrowRatePerBlock() external view returns (uint256);
function supplyRatePerBlock() external view returns (uint256);
function totalBorrowsCurrent() external returns (uint256);
function borrowBalanceCurrent(address account) external returns (uint256);
function borrowBalanceStored(
address account
) external view returns (uint256);
function exchangeRateCurrent() external returns (uint256);
function accrualBlockTimestamp() external view returns (uint256);
function exchangeRateStored() external view returns (uint256);
function getCash() external view returns (uint256);
function accrueInterest() external returns (uint256);
function interestRateModel() external view returns (InterestRateModel);
function totalReserves() external view returns (uint256);
function reserveFactorMantissa() external view returns (uint256);
function seize(
address liquidator,
address borrower,
uint256 seizeTokens
) external returns (uint256);
function totalBorrows() external view returns (uint256);
function totalSupply() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
interface CompoundOracleI {
function getUnderlyingPrice(address cToken) external view returns (uint256);
function getFeed(string memory symbol) external view returns (address);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.18;
import {IOracle} from "./interfaces/IOracle.sol";
import {CErc20I} from "./interfaces/compound/CErc20I.sol";
import {ComptrollerI} from "./interfaces/compound/ComptrollerI.sol";
import {CompoundOracleI} from "./interfaces/compound/CompoundOracleI.sol";
import {BaseLenderBorrower, ERC20, SafeERC20, Math} from "./BaseLenderBorrower.sol";
abstract contract CompoundV2LenderBorrower is BaseLenderBorrower {
using SafeERC20 for ERC20;
struct TokenInfo {
address priceFeed;
uint96 decimals;
}
modifier accrue() {
accrueInterest();
_;
}
/// @notice The governance address
address public immutable GOV;
CErc20I public immutable cToken;
CErc20I public immutable cBorrowToken;
ComptrollerI public immutable comptroller;
uint256 public minAmountToSell;
/// Mapping from token => struct containing its reused info
mapping(address => TokenInfo) public tokenInfo;
constructor(
address _asset,
string memory _name,
address _borrowToken,
address _lenderVault,
address _gov,
address _cToken,
address _cBorrowToken
) BaseLenderBorrower(_asset, _name, _borrowToken, _lenderVault) {
GOV = _gov;
cToken = CErc20I(_cToken);
require(cToken.underlying() == _asset, "!asset");
cBorrowToken = CErc20I(_cBorrowToken);
require(cBorrowToken.underlying() == _borrowToken, "!borrowToken");
comptroller = ComptrollerI(cToken.comptroller());
address[] memory cTokens = new address[](1);
cTokens[0] = _cToken;
comptroller.enterMarkets(cTokens);
asset.safeApprove(_cToken, type(uint256).max);
ERC20(_borrowToken).safeApprove(_cBorrowToken, type(uint256).max);
minAmountToSell = 1e14;
CompoundOracleI compoundOracle = CompoundOracleI(comptroller.oracle());
tokenInfo[_borrowToken].decimals = uint96(
10 ** ERC20(_borrowToken).decimals()
);
tokenInfo[address(asset)].decimals = uint96(
10 ** ERC20(address(asset)).decimals()
);
}
function accrueInterest() public virtual {
if (cToken.accrualBlockTimestamp() != block.timestamp) {
cToken.exchangeRateCurrent();
}
if (cBorrowToken.accrualBlockTimestamp() != block.timestamp) {
cBorrowToken.exchangeRateCurrent();
}
}
// Override each state changing function to accrue interest first.
function _deployFunds(uint256 _amount) internal virtual override accrue {
_leveragePosition(_amount);
}
function _freeFunds(uint256 _amount) internal virtual override accrue {
_liquidatePosition(_amount);
}
function _harvestAndReport()
internal
virtual
override
accrue
returns (uint256)
{
return super._harvestAndReport();
}
function _tend(uint256 _totalIdle) internal virtual override accrue {
super._tend(_totalIdle);
}
function setPriceFeed(
address _token,
address _priceFeed
) external virtual onlyManagement {
// Make sure it works
IOracle(_priceFeed).latestAnswer();
tokenInfo[_token].priceFeed = _priceFeed;
}
function setMinAmountToSell(
uint256 _minAmountToSell
) external virtual onlyManagement {
minAmountToSell = _minAmountToSell;
}
// ----------------- WRITE FUNCTIONS ----------------- \\
/**
* @notice Supplies a specified amount of `asset` as collateral.
* @param amount The amount of the asset to supply.
*/
function _supplyCollateral(uint256 amount) internal virtual override {
require(cToken.mint(amount) == 0);
}
/**
* @notice Withdraws a specified amount of collateral.
* @param amount The amount of the collateral to withdraw.
*/
function _withdrawCollateral(uint256 amount) internal virtual override {
require(cToken.redeemUnderlying(amount) == 0);
}
/**
* @notice Borrows a specified amount of `borrowToken`.
* @param amount The amount of the borrowToken to borrow.
*/
function _borrow(uint256 amount) internal virtual override {
require(cBorrowToken.borrow(amount) == 0);
}
/**
* @notice Repays a specified amount of `borrowToken`.
* @param amount The amount of the borrowToken to repay.
*/
function _repay(uint256 amount) internal virtual override {
if (amount == 0) return;
require(cBorrowToken.repayBorrow(amount) == 0);
}
// ----------------- INTERNAL VIEW FUNCTIONS ----------------- \\
/**
* @notice Converts a token amount to USD value
* @dev Uses Compound price feed and token decimals
* @param _amount The token amount
* @param _token The token address
* @return The USD value scaled by 1e8
*/
function _toUsd(
uint256 _amount,
address _token
) internal view virtual override returns (uint256) {
if (_amount == 0) return 0;
unchecked {
return
(_amount * _getPrice(_token)) /
(uint256(tokenInfo[_token].decimals));
}
}
/**
* @notice Converts a USD amount to token value
* @dev Uses Compound price feed and token decimals
* @param _amount The USD amount (scaled by 1e8)
* @param _token The token address
* @return The token amount
*/
function _fromUsd(
uint256 _amount,
address _token
) internal view virtual override returns (uint256) {
if (_amount == 0) return 0;
unchecked {
return
(_amount * (uint256(tokenInfo[_token].decimals))) /
_getPrice(_token);
}
}
/**
* @notice Gets asset price returned 1e18
* @param _token The asset address
* @return price asset price
*/
function _getPrice(
address _token
) internal view virtual override returns (uint256) {
address priceFeed = tokenInfo[_token].priceFeed;
if (priceFeed != address(0)) {
return uint256(IOracle(priceFeed).latestAnswer());
}
uint256 decimalDelta = WAD / tokenInfo[_token].decimals;
// Compound oracle expects the token to be the cToken
if (_token == address(asset)) {
_token = address(cToken);
} else if (_token == address(borrowToken)) {
_token = address(cBorrowToken);
}
return
CompoundOracleI(comptroller.oracle()).getUnderlyingPrice(_token) /
(1e10 * decimalDelta);
}
/**
* @notice Checks if lending or borrowing is paused
* @return True if paused, false otherwise
*/
function _isSupplyPaused() internal view virtual override returns (bool) {
return comptroller.mintGuardianPaused(address(cToken));
}
function _isBorrowPaused() internal view virtual override returns (bool) {
return comptroller.borrowGuardianPaused(address(cBorrowToken));
}
/**
* @notice Checks if the strategy is liquidatable
* @return True if liquidatable, false otherwise
*/
function _isLiquidatable() internal view virtual override returns (bool) {
(, , uint256 shortfall) = comptroller.getAccountLiquidity(
address(this)
);
return shortfall > 0;
}
/**
* @notice Gets the supply cap for the collateral asset if any
* @return The supply cap
*/
function _maxCollateralDeposit()
internal
view
virtual
override
returns (uint256)
{
uint256 supplied = cToken.getCash() +
cToken.totalBorrows() -
cToken.totalReserves();
uint256 supplyCap = comptroller.supplyCaps(address(cToken));
return supplied > supplyCap ? 0 : supplyCap - supplied;
}
/**
* @notice Gets the max amount of `borrowToken` that could be borrowed
* @return The max borrow amount
*/
function _maxBorrowAmount()
internal
view
virtual
override
returns (uint256)
{
uint256 borrowCap = comptroller.borrowCaps(address(cBorrowToken));
uint256 borrows = cBorrowToken.totalBorrows();
if (borrows >= borrowCap) return 0;
return Math.min(borrowCap - borrows, cBorrowToken.getCash());
}
/**
* @notice Gets net borrow APR from depositor
* @param newAmount Simulated supply amount
* @return Net borrow APR
*/
function getNetBorrowApr(
uint256 newAmount
) public view virtual override returns (uint256) {
return WAD;
}
/**
* @notice Gets net reward APR from depositor
* @param newAmount Simulated supply amount
* @return Net reward APR
*/
function getNetRewardApr(
uint256 newAmount
) public view virtual override returns (uint256) {
return 3e18;
}
/**
* @notice Gets liquidation collateral factor for asset
* @return Liquidation collateral factor
*/
function getLiquidateCollateralFactor()
public
view
virtual
override
returns (uint256)
{
(, uint256 collateralFactorMantissa) = comptroller.markets(
address(cToken)
);
return collateralFactorMantissa;
}
/**
* @notice Gets supplied collateral balance
* @return Collateral balance
*/
function balanceOfCollateral()
public
view
virtual
override
returns (uint256)
{
return
(cToken.balanceOf(address(this)) * cToken.exchangeRateStored()) /
WAD;
}
/**
* @notice Gets current borrow balance
* @return Borrow balance
*/
function balanceOfDebt() public view virtual override returns (uint256) {
return cBorrowToken.borrowBalanceStored(address(this));
}
/// ----------------- HARVEST / TOKEN CONVERSIONS ----------------- \\
/**
* @notice Claims reward tokens
*/
function _claimRewards() internal virtual override {
address[] memory tokens = new address[](2);
tokens[0] = address(cToken);
tokens[1] = address(cBorrowToken);
comptroller.claimComp(address(this), tokens);
}
function _emergencyWithdraw(
uint256 _amount
) internal virtual override accrue {
super._emergencyWithdraw(_amount);
}
function sellBorrowToken(
uint256 _amount
) external virtual override onlyEmergencyAuthorized accrue {
if (_amount == type(uint256).max) {
uint256 _balanceOfBorrowToken = balanceOfBorrowToken();
_amount = Math.min(
balanceOfLentAssets() + _balanceOfBorrowToken - balanceOfDebt(),
_balanceOfBorrowToken
);
}
_sellBorrowToken(_amount);
}
function manualRepayDebt()
external
virtual
override
onlyEmergencyAuthorized
accrue
{
_repayTokenDebt();
}
/// @notice Sweep of non-asset ERC20 tokens to governance
/// @param _token The ERC20 token to sweep
function sweep(address _token) external {
require(msg.sender == GOV, "!gov");
require(_token != address(asset), "!asset");
ERC20(_token).safeTransfer(GOV, ERC20(_token).balanceOf(address(this)));
}
}
pragma solidity >=0.5.0;
pragma experimental ABIEncoderV2;
import "./CTokenI.sol";
interface ComptrollerI {
function enterMarkets(
address[] calldata cTokens
) external returns (uint256[] memory);
function exitMarket(address cToken) external returns (uint256);
/*** Policy Hooks ***/
function mintAllowed(
address cToken,
address minter,
uint256 mintAmount
) external returns (uint256);
function mintVerify(
address cToken,
address minter,
uint256 mintAmount,
uint256 mintTokens
) external;
function redeemAllowed(
address cToken,
address redeemer,
uint256 redeemTokens
) external returns (uint256);
function redeemVerify(
address cToken,
address redeemer,
uint256 redeemAmount,
uint256 redeemTokens
) external;
function borrowAllowed(
address cToken,
address borrower,
uint256 borrowAmount
) external returns (uint256);
function borrowVerify(
address cToken,
address borrower,
uint256 borrowAmount
) external;
function repayBorrowAllowed(
address cToken,
address payer,
address borrower,
uint256 repayAmount
) external returns (uint256);
function repayBorrowVerify(
address cToken,
address payer,
address borrower,
uint256 repayAmount,
uint256 borrowerIndex
) external;
function liquidateBorrowAllowed(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint256 repayAmount
) external returns (uint256);
function liquidateBorrowVerify(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint256 repayAmount,
uint256 seizeTokens
) external;
function seizeAllowed(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint256 seizeTokens
) external returns (uint256);
function seizeVerify(
address cTokenCollateral,
address cTokenBorrowed,
address liquidator,
address borrower,
uint256 seizeTokens
) external;
function transferAllowed(
address cToken,
address src,
address dst,
uint256 transferTokens
) external returns (uint256);
function transferVerify(
address cToken,
address src,
address dst,
uint256 transferTokens
) external;
/*** Liquidity/Liquidation Calculations ***/
function liquidateCalculateSeizeTokens(
address cTokenBorrowed,
address cTokenCollateral,
uint256 repayAmount
) external view returns (uint256, uint256);
function getAccountLiquidity(
address account
) external view returns (uint256, uint256, uint256);
/*** Comp claims ****/
function claimComp(address holder) external;
function claimComp(address holder, address[] memory cTokens) external;
function markets(address ctoken) external view returns (bool, uint256);
function compSpeeds(address ctoken) external view returns (uint256); // will be deprecated
function compSupplySpeeds(address ctoken) external view returns (uint256);
function compBorrowSpeeds(address ctoken) external view returns (uint256);
function oracle() external view returns (address);
function supplyCaps(address cToken) external view returns (uint256);
function borrowCaps(address cToken) external view returns (uint256);
function mintGuardianPaused(address cToken) external view returns (bool);
function borrowGuardianPaused(address cToken) external view returns (bool);
function rewardDistributor() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IAeroRouter {
struct Route {
address from;
address to;
bool stable;
address factory;
}
error ETHTransferFailed();
error Expired();
error InsufficientAmount();
error InsufficientAmountA();
error InsufficientAmountB();
error InsufficientAmountADesired();
error InsufficientAmountBDesired();
error InsufficientAmountAOptimal();
error InsufficientLiquidity();
error InsufficientOutputAmount();
error InvalidAmountInForETHDeposit();
error InvalidTokenInForETHDeposit();
error InvalidPath();
error InvalidRouteA();
error InvalidRouteB();
error OnlyWETH();
error PoolDoesNotExist();
error PoolFactoryDoesNotExist();
error SameAddresses();
error ZeroAddress();
/// @notice Address of FactoryRegistry.sol
function factoryRegistry() external view returns (address);
/// @notice Address of Velodrome v2 PoolFactory.sol
function defaultFactory() external view returns (address);
/// @notice Address of Voter.sol
function voter() external view returns (address);
function weth() external view returns (address);
/// @dev Represents Ether. Used by zapper to determine whether to return assets as ETH/WETH.
function ETHER() external view returns (address);
/// @dev Struct containing information necessary to zap in and out of pools
/// @param tokenA .
/// @param tokenB .
/// @param stable Stable or volatile pool
/// @param factory factory of pool
/// @param amountOutMinA Minimum amount expected from swap leg of zap via routesA
/// @param amountOutMinB Minimum amount expected from swap leg of zap via routesB
/// @param amountAMin Minimum amount of tokenA expected from liquidity leg of zap
/// @param amountBMin Minimum amount of tokenB expected from liquidity leg of zap
struct Zap {
address tokenA;
address tokenB;
bool stable;
address factory;
uint256 amountOutMinA;
uint256 amountOutMinB;
uint256 amountAMin;
uint256 amountBMin;
}
/// @notice Sort two tokens by which address value is less than the other
/// @param tokenA Address of token to sort
/// @param tokenB Address of token to sort
/// @return token0 Lower address value between tokenA and tokenB
/// @return token1 Higher address value between tokenA and tokenB
function sortTokens(
address tokenA,
address tokenB
) external pure returns (address token0, address token1);
/// @notice Calculate the address of a pool by its' factory.
/// Used by all Router functions containing a `Route[]` or `_factory` argument.
/// Reverts if _factory is not approved by the FactoryRegistry
/// @dev Returns a randomly generated address for a nonexistent pool
/// @param tokenA Address of token to query
/// @param tokenB Address of token to query
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of factory which created the pool
function poolFor(
address tokenA,
address tokenB,
bool stable,
address _factory
) external view returns (address pool);
/// @notice Fetch and sort the reserves for a pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of PoolFactory for tokenA and tokenB
/// @return reserveA Amount of reserves of the sorted token A
/// @return reserveB Amount of reserves of the sorted token B
function getReserves(
address tokenA,
address tokenB,
bool stable,
address _factory
) external view returns (uint256 reserveA, uint256 reserveB);
/// @notice Perform chained getAmountOut calculations on any number of pools
function getAmountsOut(
uint256 amountIn,
Route[] memory routes
) external view returns (uint256[] memory amounts);
// **** ADD LIQUIDITY ****
/// @notice Quote the amount deposited into a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of PoolFactory for tokenA and tokenB
/// @param amountADesired Amount of tokenA desired to deposit
/// @param amountBDesired Amount of tokenB desired to deposit
/// @return amountA Amount of tokenA to actually deposit
/// @return amountB Amount of tokenB to actually deposit
/// @return liquidity Amount of liquidity token returned from deposit
function quoteAddLiquidity(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 amountADesired,
uint256 amountBDesired
)
external
view
returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @notice Quote the amount of liquidity removed from a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param _factory Address of PoolFactory for tokenA and tokenB
/// @param liquidity Amount of liquidity to remove
/// @return amountA Amount of tokenA received
/// @return amountB Amount of tokenB received
function quoteRemoveLiquidity(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 liquidity
) external view returns (uint256 amountA, uint256 amountB);
/// @notice Add liquidity of two tokens to a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param amountADesired Amount of tokenA desired to deposit
/// @param amountBDesired Amount of tokenB desired to deposit
/// @param amountAMin Minimum amount of tokenA to deposit
/// @param amountBMin Minimum amount of tokenB to deposit
/// @param to Recipient of liquidity token
/// @param deadline Deadline to receive liquidity
/// @return amountA Amount of tokenA to actually deposit
/// @return amountB Amount of tokenB to actually deposit
/// @return liquidity Amount of liquidity token returned from deposit
function addLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @notice Add liquidity of a token and WETH (transferred as ETH) to a Pool
/// @param token .
/// @param stable True if pool is stable, false if volatile
/// @param amountTokenDesired Amount of token desired to deposit
/// @param amountTokenMin Minimum amount of token to deposit
/// @param amountETHMin Minimum amount of ETH to deposit
/// @param to Recipient of liquidity token
/// @param deadline Deadline to add liquidity
/// @return amountToken Amount of token to actually deposit
/// @return amountETH Amount of tokenETH to actually deposit
/// @return liquidity Amount of liquidity token returned from deposit
function addLiquidityETH(
address token,
bool stable,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
// **** REMOVE LIQUIDITY ****
/// @notice Remove liquidity of two tokens from a Pool
/// @param tokenA .
/// @param tokenB .
/// @param stable True if pool is stable, false if volatile
/// @param liquidity Amount of liquidity to remove
/// @param amountAMin Minimum amount of tokenA to receive
/// @param amountBMin Minimum amount of tokenB to receive
/// @param to Recipient of tokens received
/// @param deadline Deadline to remove liquidity
/// @return amountA Amount of tokenA received
/// @return amountB Amount of tokenB received
function removeLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB);
/// @notice Remove liquidity of a token and WETH (returned as ETH) from a Pool
/// @param token .
/// @param stable True if pool is stable, false if volatile
/// @param liquidity Amount of liquidity to remove
/// @param amountTokenMin Minimum amount of token to receive
/// @param amountETHMin Minimum amount of ETH to receive
/// @param to Recipient of liquidity token
/// @param deadline Deadline to receive liquidity
/// @return amountToken Amount of token received
/// @return amountETH Amount of ETH received
function removeLiquidityETH(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
/// @notice Remove liquidity of a fee-on-transfer token and WETH (returned as ETH) from a Pool
/// @param token .
/// @param stable True if pool is stable, false if volatile
/// @param liquidity Amount of liquidity to remove
/// @param amountTokenMin Minimum amount of token to receive
/// @param amountETHMin Minimum amount of ETH to receive
/// @param to Recipient of liquidity token
/// @param deadline Deadline to receive liquidity
/// @return amountETH Amount of ETH received
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountETH);
// **** SWAP ****
/// @notice Swap one token for another
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
/// @return amounts Array of amounts returned per route
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
/// @notice Swap ETH for a token
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
/// @return amounts Array of amounts returned per route
function swapExactETHForTokens(
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
/// @notice Swap a token for WETH (returned as ETH)
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired ETH
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
/// @return amounts Array of amounts returned per route
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
/// @notice Swap one token for another without slippage protection
/// @return amounts Array of amounts to swap per route
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function UNSAFE_swapExactTokensForTokens(
uint256[] memory amounts,
Route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory);
// **** SWAP (supporting fee-on-transfer tokens) ****
/// @notice Swap one token for another supporting fee-on-transfer tokens
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external;
/// @notice Swap ETH for a token supporting fee-on-transfer tokens
/// @param amountOutMin Minimum amount of desired token received
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external payable;
/// @notice Swap a token for WETH (returned as ETH) supporting fee-on-transfer tokens
/// @param amountIn Amount of token in
/// @param amountOutMin Minimum amount of desired ETH
/// @param routes Array of trade routes used in the swap
/// @param to Recipient of the tokens received
/// @param deadline Deadline to receive tokens
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
Route[] calldata routes,
address to,
uint256 deadline
) external;
/// @notice Zap a token A into a pool (B, C). (A can be equal to B or C).
/// Supports standard ERC20 tokens only (i.e. not fee-on-transfer tokens etc).
/// Slippage is required for the initial swap.
/// Additional slippage may be required when adding liquidity as the
/// price of the token may have changed.
/// @param tokenIn Token you are zapping in from (i.e. input token).
/// @param amountInA Amount of input token you wish to send down routesA
/// @param amountInB Amount of input token you wish to send down routesB
/// @param zapInPool Contains zap struct information. See Zap struct.
/// @param routesA Route used to convert input token to tokenA
/// @param routesB Route used to convert input token to tokenB
/// @param to Address you wish to mint liquidity to.
/// @param stake Auto-stake liquidity in corresponding gauge.
/// @return liquidity Amount of LP tokens created from zapping in.
function zapIn(
address tokenIn,
uint256 amountInA,
uint256 amountInB,
Zap calldata zapInPool,
Route[] calldata routesA,
Route[] calldata routesB,
address to,
bool stake
) external payable returns (uint256 liquidity);
/// @notice Zap out a pool (B, C) into A.
/// Supports standard ERC20 tokens only (i.e. not fee-on-transfer tokens etc).
/// Slippage is required for the removal of liquidity.
/// Additional slippage may be required on the swap as the
/// price of the token may have changed.
/// @param tokenOut Token you are zapping out to (i.e. output token).
/// @param liquidity Amount of liquidity you wish to remove.
/// @param zapOutPool Contains zap struct information. See Zap struct.
/// @param routesA Route used to convert tokenA into output token.
/// @param routesB Route used to convert tokenB into output token.
function zapOut(
address tokenOut,
uint256 liquidity,
Zap calldata zapOutPool,
Route[] calldata routesA,
Route[] calldata routesB
) external;
/// @notice Used to generate params required for zapping in.
/// Zap in => remove liquidity then swap.
/// Apply slippage to expected swap values to account for changes in reserves in between.
/// @dev Output token refers to the token you want to zap in from.
/// @param tokenA .
/// @param tokenB .
/// @param stable .
/// @param _factory .
/// @param amountInA Amount of input token you wish to send down routesA
/// @param amountInB Amount of input token you wish to send down routesB
/// @param routesA Route used to convert input token to tokenA
/// @param routesB Route used to convert input token to tokenB
/// @return amountOutMinA Minimum output expected from swapping input token to tokenA.
/// @return amountOutMinB Minimum output expected from swapping input token to tokenB.
/// @return amountAMin Minimum amount of tokenA expected from depositing liquidity.
/// @return amountBMin Minimum amount of tokenB expected from depositing liquidity.
function generateZapInParams(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 amountInA,
uint256 amountInB,
Route[] calldata routesA,
Route[] calldata routesB
)
external
view
returns (
uint256 amountOutMinA,
uint256 amountOutMinB,
uint256 amountAMin,
uint256 amountBMin
);
/// @notice Used to generate params required for zapping out.
/// Zap out => swap then add liquidity.
/// Apply slippage to expected liquidity values to account for changes in reserves in between.
/// @dev Output token refers to the token you want to zap out of.
/// @param tokenA .
/// @param tokenB .
/// @param stable .
/// @param _factory .
/// @param liquidity Amount of liquidity being zapped out of into a given output token.
/// @param routesA Route used to convert tokenA into output token.
/// @param routesB Route used to convert tokenB into output token.
/// @return amountOutMinA Minimum output expected from swapping tokenA into output token.
/// @return amountOutMinB Minimum output expected from swapping tokenB into output token.
/// @return amountAMin Minimum amount of tokenA expected from withdrawing liquidity.
/// @return amountBMin Minimum amount of tokenB expected from withdrawing liquidity.
function generateZapOutParams(
address tokenA,
address tokenB,
bool stable,
address _factory,
uint256 liquidity,
Route[] calldata routesA,
Route[] calldata routesB
)
external
view
returns (
uint256 amountOutMinA,
uint256 amountOutMinB,
uint256 amountAMin,
uint256 amountBMin
);
/// @notice Used by zapper to determine appropriate ratio of A to B to deposit liquidity. Assumes stable pool.
/// @dev Returns stable liquidity ratio of B to (A + B).
/// E.g. if ratio is 0.4, it means there is more of A than there is of B.
/// Therefore you should deposit more of token A than B.
/// @param tokenA tokenA of stable pool you are zapping into.
/// @param tokenB tokenB of stable pool you are zapping into.
/// @param factory Factory that created stable pool.
/// @return ratio Ratio of token0 to token1 required to deposit into zap.
function quoteStableLiquidityRatio(
address tokenA,
address tokenB,
address factory
) external view returns (uint256 ratio);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {IStrategy} from "@tokenized-strategy/interfaces/IStrategy.sol";
interface IBaseHealthCheck is IStrategy {
function doHealthCheck() external view returns (bool);
function profitLimitRatio() external view returns (uint256);
function lossLimitRatio() external view returns (uint256);
function setProfitLimitRatio(uint256 _newProfitLimitRatio) external;
function setLossLimitRatio(uint256 _newLossLimitRatio) external;
function setDoHealthCheck(bool _doHealthCheck) external;
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
interface IBaseStrategy {
function tokenizedStrategyAddress() external view returns (address);
/*//////////////////////////////////////////////////////////////
IMMUTABLE FUNCTIONS
//////////////////////////////////////////////////////////////*/
function availableDepositLimit(
address _owner
) external view returns (uint256);
function availableWithdrawLimit(
address _owner
) external view returns (uint256);
function deployFunds(uint256 _assets) external;
function freeFunds(uint256 _amount) external;
function harvestAndReport() external returns (uint256);
function tendThis(uint256 _totalIdle) external;
function shutdownWithdraw(uint256 _amount) external;
function tendTrigger() external view returns (bool, bytes memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20.sol";
import "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* _Available since v4.7._
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.18;
import {IBaseHealthCheck} from "@periphery/Bases/HealthCheck/IBaseHealthCheck.sol";
interface ILenderBorrower is IBaseHealthCheck {
// Public Variables
function borrowToken() external view returns (address);
function leaveDebtBehind() external view returns (bool);
function depositLimit() external view returns (uint256);
function targetLTVMultiplier() external view returns (uint16);
function warningLTVMultiplier() external view returns (uint16);
function maxGasPriceToTend() external view returns (uint256);
function slippage() external view returns (uint256);
function minAmountToBorrow() external view returns (uint256);
// External Functions
function setDepositLimit(uint256 _depositLimit) external;
function setLtvMultipliers(
uint16 _targetLTVMultiplier,
uint16 _warningLTVMultiplier
) external;
function setLeaveDebtBehind(bool _leaveDebtBehind) external;
function setMaxGasPriceToTend(uint256 _maxGasPriceToTend) external;
function setSlippage(uint256 _slippage) external;
// Public View Functions
function getCurrentLTV() external view returns (uint256);
function getNetBorrowApr(uint256 newAmount) external view returns (uint256);
function getNetRewardApr(uint256 newAmount) external view returns (uint256);
function getLiquidateCollateralFactor() external view returns (uint256);
function balanceOfCollateral() external view returns (uint256);
function balanceOfDebt() external view returns (uint256);
function balanceOfLentAssets() external view returns (uint256);
function balanceOfAsset() external view returns (uint256);
function balanceOfBorrowToken() external view returns (uint256);
function borrowTokenOwedBalance() external view returns (uint256);
// Emergency Functions
function claimAndSellRewards() external;
function sellBorrowToken(uint256 _amount) external;
function manualWithdraw(address _token, uint256 _amount) external;
function manualRepayDebt() external;
}
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.18;
interface IOracle {
function latestAnswer() external view returns (int256);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ITokenizedStrategy} from "./ITokenizedStrategy.sol";
import {IBaseStrategy} from "./IBaseStrategy.sol";
interface IStrategy is IBaseStrategy, ITokenizedStrategy {}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.18;
import {IAeroRouter} from "./Aero/IAeroRouter.sol";
import {ITradeFactorySwapper} from "@periphery/swappers/interfaces/ITradeFactorySwapper.sol";
import {IStrategy} from "@tokenized-strategy/interfaces/IStrategy.sol";
import {ILenderBorrower} from "./ILenderBorrower.sol";
interface IStrategyInterface is
IStrategy,
ILenderBorrower,
ITradeFactorySwapper
{
//TODO: Add your specific implementation interface in here.
struct TokenInfo {
address priceFeed;
uint96 decimals;
}
function accrueInterest() external;
function GOV() external view returns (address);
function cToken() external view returns (address);
function cBorrowToken() external view returns (address);
function comptroller() external view returns (address);
function lenderVault() external view returns (address);
function tokenInfo(address _token) external view returns (TokenInfo memory);
function setPriceFeed(address _token, address _priceFeed) external;
function WELL() external view returns (address);
function sweep(address _token) external;
function setMinAmountToSell(uint256 _minAmountToSell) external;
function minAmountToSell() external view returns (uint256);
function setRoutes(
address _token0,
address _token1,
IAeroRouter.Route[] memory _routes
) external;
function routes(
address _token0,
address _token1
) external view returns (IAeroRouter.Route[] memory);
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
// Interface that implements the 4626 standard and the implementation functions
interface ITokenizedStrategy is IERC4626, IERC20Permit {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event StrategyShutdown();
event NewTokenizedStrategy(
address indexed strategy,
address indexed asset,
string apiVersion
);
event Reported(
uint256 profit,
uint256 loss,
uint256 protocolFees,
uint256 performanceFees
);
event UpdatePerformanceFeeRecipient(
address indexed newPerformanceFeeRecipient
);
event UpdateKeeper(address indexed newKeeper);
event UpdatePerformanceFee(uint16 newPerformanceFee);
event UpdateManagement(address indexed newManagement);
event UpdateEmergencyAdmin(address indexed newEmergencyAdmin);
event UpdateProfitMaxUnlockTime(uint256 newProfitMaxUnlockTime);
event UpdatePendingManagement(address indexed newPendingManagement);
/*//////////////////////////////////////////////////////////////
INITIALIZATION
//////////////////////////////////////////////////////////////*/
function initialize(
address _asset,
string memory _name,
address _management,
address _performanceFeeRecipient,
address _keeper
) external;
/*//////////////////////////////////////////////////////////////
NON-STANDARD 4626 OPTIONS
//////////////////////////////////////////////////////////////*/
function withdraw(
uint256 assets,
address receiver,
address owner,
uint256 maxLoss
) external returns (uint256);
function redeem(
uint256 shares,
address receiver,
address owner,
uint256 maxLoss
) external returns (uint256);
function maxWithdraw(
address owner,
uint256 /*maxLoss*/
) external view returns (uint256);
function maxRedeem(
address owner,
uint256 /*maxLoss*/
) external view returns (uint256);
/*//////////////////////////////////////////////////////////////
MODIFIER HELPERS
//////////////////////////////////////////////////////////////*/
function requireManagement(address _sender) external view;
function requireKeeperOrManagement(address _sender) external view;
function requireEmergencyAuthorized(address _sender) external view;
/*//////////////////////////////////////////////////////////////
KEEPERS FUNCTIONS
//////////////////////////////////////////////////////////////*/
function tend() external;
function report() external returns (uint256 _profit, uint256 _loss);
/*//////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////*/
function MAX_FEE() external view returns (uint16);
function FACTORY() external view returns (address);
/*//////////////////////////////////////////////////////////////
GETTERS
//////////////////////////////////////////////////////////////*/
function apiVersion() external view returns (string memory);
function pricePerShare() external view returns (uint256);
function management() external view returns (address);
function pendingManagement() external view returns (address);
function keeper() external view returns (address);
function emergencyAdmin() external view returns (address);
function performanceFee() external view returns (uint16);
function performanceFeeRecipient() external view returns (address);
function fullProfitUnlockDate() external view returns (uint256);
function profitUnlockingRate() external view returns (uint256);
function profitMaxUnlockTime() external view returns (uint256);
function lastReport() external view returns (uint256);
function isShutdown() external view returns (bool);
function unlockedShares() external view returns (uint256);
/*//////////////////////////////////////////////////////////////
SETTERS
//////////////////////////////////////////////////////////////*/
function setPendingManagement(address) external;
function acceptManagement() external;
function setKeeper(address _keeper) external;
function setEmergencyAdmin(address _emergencyAdmin) external;
function setPerformanceFee(uint16 _performanceFee) external;
function setPerformanceFeeRecipient(
address _performanceFeeRecipient
) external;
function setProfitMaxUnlockTime(uint256 _profitMaxUnlockTime) external;
function setName(string calldata _newName) external;
function shutdownStrategy() external;
function emergencyWithdraw(uint256 _amount) external;
}
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.8.18;
interface ITradeFactorySwapper {
function tradeFactory() external view returns (address);
function rewardTokens() external view returns (address[] memory);
function claimRewards() external;
}
pragma solidity >=0.6.12;
interface InterestRateModel {
/**
* @notice Calculates the current borrow interest rate per block
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amount of reserves the market has
* @return The borrow rate per block (as a percentage, and scaled by 1e18)
*/
function getBorrowRate(
uint256 cash,
uint256 borrows,
uint256 reserves
) external view returns (uint256);
/**
* @notice Calculates the current supply interest rate per block
* @param cash The total amount of cash the market has
* @param borrows The total amount of borrows the market has outstanding
* @param reserves The total amount of reserves the market has
* @param reserveFactorMantissa The current reserve factor the market has
* @return The supply rate per block (as a percentage, and scaled by 1e18)
*/
function getSupplyRate(
uint256 cash,
uint256 borrows,
uint256 reserves,
uint256 reserveFactorMantissa
) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.18;
import {IOracle} from "./interfaces/IOracle.sol";
import {IAeroRouter} from "./interfaces/Aero/IAeroRouter.sol";
import {CompoundV2LenderBorrower, ERC20, CErc20I, SafeERC20, Math} from "./CompoundV2LenderBorrower.sol";
interface IWeth {
function deposit() external payable;
}
interface MoonwellComptrollerI {
function claimReward(address holder, CErc20I[] memory mTokens) external;
}
contract MoonwellLenderBorrower is CompoundV2LenderBorrower {
using SafeERC20 for ERC20;
ERC20 internal constant WELL =
ERC20(0xA88594D404727625A9437C3f886C7643872296AE);
IWeth internal constant WETH =
IWeth(0x4200000000000000000000000000000000000006);
IAeroRouter internal constant AERODROME_ROUTER =
IAeroRouter(0xcF77a3Ba9A5CA399B7c97c74d54e5b1Beb874E43);
mapping(address => mapping(address => IAeroRouter.Route[])) public routes;
constructor(
address _asset,
string memory _name,
address _borrowToken,
address _lenderVault,
address _gov,
address _cToken,
address _cBorrowToken
)
CompoundV2LenderBorrower(
_asset,
_name,
_borrowToken,
_lenderVault,
_gov,
_cToken,
_cBorrowToken
)
{
tokenInfo[address(WELL)] = TokenInfo({
priceFeed: 0xBBF812FC0e45F58121983bd07C5079fF74433a61,
decimals: uint96(10 ** WELL.decimals())
});
}
function setRoutes(
address _token0,
address _token1,
IAeroRouter.Route[] calldata _routes
) external onlyManagement {
delete routes[_token0][_token1];
for (uint256 i = 0; i < _routes.length; i++) {
routes[_token0][_token1].push(_routes[i]);
}
}
/// ----------------- HARVEST / TOKEN CONVERSIONS ----------------- \\
/**
* @notice Claims reward tokens
*/
function _claimRewards() internal virtual override {
CErc20I[] memory tokens = new CErc20I[](2);
tokens[0] = cToken;
tokens[1] = cBorrowToken;
MoonwellComptrollerI(address(comptroller)).claimReward(
address(this),
tokens
);
}
/**
* @notice Claims and sells available reward tokens
* @dev Handles claiming, selling rewards for base tokens if needed, and selling remaining rewards for asset
*/
function _claimAndSellRewards() internal virtual override {
_claimRewards();
uint256 rewardTokenBalance;
uint256 have = balanceOfLentAssets() + balanceOfBorrowToken();
uint256 owe = balanceOfDebt();
if (owe > have) {
uint256 borrowTokenNeeded;
unchecked {
borrowTokenNeeded = owe - have;
}
rewardTokenBalance = WELL.balanceOf(address(this));
/// We estimate how much we will need in order to get the amount of base
/// Accounts for slippage and diff from oracle price, just to assure no horrible sandwich
uint256 maxRewardToken = (_fromUsd(
_toUsd(borrowTokenNeeded, address(borrowToken)),
address(WELL)
) * (MAX_BPS + slippage)) / MAX_BPS;
// Swap the least amount needed.
rewardTokenBalance = Math.min(rewardTokenBalance, maxRewardToken);
_swapFrom(
address(WELL),
borrowToken,
rewardTokenBalance,
_getAmountOut(rewardTokenBalance, address(WELL), borrowToken)
);
} else {
// We have more than enough to cover our debt, so we can just withdraw and swap the extra
uint256 extra;
unchecked {
extra = have - owe;
}
_withdrawFromLender(extra);
// Actual amount withdrawn may differ from input
_sellBorrowToken(Math.min(extra, balanceOfBorrowToken()));
}
rewardTokenBalance = WELL.balanceOf(address(this));
_swapFrom(
address(WELL),
address(asset),
rewardTokenBalance,
_getAmountOut(rewardTokenBalance, address(WELL), address(asset))
);
}
/**
* @dev Buys the borrow token using the strategy's assets.
* This function should only ever be called when withdrawing all funds from the strategy if there is debt left over.
* Initially, it tries to sell rewards for the needed amount of base token, then it will swap assets.
* Using this function in a standard withdrawal can cause it to be sandwiched, which is why rewards are used first.
*/
function _buyBorrowToken() internal virtual override {
/// Try to obtain the required amount from rewards tokens before swapping assets and reporting losses.
_claimAndSellRewards();
uint256 borrowTokenStillOwed = borrowTokenOwedBalance();
/// Check if our debt balance is still greater than our base token balance
if (borrowTokenStillOwed > 0) {
/// Need to account for both slippage and diff in the oracle price.
/// Should be only swapping very small amounts so its just to make sure there is no massive sandwich
uint256 maxAssetBalance = (_fromUsd(
_toUsd(borrowTokenStillOwed, borrowToken),
address(asset)
) * (MAX_BPS + slippage)) / MAX_BPS;
/// Under 10 can cause rounding errors from token conversions, no need to swap that small amount
if (maxAssetBalance <= 10) return;
_swapFrom(
address(asset),
borrowToken,
maxAssetBalance,
borrowTokenStillOwed
);
}
}
/**
* @dev Will swap from the base token => underlying asset.
*/
function _sellBorrowToken(uint256 _amount) internal virtual override {
_swapFrom(
borrowToken,
address(asset),
_amount,
_getAmountOut(_amount, borrowToken, address(asset))
);
}
function _swapFrom(
address _from,
address _to,
uint256 _amountIn,
uint256 _minAmountOut
) internal virtual {
if (_amountIn > minAmountToSell) {
_checkAllowance(address(AERODROME_ROUTER), _from, _amountIn);
AERODROME_ROUTER.swapExactTokensForTokens(
_amountIn,
_minAmountOut,
routes[_from][_to],
address(this),
block.timestamp
);
}
}
function _checkAllowance(
address _contract,
address _token,
uint256 _amount
) internal virtual {
ERC20(_token).forceApprove(_contract, _amount);
}
receive() external payable {
WETH.deposit{value: msg.value}();
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.18;
import {MoonwellLenderBorrower, ERC20, CErc20I} from "./MoonwellLenderBorrower.sol";
import {IStrategyInterface} from "./interfaces/IStrategyInterface.sol";
contract MoonwellLenderBorrowerFactory {
event NewStrategy(address indexed strategy, address indexed asset);
address public immutable GOV;
address public immutable emergencyAdmin;
address public management;
address public performanceFeeRecipient;
address public keeper;
/// @notice Track the deployments. asset => pool => strategy
mapping(address => mapping(address => address)) public deployments;
constructor(
address _management,
address _performanceFeeRecipient,
address _keeper,
address _emergencyAdmin,
address _gov
) {
management = _management;
performanceFeeRecipient = _performanceFeeRecipient;
keeper = _keeper;
emergencyAdmin = _emergencyAdmin;
GOV = _gov;
}
/**
* @notice Deploy a new Strategy.
* @return . The address of the new strategy.
*/
function newStrategy(
address _cToken,
address _cBorrowToken,
address _lenderVault
) external virtual returns (address) {
address _asset = CErc20I(_cToken).underlying();
address _borrowToken = CErc20I(_cBorrowToken).underlying();
string memory _name = string(
abi.encodePacked(
"Moonwell ",
ERC20(_asset).symbol(),
" Lender ",
ERC20(_borrowToken).symbol(),
" Borrower"
)
);
// tokenized strategies available setters.
IStrategyInterface _newStrategy = IStrategyInterface(
address(
new MoonwellLenderBorrower(
_asset,
_name,
_borrowToken,
_lenderVault,
GOV,
_cToken,
_cBorrowToken
)
)
);
_newStrategy.setPerformanceFeeRecipient(performanceFeeRecipient);
_newStrategy.setKeeper(keeper);
_newStrategy.setPendingManagement(management);
_newStrategy.setEmergencyAdmin(emergencyAdmin);
emit NewStrategy(address(_newStrategy), _asset);
deployments[_asset][_borrowToken] = address(_newStrategy);
return address(_newStrategy);
}
function setAddresses(
address _management,
address _performanceFeeRecipient,
address _keeper
) external {
require(msg.sender == management, "!management");
management = _management;
performanceFeeRecipient = _performanceFeeRecipient;
keeper = _keeper;
}
function isDeployedStrategy(
address _strategy
) external view returns (bool) {
address _asset = IStrategyInterface(_strategy).asset();
address _borrowToken = IStrategyInterface(_strategy).borrowToken();
return deployments[_asset][_borrowToken] == _strategy;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
{
"compilationTarget": {
"src/MoonwellLenderBorrowerFactory.sol": "MoonwellLenderBorrowerFactory"
},
"evmVersion": "shanghai",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 200
},
"remappings": [
":@openzeppelin/=lib/openzeppelin-contracts/",
":@periphery/=lib/tokenized-strategy-periphery/src/",
":@tokenized-strategy/=lib/tokenized-strategy/src/",
":@yearn-vaults/=lib/tokenized-strategy-periphery/lib/yearn-vaults-v3/contracts/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/tokenized-strategy/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":openzeppelin/=lib/openzeppelin-contracts/contracts/",
":tokenized-strategy-periphery/=lib/tokenized-strategy-periphery/",
":tokenized-strategy/=lib/tokenized-strategy/",
":yearn-vaults-v3/=lib/tokenized-strategy-periphery/lib/yearn-vaults-v3/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"_management","type":"address"},{"internalType":"address","name":"_performanceFeeRecipient","type":"address"},{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"address","name":"_emergencyAdmin","type":"address"},{"internalType":"address","name":"_gov","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"strategy","type":"address"},{"indexed":true,"internalType":"address","name":"asset","type":"address"}],"name":"NewStrategy","type":"event"},{"inputs":[],"name":"GOV","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"deployments","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyAdmin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_strategy","type":"address"}],"name":"isDeployedStrategy","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"management","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_cToken","type":"address"},{"internalType":"address","name":"_cBorrowToken","type":"address"},{"internalType":"address","name":"_lenderVault","type":"address"}],"name":"newStrategy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"performanceFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_management","type":"address"},{"internalType":"address","name":"_performanceFeeRecipient","type":"address"},{"internalType":"address","name":"_keeper","type":"address"}],"name":"setAddresses","outputs":[],"stateMutability":"nonpayable","type":"function"}]